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Abstract

Recent works have shown that a wide class of globally convergent interior point methods may manifest
a weakness of convergence. Failures can be ascribed to the procedure of linesearch along the Newton step.
In this paper, we introduce a globally convergent interior point method which performs backtracking along a
piecewise linear path. Theoretical and computational results show the e3ectiveness of our proposal.
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1. Introduction

The problem we address in this paper is to 9nd a solution of a mixed complementarity problem
(MCP), i.e., we seek for a vector x = (v; s; z)∈Rm+2n with s; z ∈Rn

+, that satis9es

H (x) =

(
F(v; s; z)

SZe

)
= 0; (1.1)

where F : Rm+2n �→ Rm+n, S = diag(s), Z = diag(z), e = (1; 1; : : : ; 1)T ∈Rn.
MCPs are constrained nonlinear systems of equations which arise frequently in practice. In fact,

many economics and engineering applications can be modeled by MCPs, see e.g., [12,13]. Further,
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problem (1.1) is a generalization of nonlinear complementarity problems (NCPs) and the Karush–
Khun–Tucker (KKT) equations for nonlinear programming and variational inequalities are particular
cases of (1.1). Note that when n = 0 an MCP reduces to a nonlinear system of equations.

MCPs problems can be e3ectively solved by interior point methods and here we consider the prob-
lem of enhancing the convergence properties of a class of widely used infeasible interior point meth-
ods. Infeasible interior point methods for MCPs start from a point (v0; s0; z0) such that s0; z0 ∈R++

and generate sequences of points which remain in the region Rm × Rn
++ × Rn

++.
In fact, the early study of interior point was motivated from the desire to 9nd algorithms for

linear programming problems with better theoretical properties than the simplex method. A great
deal of work on this topic has given rise to procedures which display great eJciency in solving
linear programming problems. Also, algorithms and software for linear programming have become
quite sophisticated [32].

Extensions to more general classes of problems such as complementarity problems and nonlinear
programming problems have been studied too, and now we give a brief account of some major works.
For a detailed review of interior point algorithms we refer the reader to the recent survey [21].

Considerable research e3ort has been devoted to the study of infeasible interior point methods for
monotone linear complementarity problems; in [35] Zhang described an algorithm with polynomial
complexity, in later works Potra [19], Potra and Sheng [23], Wright [30,31] described fast convergent
interior Point methods. In particular, the procedure given in [23] shows the best complexity bound.
Also, the problem of solving nonmonotone linear complementarity problems by infeasible methods
was addressed, e.g., see [20,25].

Infeasible interior point methods have been extended also to NCPs and nonlinear programming
problems (NLPs). In the 9eld of this latter class of problems, an important contribution to methods for
convex NLPs is due to El Bakry et al. [11], while interior point methods for nonconvex NLPs were
studied in [4,15,27,34]. The problem of solving nonlinear complementarity problems was addressed
in the early paper [22] where several results for linear and nonlinear optimization are generalized to
NCPs. Moreover, infeasible interior point methods for NCPs and MCPs were proposed by Kojima
et al. [16], Wright and Ralph [33], Tseng [26].

Infeasible interior point methods for MCPs and NLPs are based upon a common scheme and
di3er for the choice of the merit function, the strategy of updating the barrier parameter and the
globalization strategy used (linesearch [1,9,11,15,16,22,26,27,33] or trust region [4,34]).

In this paper, we focus on convergence enhancement of classical linesearch interior point methods.
Given an initial guess x0 =(v0; s0; z0), with s0; z0 positive component-wise vectors, at the kth iteration
these methods compute the Newton step pN

k by solving the linear system

H ′(xk)pN
k = −H (xk) + �ke0; (1.2)

where H ′ is the Jacobian of H , �k is a positive scalar and e0 = (0; : : : ; 0; eT)T ∈Rm+2n. Then, they
apply a backtracking scheme along pN

k in order to maintain sk+1 and zk+1 positive and to decrease
a suitable merit function  .

Classical linesearch interior point methods are relevant because of their simplicity and their eJ-
ciency. However, several examples illustrate that they can fail to converge, see [5,17,24,28]. These
papers show that the generated sequence {xk} can be attracted to a point x̃ that is neither a solution of
problem (1.1) nor a stationary point for  . The point x̃ is called a singular nonstationary point with
respect to the merit function  and it is such that H (x̃) 	= 0, H ′(x̃) is singular and ∇ (x̃) 	= 0, [5].
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Convergence failures can occur with or without the involvement of the bounds. Concerning NCPs
and the KKT conditions for nonlinear programming problems several examples of failures are pro-
vided in [5,24,28]. In some cases the bounds play a key role in blocking progress towards feasibility.
On the other hand, similar phenomenon can take place regardless the bounds. This latter occurrence
is closely related to failures that can be observed in the solution of nonlinear systems of equations by
linesearch Newton methods. In this context, Powell [5,17] provided an example where a linesearch
Newton method sticks a singular nonstationary point.

In [5,17] it was pointed out that the motivation for such convergence failures lies on an intrinsic
Paw of the Newton direction. Therefore, in such situations, the Newton direction must be dropped
and modi9cations of the basic linesearch approach must be devised. Regarding the proposal of
procedures designed to overcome diJculties of classical linesearch interior point methods, we are
only aware of the papers [3,17,2].

In [3] Benson et al. derived and discussed three possible solutions to such failures. One of these
can be applied when the current iterate is near a bound. In particular, if a slack variable is small and
at the same time the temptative increment is much greater than it, the variable is shifted. The current
version of LOQO [3] emploies this technique and does not fail in solving the hard test problem
proposed by Wachter and Biegler in [28].

In [17] Marazzi and Nocedal discussed interior point methods that generate steps employing trust
region techniques. This way steps di3erent from the Newton one can be selected. They proposed
this approach as a resolution of the convergence diJculties of the classical linesearch strategy.

In [2] the authors proposed a method for MCPs which turns out to be a modi9cation of the
interior point method studied in [1,25]. The resulting method was denoted Piecewise Linear Interior
Point (PLIP) method and the used globalization technique was designed to leave the Newton direction
when it reveals to be unsatisfactory, i.e., when too many backtracks are required to maintain positive
the bounded variables or to decrease the value of  . The key feature of [2] is the de9nition of the
new piecewise linear path exploited by the backtracking strategy. The new path has a simple and
inexpensive formulation. Moreover, the theoretical analysis of its properties yields to a strategy that
allows for an automatic transition from the Newton direction to alternative directions. The conducted
numerical experiments on hard test problems given in [2] showed that the PLIP method is a promising
procedure for solving MCPs. However, no attempt was made to study it from a theoretical point of
view.

In this paper, the convergence properties of the PLIP method are investigated. The global conver-
gence properties of the method are studied taking into account the features of the piecewise linear
path. First, assuming the invertibility of H ′ in a neighborhood of the bounded sequence {xk} it is
proved that the PLIP method converges to a solution of the MCP problem and fast local convergence
can be retained. Further, the problem of whether the PLIP method can be attracted to a singular
nonstationary point is investigated. It is shown that under suitable hypotheses the backtracking pro-
cedure along the piecewise linear path prevents the iterates from sticking singular nonstationary
points that belong to the interior Rm × Rn

+ × Rn
+. It is important to point out that the hypotheses

used to prove this result can actually be satis9ed by problems that classical methods fail to solve.
Finally, we report numerical results obtained with the PLIP method. The used set of test problems
is constituted by hard problems considered in [5,24,28]. The obtained results indicate that our global
strategy copes with the Paw of Newton step direction, shows fast local rate of convergence and low
computational cost.
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1.1. Notations

Through the paper, we will use (v; s; z) as shorthand for the vector (vT; sT; zT)T, and the vectors x
and Rx for x = (v; s; z); Rx = (Rv;Rs;Rz).

For any generic vector y the subscript i will be used to indicate the ith component yi of y. The
corresponding capital letter Y denotes the diagonal matrix whose (i; i)th entry is given by yi. In
addition, y¿ 0 (y¿ 0) means that all the components of y are positive (nonnegative). Moreover,
min(y) stands for mini(yi).

For any vector, ‖·‖ is the standard Euclidean norm and ‖·‖1 is the 1-norm. Further, N�(u) denotes
the closed ball N�(u) = {y∈Rn‖y − u‖6 �}.

If H (y), y∈Rm, is a given smooth vector function, the Jacobian matrix is denoted by H ′(y),
while the gradient vector of a given smooth real function h(y), y∈Rm, is denoted by ∇h(y) and the
Hessian matrix is denoted by ∇2h(y). For F=F(v; s; z), F ′

v ∈R(m+n)×m, F ′
s ∈R(m+n)×n, F ′

z ∈R(m+n)×n,
are the jacobian matrices of F when F is considered as a function of v; s; z, respectively. When clear
from the context, the argument of a mapping is omitted and, for any function H , the notation Hk is
used to denote H (xk).

Finally, we recall that, if  : Rn → R is di3erentiable, then a descent direction p for  at xk
satis9es ∇ T

k p¡ 0 [18] and this means that there exists a �0 ¿ 0 such that  (xk + �p)¡ (xk) for
all �¡�0.

2. Backgrounds

In this section, 9rst we briePy summarize the main features of classical linesearch interior point
methods for MCPs. Then, we focus on a speci9c method of this class that we denote CLIP method.
This method was studied in [1] and [25] and it is based on the classical interior point framework
given in [11].

At each iteration of an interior point method, the numerical solution of the linear system (1.2) is
required. Due to the structure of H ′

k

H ′
k =

(
F ′

v; k F ′
s; k F ′

z; k

0 Zk Sk

)
; (2.1)

it is easy to characterize the aJne space Pa;k which contains the vectors p satisfying the last block
of n equations of (1.2). In fact, any vector p = (pv; ps; pz) with pv ∈Rm, ps; pz ∈Rn and such that
it satis9es exactly the last block of n equations of (1.2), has the form

pz = −Dkps + q̃k ;

where

Dk = S−1
k Zk ; q̃k = −Zke + �kS−1

k e: (2.2)
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Thus, letting

Wk =




Im 0

0 In
0 −Dk


∈R(m+2n)×(m+n); qk =




0

0

q̃k


 ; (2.3)

Pa;k is de9ned by

Pa;k = {p∈Rm+2n|p = Wky + qk for some y∈Rm+n}:
Clearly, the Newton step pN

k belongs to Pa;k as it solves the linear system (1.2). Moreover, the
form (2.1) of H ′

k can be exploited to compute pN
k . Speci9cally, letting pN

k =(pN
k;v; pN

k; s; pN
k; z), where

pN
k;v ∈Rm and pN

k;s; p
N
k; z ∈Rn, pN

k;z is given by

pN
k;z = −Dk pN

k;s + q̃k (2.4)

with Dk and q̃k de9ned in (2.2). Consequently, the vector (pN
k;v; p

N
k; s) is the solution of the reduced

linear system

Jk

(
pN

k;v

pN
k;s

)
= −Fk − F ′

z; k q̃k ; (2.5)

where the matrix J (x)∈R(m+n)×(m+n) has the form

J (x) = ( F ′
v(x) F ′

s(x) − F ′
z(x)D(x) ): (2.6)

Then, if the merit function  used is such that pN
k is a descent direction for  at xk , the classical

linesearch technique considers trial iterates of the form

xk+1 = xk + Rxk ; (2.7)

where Rxk = �pN
k and �∈ (0; 1]. A vector xk+1 = (vk+1; sk+1; zk+1)∈Rm+2n will be accepted as the

new iterate if it suJciently decreases the function  and satis9es sk+1 ¿ 0; zk+1 ¿ 0.
Now, for sake of completeness let us briePy describe the CLIP method. The used merit function is

 (x) = ‖H (x)‖2 (2.8)

and in (2.8) �k is

�k = #ksT
k zk=n; #k ∈ (0; 1): (2.9)

Consequently, the vector pN
k is a descent direction for  at xk as

−∇ T
k p

N
k = −2HT

k H
′
kp

N
k = 2

(
HT

k Hk − #k
sT
k zk
n

HT
k e0

)
¿ 2(1 − #k)‖Hk‖2: (2.10)

The trial iterate of the CLIP method has form (2.7) with Rxk = �kpN
k and is acceptable if the

following conditions hold when � = �k :

 (xk+1)6  (xk) + %∇ (xk)TRxk ; (2.11)

f1(�) := min(Sk;�(zk + Rzk)) − '1 (k(sk + Rsk)T(zk + Rzk)=n¿ 0; (2.12)

f2(�) : =(sk + Rsk)T(zk + Rzk) − '2(k‖Fk+1‖¿ 0: (2.13)
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Here Sk;� = diag(sk + Rsk), %∈ (0; 1=2), (k ∈ [(̂; 1), (̂¿ 0 and

'1 =
min(S0z0)
sT

0 z0=n
; '2 =

sT
0 z0

‖F0‖ :

Condition (2.11) is the classical Armijo condition [18]. It enforces a suJcient decrease on ‖H‖
and makes the progress to a solution of the MCP likely.

Conditions (2.12) and (2.13) are two widely used centering conditions. The 9rst centering condi-
tion ensures that every iterate stays in the set de9ned by

{s; z ∈Rn; s¿ 0; z ¿ 0 |min(SZe)¿ '1(̂sTz=n}:
This way, whenever the sequences {sk} and {zk} are bounded, the vectors sk and zk cannot approach
the boundary of the positive orthant of R2n prematurely. The second centering condition (2.13)
prevents improvement in the complementarity gap sT

k+1zk+1=n from outpacing improvement in the
infeasibility measured by ‖Fk+1‖.

The steplength �k is usually computed applying a backtracking strategy. At this regard, it should
be noted that it is easy to compute the scalar �k;1 such that Rk = �pN

k satis9es condition (2.12)
for all �∈ (0; �k;1]. In fact, this can be done by solving n scalar quadratic equations since f1(�) is
a componentwise quadratic function. Therefore, in order to avoid backtracking along pN

k until the
point �k;1pN

k is met, the accepted step has usually the form Rxk = �kpN
k where �k = )i�k;1, )∈ (0; 1)

and i is the smallest integer such that (2.11) and (2.13) are satis9ed.
We end this section considering the occurrence where {xk} is attracted to a singular nonstationary

point x̃. Since x̃ is a point of singularity of H ′, when xk approaches x̃ the norm of pN
k becomes very

large and the selected steplength �k eventually becomes tiny. Thus, the algorithm becomes stuck.
More precisely two di3erent types of failure can be detected:

(i) The sequence {xk} approaches the boundary prematurely and sticks the bounds. Thus, the
steplengths �k;1 and �k tend to zero to maintain feasibility.

(ii) The direction pN
k becomes increasingly perpendicular to ∇ k and very small scalars �k must be

taken to impose the Armijo condition while the sequence {�k;1} remains bounded away from
zero.

3. The PLIP method

The interior point method we study in this paper is a simple modi9cation of the CLIP method.
It adopts many features of the CLIP method: the merit function (2.8), the barrier parameter (2.9),
the acceptance conditions (2.11)–(2.13) while it di3ers in the employed globalization strategy. In
particular, at the kth iteration the PLIP method attempts to overcome the convergence failures of the
classical linesearch interior point methods by applying a backtracking strategy along the piecewise
path *k(�) proposed in [2].

Since the design of the path *k(�) and its properties provide the basis of the PLIP method, we
begin summarizing results obtained in [2, Section 2].

In order to construct *k(�), 9rst we searched for a descent direction for  at xk that can be easily
computed and belongs to the aJne space Pa;k . This way the last block of n equations in (1.2) is
satis9ed and the direction points towards the central path.
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The reference direction dk we introduced is de9ned as follows:

dk = argmin
p∈Pa; k ;

‖p‖26‖pN
k ‖2

∇ T
k p: (3.1)

In [2, Theorem 2.1], it is shown that if W T
k ∇ k 	= 0, the solution of problem (3.1) has the form

dk = −Ŵ k(qk + %k∇ k) + qk ; (3.2)

where

Ŵ k = Wk(W T
k Wk)−1W T

k and %k =

√
qT
k Ŵ kqk − ‖qk‖2 + ‖pN

k ‖2

∇ T
k Ŵ k∇ k

(3.3)

and it is such that ‖dk‖ = ‖pN
k ‖. Therefore, dk is the steepest descent direction for  at xk among

the vectors that are restricted to belong to Pa;k and to have 2-norm equal to ‖pN
k ‖.

Note that dk can be computed at a low computational cost since forming the symmetric and
semide9nite positive matrix Ŵ k

Ŵ k =




Im 0 0

0 (In + D2
k)−1 −Dk(In + D2

k)−1

0 −Dk(In + D2
k)−1 D2

k(In + D2
k)−1


 ; (3.4)

is simple and inexpensive.
On the other hand, if W T

k ∇ k = 0, for all p∈Pa;k we have ∇ T
k p = ∇ T

k p
N
k = ∇ T

k qk . In this
case, we select dk as the vector of minimum norm out of the vectors of Pa;k , i.e.,

dk = Wk Uy + qk where Uy = argmin
y∈Rm+n

‖Wky + qk‖2:

Due to the structure of Wk it trivially follows:

Uy =

(
0

(I + D2
k)−1Dkq̃k

)
and dk =




0

(I + D2
k)−1Dkq̃k

(I + D2
k)−1q̃k


 : (3.5)

This way, dk is the steepest descent direction for  at xk among the vectors that are restricted to
belong to Pa;k and to have 2-norm less than or equal to ‖pN

k ‖.
In order to make some comments on the properties of dk we begin introducing the function

f(x) = ‖F(x)‖2;

the angle ,k between −∇ k and dk , the angle -k between −∇ k and pN
k , i.e.,

cos ,k =
−∇ T

k dk

‖∇ k‖‖dk‖ ; cos -k =
−∇ T

k p
N
k

‖∇ k‖‖pN
k ‖

: (3.6)
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Also, we let mk(p)=‖H ′
kp+Hk‖2 be the standard quadratic model for  at xk and lk(p)=‖F ′

kp+Fk‖2

be the standard quadratic model for f at xk . Then, assuming that H ′
k is invertible, [2, Lemma 2.1]

proved three relevant properties of dk .
First, the angle between dk and −∇ k is smaller than the angle between pN

k and −∇ k , i.e.,

cos ,k ¿ cos -k : (3.7)

Second, if fk 	= 0 we have

∇fT
k dk 6∇fT

k p
N
k 6− 2‖Fk‖2: (3.8)

Hence, dk is a descent direction for the function f at xk and it guarantees a suJcient progress
toward feasibility.

Third, there exists /∗ ∈ [0; 1) given by

/∗ =
−(∇ T

k p
N
k −∇ T

k dk)
(pN

k )TH ′T
k H

′
kp

N
k − dT

k H ′T
k H

′
kdk

(3.9)

such that

mk(0pN
k )6mk(0dk) and lk(0pN

k )6 lk(0dk) ∀0∈ [/∗; 1];

mk(0pN
k )¿mk(0dk) and lk(0pN

k )¿ lk(0dk) ∀0∈ [0; /∗]:

In other words, both the quadratic models mk(p) and lk(p) take lower values along pN
k than along

dk until the point /∗pN
k is met. This result suggests that the strategy for leaving the Newton step

will depend critically on the step /∗pN
k . In particular, it is appropriate to backtrack along pN

k until
the point /∗pN

k is reached. Then, the next stage is to leave pN
k and move towards a reference point

belonging to dk , say t∗dk . Such point should be selected not farther from xk than /∗pN
k and should

be such that

mk(t∗dk)6mk(/∗pN
k ):

Thus, t∗dk is chosen as the minimizer of mk along the direction dk subject to 06 t∗6 /∗‖pN
k ‖=‖dk‖.

Namely, t∗ solves

t∗ = argmin

06t6/∗ ‖pN
k ‖

‖dk‖

mk(tdk)

and it takes the form

t∗ = min
{
− ∇ T

k dk

2‖H ′
kdk‖2 ; /∗ ‖pN

k ‖
‖dk‖

}
: (3.10)

On the basis of the above properties, in [2] we de9ned the piecewise linear path *k(�) for �∈ (0; 1]
that has four nodes: the point zero, t∗dk , /∗pN

k and pN
k . Now, letting

l1; k = (1 − /∗)‖pN
k ‖; l2; k = ‖/∗pN

k − t∗dk‖; l3; k = t∗‖dk‖; (3.11)

lk = l1; k + l2; k + l3; k (3.12)
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xk + dk

xk + �*dk

xk + t*dk

xk

xk + �*pN
k

xk + pN
k

Fig. 1. The piecewise linear path xk + *k(�); �∈ [0; 1].

and

I1; k =
(
l2; k + l3; k

lk
; 1
]
; (3.13)

I2; k =
(
l3; k

lk
;
l2; k + l3; k

lk

]
; (3.14)

I3; k =
[

0;
l3; k

lk

]
; (3.15)

*k(�) can be parametrized as follows:

*k(�) =




�lk − l2; k − l3; k + /∗‖pN
k ‖

‖pN
k ‖

pN
k ; if �∈ I1; k ;

�lk − l3; k

l2; k
/∗pN

k +
(

1 − �lk − l3; k

l2; k

)
t∗dk if �∈ I2; k ;

�lk
‖dk‖dk if �∈ I3; k :

(3.16)

Fig. 1 illustrates the path xk +*k(�) which can be viewed as a double dogleg curve [8,18]. Clearly,
since pN

k and dk are descent directions for  at xk , each vector Rxk =*k(�) for �∈ (0; 1] is a descent
direction for  at xk .
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Besides (3.6), the path *k(�) has a further important property that was proved in [2, Lemma 2.2].
If H ′

k is invertible, the angle 2k between −∇ k and Rxk = *k(�), is bounded above from the angle
-k between pN

k and −∇ k for any �∈ I2; k ∪ I3; k , i.e.,

cos 2k ¿ cos -k ; (3.17)

where

cos 2k =
−∇ T

k Rxk
‖∇ k‖‖Rxk‖ : (3.18)

Summarizing, *k(�) is angled away from −∇ T
k with respect to pN

k for �∈ I2; k ∪ I3; k .
Now with *k(�) at hand we can continue the description of the PLIP method. Its trial points have

the form (2.7) with

Rxk = *k(�) for some �∈ (0; 1]

and are tested using conditions (2.11)–(2.13). Note that the existence of a �∈ I3; k such that Rxk =
*k(�) satis9es (2.11) is ensured because dk is a descent direction for  at xk [18, Lemma 3.1].

The general algorithmic description of the kth iteration of PLIP method is now sketched.

Algorithm (kth iteration of PLIP method): Let xk = (vk ; sk ; zk), )∈ (0; 1); #k ∈ (0; 1); '1; '2; (̂¿ 0;
(k ∈ [(̂; 1); /̂¿ 0; /̂k ∈ [/̂; 1]; %∈ (0; 1=2); -̂¿ 0 be given.

1. Let Dk = S−1
k Zk , �k = #ksT

k zk=n, q̃k = −Zke + �kS−1
k e, U�k = 1.

2. Solve the linear system

H ′
kp

N
k = −Hk + �ke0:

3. Form Wk , qk , cos -k , by using (2.3) and (3.6).
4. If W T

k ∇ k 	= 0 then
compute dk using (3.2)

Else
compute dk using (3.5).

5. Compute /∗ given in (3.9). Set /∗ = max(/∗; /̂k).
6. Compute t∗ given in (3.10).
7. Compute l1; k ; l2; k ; l3; k and lk by (3.11) and (3.12).
8. If cos -k ¡ -̂, let U�k = l3; k =lk .
9. If U�k = 1 then

Compute �k;1 s.t. ∀�∈ (0; �k;1] the step �pN
k satis9es (2.12).

Set �k = max(�k;1; /∗).
Else

Set �k = U�k.
10. Compute *k(�k) by (3.16) and set Rxk = *k(�k).
11. While ( (xk + Rxk)¿ k + %∇ T

k Rxk) or (f1(�k)¡ 0) or (f2(�k)¡ 0)
11.1 Set �k = )�k .
11.2 Compute *k(�k) by (3.16) and set Rxk = *k(�k).

12. Let xk+1 = xk + Rxk .
13. Choose /̂k+1 ∈ [/̂; 1]; #k+1 ¿ 0.
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We remark that the PLIP algorithm is speci9cally designed for leaving the Newton direction
either when it is nearly orthogonal to the gradient of  or when too many backtracks are required
in order to satisfy conditions (2.11)–(2.13). At this regard, Steps 5 and 8 are essential aspects of
our algorithm. They concern the construction of *k(�), after pN

k and dk were evaluated.
First, let us make some comments on Step 8. Assuming -̂ be a small given scalar, if cos -k ¡ -̂

we drop pN
k and consider only the segment of *k(�) that belongs to dk . The motivation for this

issue lies on (3.7), i.e., on the fact that dk is angled away from ∇ k with respect to pN
k .

In the case cos -k ¿ -̂, the point /∗pN
k is necessary in order to form *k(�). Then, we turn our

attention to Step 5 where if /∗ given in (3.9) is less than the threshold /̂k , we set /∗=/̂k . Speci9cally,
the actually emploied /∗ is ensured to be uniformly bounded away from zero in order to overcome
both the occurrences where /∗ in (3.9) is equal to zero or tiny. In fact, the former case occurs if
W T

k ∇ k =0 and implies that *k(�) reduces to the line segment pN
k , while in the latter case too many

backtracks along pN
k would have to be performed before reaching /∗pN

k .
We conclude this section considering the case where the PLIP algorithm breaks down, i.e., it is

precluded from determining the iterate xk+1. The PLIP algorithm breaks down if H ′
k is singular or if

‖∇ k‖= 0. In the former case the steps pN
k and dk cannot be computed while the latter case occurs

if Hk = 0 or if H ′
k is singular and xk is a stationary point of  .

Moreover, it is worth noting that dk vanishes if only if Hk =0. In fact due to (3.1), dk =0 implies
‖∇ T

k p
N
k ‖ = 0 and from (2.10) we have Hk = 0. If the PLIP method does not break down, it can

select the direction dk since l3; k =lk in (3.15) is not null. Namely, after a 9nite number of reductions
in Step 11.1, a value of �k in I3; k is obtained.

4. Convergence results

In this section, we discuss the theoretical properties of the PLIP method. First, we let V(�) be the
set

V(�) = {x = (v; s; z)∈Rm+2n | �6 ‖H (x)‖6 ‖H (x0)‖;
min(ZSe)¿ ('1(̂)sTz=n; sTz¿ ('2(̂)‖F(x)‖}

with � a given nonnegative scalar. The sequence {xk} generated by the proposed method belongs to
V(0).

In our theoretical analysis, we will assume that the PLIP method does not break down. Hence,
we can introduce a neighborhood L of the entire sequence {xk} of the form

L = ∪∞
k=0{x∈Rm+2n| ‖x − xk‖6 r};

where r ¿ 0 is a 9xed constant.
Under the assumptions:

(A1) H is continuously di3erentiable in V(0);
(A2) F ′ is Lipschitz continuous with constant LV in V(�); �¿ 0;
(A3) ‖H ′‖ is bounded above in L ∩ V(0),
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we will prove that if the sequence {xk} is bounded and H ′(x) is invertible in L ∩ V(�), �¿ 0,
then ‖Hk‖ → 0. Further, if there exists a limit point x∗ of {xk} such that H ′(x∗) is invertible then
xk → x∗.

Next, we will discuss what happens if we drop the assumptions that H ′(x) is invertible in L∩V(�),
�¿ 0, and study whether the PLIP method can be attracted to a singular nonstationary point.

Note that from zT
k sk ¿ ‖ZkSke‖ and xk ∈V(0) it follows that

zT
k sk ¿

√
(||ZkSke||2 + ('2(̂||Fk ||)2)=2

¿
√

2 min(1; '2(̂)‖Hk‖=2: (4.1)

Therefore, we have zT
k sk bounded away from zero in V(�), �¿ 0. Further, since ‖ZkSke‖6 ‖Hk‖

6 ‖H0‖ in V(0), we can conclude that {zk} must be bounded if liminf k→∞‖sk‖ 9 0 and vice versa.
In the sequel we will use the following technical result.

Lemma 4.1. Assume that (A1) and (A3) are satis7ed. If ‖∇ k‖ 9 0 there exist two constants
�1 ¿ 0 and �¿ 0 such that ‖∇ k‖¿�1, ‖Hk‖¿ �, for any k ¿ 0.

Proof. We proceed by contradiction. Assume that there exists a subsequence {xkj} such that
‖∇ kj‖ → 0. This implies ‖Hkj‖ → 0, because ∇ k = H ′T

k Hk and ‖H ′
k‖ is bounded by hypoth-

esis. Since the sequence {‖Hk‖} is monotone decreasing and bounded it is convergent, consequently
‖Hk‖ → 0 and this yields ‖∇ k‖ → 0, that is a contradiction. Analogously, assume ‖Hk‖ → 0. This
implies ‖∇ k‖ → 0 and we have again a contradiction.

The next stage is to show some relevant features of the path *k(�). In the next two lemmas we
will give conditions under which the angle ,k between dk and −∇ k de9ned in (3.6) is bounded
away from 6=2 whenever ‖∇ k‖ 9 0.

First, assume that {‖pN
k ‖} is bounded above.

Lemma 4.2. Assume that (A1) and (A3) are satis7ed and #k is bounded above from one. Let ,k

be the angle de7ned in (3.6). If there exists a constant 7¿ 0 such that ‖pN
k ‖67 and ‖∇ k‖ 9 0

then there exists 8¿ 0 such that

cos ,k ¿8: (4.2)

Proof. Let K = supx∈L∩V(0)‖H ′(x)‖. Since #k is bounded above from one, #k ∈ (0; U#], for some
constant U#¿ 0. Further, condition (2.10) and Lemma 4.1 yields

−∇ T
k p

N
k ¿ 2(1 − U#)�2;

where �¿ 0 is the constant such that ‖Hk‖¿ �. Also, recalling (3.7) and that ‖pN
k ‖67 by hypoth-

esis, we get

cos ,k ¿
2(1 − U#)�2

‖∇ k‖7 ¿
2(1 − U#)�2

K‖H0‖7
and the thesis follows with 8 = (2(1 − U#)�2)=(K‖H0‖7).
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If we drop the assumption on the boundness of {‖pN
k ‖}, we obtain the following result.

Lemma 4.3. Assume that (A1) and (A3) are satis7ed and #k is bounded above from one. If
‖∇ k‖ 9 0, liminf k→∞‖sk‖ 	= 0 and liminf k→∞‖∇ T

k Wk‖ 	= 0, then there exists 8¿ 0 such that
(4.2) holds for k su9ciently large.

Proof. Let us consider the set of indices K̃ such that {‖pN
k ‖}k∈K̃ → ∞. The previous lemma yields

the existence of 8¿ 0 such that (4.2) holds for all k 	∈ K̃ . Hence, assume k ∈ K̃ and k suJciently
large that ‖∇ T

k Wk‖¿ 0.
From form (3.2) of dk we get

cos ,k =
∇ T

k Ŵ kqk −∇ T
k qk + %k∇ T

k Ŵ k∇ k

‖∇ k‖‖dk‖ ; (4.3)

where Ŵ k and %k are de9ned in (3.3). In order to prove that the angle ,k is bounded away from
6=2 we need to analyze and bound some quantities.

First, we turn our attention to ∇ T
k Ŵ kqk −∇ T

k qk . By using the following partition of the vector
∇ k , ∇ k = (∇ k;1;∇ k;2;∇ k;3), where ∇ k;1 ∈Rm and ∇ k;2;∇ k;3 ∈Rn, and the structure of Ŵ k

(see (3.4)), we have

∇ T
k Ŵ kqk −∇ T

k qk =−
n∑

i=1

(∇ k;2)i

(
−(zk)i + �k

1
(sk)i

)(
(zk)i=(sk)i

1 + ((zk)i=(sk)i)2

)

−
n∑

i=1

(∇ k;3)i

(
−(zk)i + �k

1
(sk)i

)(
1

1 + ((zk)i=(sk)i)2

)
:

Now, by using Assumption (A3), the inequalities |(sk)i(zk)i|6 ‖H0‖, (sk)i(zk)i¿ '1(̂sT
k zk=n and

(4.1), it is easy to verify that ∇ T
k Ŵ kqk − ∇ T

k qk is bounded above in V(�); �¿ 0. Further, since
‖∇ k‖ 9 0, Lemma (4.1) implies ‖∇ k‖¿ �1; �1 ¿ 0. Therefore, the limit {‖dk‖}k∈K̃ → ∞ yields

liminf
k∈K̃
k→∞

cos ,k = liminf
k∈K̃
k→∞

%k∇ T
k Ŵ k∇ k

‖∇ k‖‖dk‖ (4.4)

and using de9nition (3.3) of %k we get

%k∇ T
k Ŵ k∇ k

‖∇ k‖‖dk‖ =

√
∇ T

k Ŵ k∇ k

√
qT
k Ŵ kqk − qT

k qk + ||pN
k ||2

‖∇ k‖‖pN
k ‖

=

√
∇ T

k Ŵ k∇ k

√
(qT

k Ŵ kqk − qT
k qk)=||pN

k ||2 + 1

‖∇ k‖ : (4.5)

Now, we consider the quantity qT
k Ŵ kqk − qT

k qk in (4.5). Since

qT
k Ŵ kqk − qT

k qk =
n∑

i=1

(
−(zk)i + �k

1
(sk)i

)2(
− 1

1 + ((zk)i=(sk)i)2

)
;
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it is easy to see that there exists a constant C such that |qT
k Ŵ kqk −qT

k qk |6C for k suJciently large.
Then, from (4.5) it follows

liminf
k∈K̃
k→∞

cos ,k = liminf
k∈K̃
k→∞

√
∇ T

k Ŵ k∇ k

‖∇ k‖ :

Recalling de9nition (3.3) of Ŵ k , we can write

Ŵ k = WkW̃ 2
kW

T
k ;

where

W̃ k =

(
Im 0

0 (In + D2
k)−1=2

)
:

Then

∇ T
k Ŵ k∇ k = ‖W̃ kW T

k ∇ k‖2¿

(
min

(
1; min

16i6n

1√
1 + ((zk)i=(sk)i)2

))2

‖W T
k ∇ k‖2:

Therefore, since {sk} is bounded away from zero, the inequality ‖ZkSke‖6 ‖H0‖ implies that (zk)i
are bounded above for i = 1; : : : ; n. Then, liminf k→∞ ‖∇ T

k Wk‖ 	= 0 and Assumption (A3) yield the
thesis.

Next two lemmas show that the last segment of the curve *k is uniformly bounded from zero.

Lemma 4.4. Assume that H ′
k is invertible for each k, #k is bounded above from one and (A1) and

(A3) are satis7ed. If ‖∇ k‖ 9 0, then there exists a constant C such that

t∗‖dk‖¿C (4.6)

for all the indeces k such that (4.2) holds.

Proof. Let K = supx∈L∩V(0) ‖H ′(x)‖ and U#¿ 0 such that #k ∈ (0; U#]. Since ‖∇ k‖ 9 0, Lemma 4.1
ensures that there exist �1 ¿ 0, �¿ 0 such that ‖∇ k‖¿ �1 and ‖Hk‖¿ �.

To prove (4.6), we recall form (3.10) of t∗. If t∗ = |∇ T
k dk |=(2‖H ′

kdk‖2), using the bound (4.2)
we get

t∗‖dk‖ =
|∇ T

k dk |
‖∇ k‖‖dk‖

‖∇ k‖‖dk‖2

2‖H ′
kdk‖2 ¿ 8

‖∇ k‖
2‖H ′

k‖2 ¿ 8
�1

2K2 :

On the contrary, if t∗ = /∗‖pN
k ‖=‖dk‖, we have

t∗‖dk‖ = /∗‖pN
k ‖: (4.7)

Let us examine ‖pN
k ‖; since pN

k is the solution of (1.2) it satis9es the following inequality:

‖pN
k ‖¿ ‖ − SkZke + �ke‖=‖H ′

k‖: (4.8)
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Let –̂ be the index such that (sk)–̂(zk)–̂ = maxi(sk)i(zk)i. Taking into account that

‖ − SkZke + �ke‖¿ ‖ − SkZke + �ke‖1=
√
n

¿ | − (sk)–̂(zk)–̂ + �k |=
√
n

= ((sk)–̂(zk)–̂ − �k)=
√
n

¿ (1 − #k)sT
k zk=(n

√
n) (4.9)

and using inequality (4.1) we get

‖ − SkZke + �ke‖¿ (1 − U#)
√

2 min(1; '2(̂)‖Hk‖=(2n
√
n):

Thus,

‖pN
k ‖¿ (1 − U#)

√
2 min(1; '2(̂)‖Hk‖=(2Kn

√
n): (4.10)

This latter inequality along with (4.7) and (4.8) yields

t∗‖dk‖¿ /̂(1 − U#)
√

2 min(1; '2(̂)�=(2Kn
√
n):

Hence, letting

C = min

{
8

�1

2K2 ; /̂(1 − U#)
�
√

2 min(1; '2(̂)
2Kn

√
n

}
;

the thesis follows.

Lemma 4.5. Assume that H ′
k is invertible for each k and (A1) and (A3) are satis7ed. Let -̂¿ 0

be a given constant, l3; k and lk be the quantities de7ned in (3.11) and (3.12). If ‖∇ k‖ 9 0 then
there exists a constant C1 such that

l3; k

lk
¿C1 (4.11)

for all the indeces k such that (4.2) holds and cos -k ¿ -̂.

Proof. Since ‖∇ k‖ 9 0 there exists �1 ¿ 0 such that ‖∇ k‖¿ �1 (see Lemma 4.1). Then, noting
that (3.10) yields t∗6 /∗‖pN

k ‖=‖dk‖ and by using (3.11), (3.12) we have

l3; k

lk
=

t∗‖dk‖
t∗‖dk‖ + (1 − /∗)‖pN

k ‖ + ‖t∗dk − /∗pN
k ‖

¿
t∗‖dk‖

2t∗‖dk‖ + ‖pN
k ‖
¿

t∗‖dk‖
3‖pN

k ‖
:

Further, from Lemma 4.4, we get

l3; k

lk
¿

C
3‖pN

k ‖
: (4.12)
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Let us consider ‖pN
k ‖. Since cos -k ¿ -̂ holds by hypothesis, we have

-̂¡
−∇ T

k p
N
k

‖∇ k‖‖pN
k ‖

= 2
‖Hk‖2 − #k(sT

k zk)2=n
‖∇ k‖‖pN

k ‖

6
2‖Hk‖2

‖∇ k‖‖pN
k ‖

:

Hence, we obtain

‖pN
k ‖¡

2‖H0‖2

�1-̂
(4.13)

and (4.12) and (4.13) yield the thesis.

Next we turn our attention to the centering conditions. We will prove that (2.12) and (2.13)
can be satis9ed along dk with a steplength bounded away from zero whenever {xk} belongs to
V(�); �¿ 0, {pN

k } is bounded above and the sequence {xk} is bounded. To this end, let {�c
k} denote

the sequence of steplengths such that the centering conditions (2.12), (2.13) are satis9ed. Namely,
at the kth iteration �c

k is given by

�c
k = min(�k;1; �k;2); (4.14)

where �k;1 and �k;2 are such that

f1(�)¿ 0 ∀�∈ (0; �k;1]; f2(�)¿ 0 ∀�∈ (0; �k;2]:

Theorem 4.1. Assume that Assumptions (A1)–(A3) are satis7ed and {#k} is bounded away from
zero and one, i.e. #k ∈ [#; U#], where 0¡# ¡ U#¡ 1. If ‖∇ k‖ 9 0, ‖pN

k ‖ 9 ∞ and the sequence
{xk} is bounded, then {�c

k} is bounded away from zero.

Proof. Let K = supx∈L∩V(0)‖H ′(x)‖. Since ‖∇ k‖ 9 0, from Lemma 4.1 it follows that there
exist �1 ¿ 0 and �¿ 0 such that ‖Hk‖¿ � and ‖∇ k‖¿ �1. Hence, xk ∈V(�). Further, from our
assumptions there exists a constant 7 such that ‖dk‖6 ‖pN

k ‖67.
First, we stress that under our assumptions l3; k =lk is bounded away from zero and consequently

after a 9nite number of backtracks the PLIP method switches to the direction dk . Hence, to prove
the thesis, we need to show that the centering conditions can be satis9ed with a bounded �k along
the last segment of the curve. Namely, we focus on steps Rxk of the form Rxk = �lkdk=‖dk‖,
0¡�6 l3; k =lk .

In order to simplify the notation, the iteration index k is omitted in the following analysis and 0
is used as a shorthand for �l=‖d‖, i.e., we will consider steps Rx=0d, 0¡06 t∗. Further, we will
use the following partition of d: d= (dv; ds; dz) where dv ∈Rm, ds; dz ∈Rn and we will use s(0) and
z(0) as shorthand for s + 0ds and z + 0dz.
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We 9rst show that �1 is bounded away from zero. Since ‖d‖67 there exists a positive constant
M1 such that

|(dz)i(ds)i − ('1(=n)dT
z ds|6M1

holds for i = 1; : : : ; n. Recalling that d∈Pa, i.e., it satis9es the last block of n equations in (1.2),
we obtain

si(0)zi(0) − ('1(=n)s(0)Tz(0) = (1 − 0)(zisi − ('1(=n)sTz) + (1 − '1()#0
sTz
n

+ 02((dz)i(ds)i − ('1(=n)dT
z ds)

¿ 0(1 − '1()#
sTz
n

− 02M1:

Consequently, f1(�)¿ 0 for �∈ (0; �1] where �1 is given by

�1 =
U0‖d‖
l

and U0¿min
{
sTz(1 − '1()#

nM1
; t∗
}

:

From (4.1) we know that sTz is bounded away from zero in V(�) and Lemma 4.4 ensures that
t∗‖d‖ is bounded away from zero. Moreover l is bounded from above since ‖pN‖ is bounded by
hypothesis. Hence to prove the boundness of �1 we need to show that there exists C ¿ 0 such that

‖d‖¿C�: (4.15)

To this end, note that if W T∇ 	= 0, then by construction ‖d‖ = ‖pN‖ and from (4.15) we get
that there exists C ¿ 0 such that (4.15) holds. On the other hand, when d is given by (3.5), letting
–̂ be the index such that s–̂z–̂ = maxi sizi we can proceed as follows:

‖d‖¿ ‖d‖1√
n
¿

s–̂z–̂ − #sTz=n√
n(s2

–̂ + z2
–̂ )

s–̂¿
(1 − U#)sTz=n√

n(s2
–̂ + z2

–̂ )
s–̂:

Now, note that from (4.1) it follows that sTz is bounded away from zero. Then, since s–̂z–̂¿ sTz=n
and the sequence {xk} is bounded by hypothesis, we can conclude that (4.15) holds and consequently
�1 is bounded away from zero.

Next, we show that �2 is bounded away from zero, too. Since ‖d‖ is bounded above there exists
a positive constant M2 such that

2
√
n‖H0‖|dT

s dz| +
('2()2

2
L̃V‖d‖26M2:

Since F ′(x) is Lipschitz continuous in V(�) with constant LV, ∇f(x) is Lipschitz continuous in
V(�) with constant L̃V = (LVLR + L2

R) where LR = max(supx∈V(�) f(x); supx∈V(�)‖F ′(x)‖) (see [18]).
By using the mean-value theorem, and inequality (3.8) we obtain

f(x + 0d) = f(x) + 0∇f(x)Td + 0
∫ 1

0
((∇f(x + u0d) −∇f(x))Td) du

6 (1 − 20)‖F(x)‖2 + 0
∫ 1

0
((∇f(x + u0d) −∇f(x))Td) du
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and the Lipschitz continuity of ∇f(x) yields

f(x + 0d)6 (1 − 20)f(x) +
02

2
L̃V‖d‖2:

Then, assuming 06 1
2 and recalling that xk satis9es (2.12)–(2.13) we get

(s(0)Tz(0))2 − ('2()2f(x + 0d)¿ (zTs)2(1 − 0 + 0#)2 + (0)4(dT
s dz)2

+ 202(1 − 0 + 0#)(zTs)dT
s dz

− ('2()2((1 − 20)f(x) + (02=2)L̃V‖d‖2)

¿ (zTs)2(1 − 0 + 0#)2 − 202(zTs)|dT
s dz|

− (1 − 20)(zTs)2 − ('2()2(02=2)L̃V‖d‖2:

Moreover, noting that zTs = ‖SZe‖16
√
n‖SZe‖6 ‖H0‖ we have

(s(0)Tz(0))2 − ('2()2f(x + 0d)¿ (zTs)2((1 − 0 + 0#)2 − (1 − 20))

− 02(2
√
n‖H0‖|dT

s dz| + (('2()2=2)L̃V‖d‖2)

¿ (zTs)2(1 + 02(# − 1)2 + 2(# − 1)0− 1 + 20) − 02M2

¿ 2(zTs)2#0− 02M2:

Hence, f2(�)¿ 0 for �∈ (0; �2] where �2 is given by

�2 =
U0‖d‖
l

and U0¿min
{

2#(sTz)2=M2; t∗;
1
2

}

and �2 is bounded away from zero because of (4.1), (4.15) and Lemma 4.4. Hence the thesis
follows.

Now we state convergence results for the PLIP method when H ′ is invertible in L∩V(�) and the
sequence {xk} is bounded.

Theorem 4.2. Let {xk} be generated by the PLIP method. Assume that (A1)–(A3) are satis7ed
and #k is bounded above from one. Further, assume that #k is bounded away from zero whenever
‖Hk‖ 9 0. If H ′(x) is invertible in L∩V(�) for any �¿ 0 and the sequence {xk} is bounded, then
‖Hk‖ → 0. Further, if there exists an accumulation point x∗ of {xk} such that H ′(x∗) is invertible
then xk → x∗.

Proof. Note that the sequence {‖Hk‖} is decreasing and bounded; hence it is convergent. Suppose
that the limit is (̃¿ 0 and let U# be such that #k 6 U#.

Let x∗ be a limit point of {xk} and {xkj} be a subsequence such that xkj → x∗. Since ‖H (x∗)‖= (̃,
it follows that x∗ ∈V((̃) and therefore H ′(x∗) is invertible. This implies ‖∇ k‖ 9 0 and ‖pN

kj‖
bounded. Hence, from Lemma 4.2 we have that (4.2) holds for k = kj and from Theorem 4.1 we
get that the sequence {�c

kj} is bounded away from zero.
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The backtracking linesearch based on the Armijo condition (2.11) produces

∇ T
k Rxk

‖Rxk‖ → 0

(see [18, Theorem 3.2]). From (2.10) and (3.17) we get

∇ T
k Rxk

‖Rxk‖ 6
∇ T

k p
N
k

‖pN
k ‖

6 0

and since ‖pN
kj‖ is bounded, we conclude that ∇ T

kjp
N
kj → 0. This contradicts our assumption that

(̃¿ 0 because from (2.10) we have

∇ T
kjp

N
kj 6− 2(1 − #kj)‖Hkj‖26− 2(1 − U#)‖Hkj‖2 ¡ 0:

Hence ‖Hk‖ must converge to zero.
To prove the second part of the theorem we need to show that our search directions Rxk satisfy

‖H ′
kRxk + Hk‖6 ‖Hk‖:

In fact, the Newton direction is such that

‖H ′
kp

N
k + Hk‖6 #k‖Hk‖ (4.16)

and from the de9nition of t∗ it follows that ‖H ′
k t
∗dk +Hk‖6 ‖Hk‖. Further, it can be easily veri9ed

that the following inequalities:

‖0H ′
kp

N
k + Hk‖6 ‖Hk‖; ‖0H ′

k t
∗dk + Hk‖6 ‖Hk‖

hold for any 0∈ [0; 1]. Regarding the directions Rxk = (1 − >)/∗pN
k + >t∗dk we have

‖H ′
kRxk + Hk‖ = ‖(1 − >)/∗H ′

kp
N
k + (1 − >)Hk + >t∗H ′

kdk + >Hk‖
6 (1 − >)‖/∗H ′

kp
N
k + Hk‖ + >‖t∗H ′

kdk + Hk‖6 ‖Hk‖:
Hence our search directions are inexact Newton directions for the problem H (x) = 0 and by using
Theorem 3.3 of [10] we get that xk → x∗.

Now we investigate the asymptotic rate of convergence to a point x∗ such that H ′(x∗) is invertible.
The next result shows that under a suitable choice of the centering parameter #k , the step Rxk =pN

k
is eventually chosen and the ultimate rate of convergence is superlinear.

Theorem 4.3. Assume that (A1)–(A3) are satis7ed. Let {xk} be generated by the PLIP method
and suppose that {xk} → x∗ such that H (x∗) = 0 and H ′(x∗) is nonsingular. If #k = O(‖Hk‖p),
0¡p¡ 1, and there is an open neighborhood D of x∗ such that H is twice di=erentiable, with
‖∇2H (x)i‖; i = 1; : : : ; n, bounded for x∈D, then there exists an index k0 ¿ 0 such that �k = 1 for
k¿ k0. Furthermore xk → x∗ superlinearly.



190 S. Bellavia, B. Morini / Journal of Computational and Applied Mathematics 151 (2003) 171–199

Proof. From [1, Theorem 4.1] it follows that, if #k = O(‖Hk‖p), 0¡p¡ 1 is chosen, then the
centering conditions are satis9ed with �k = 1 for suJciently large k.

In order to show that �k = 1 will eventually satisfy the decrease condition (2.11) too, we show
that the so-called Dennis–MorWe condition holds, i.e.,

lim
k→∞

‖∇ k + ∇2 kpN
k ‖

‖pN
k ‖

= 0: (4.17)

To this end, note that ∇2 k = 2(H ′T
k H ′

k +
∑n

i=1 (Hk)i∇2(Hk)i) and therefore

‖∇ k + ∇2 kpN
k ‖

‖pN
k ‖

6 2
‖H ′T

k Hk + H ′T
k H ′

kp
N
k ‖

‖pN
k ‖

+ 2

∣∣∣∣∣
∣∣∣∣∣

n∑
i=1

(Hk)i∇2(Hk)i

∣∣∣∣∣
∣∣∣∣∣

6 2
‖H ′

k‖�k
√
n

‖pN
k ‖

+ 2

∣∣∣∣∣
∣∣∣∣∣

n∑
i=1

(Hk)i∇2(Hk)i

∣∣∣∣∣
∣∣∣∣∣ :

This latter inequality along with (4.8) and (4.9) yields

‖∇ k + ∇2 kpN
k ‖

‖pN
k ‖

6 2
#kn‖H ′

k‖2

1 − #k
+ 2

∣∣∣∣∣
∣∣∣∣∣

n∑
i=1

(Hk)i∇2(Hk)i

∣∣∣∣∣
∣∣∣∣∣ :

Therefore, since #k → 0 and ‖∑n
i=1 (Hk)i∇2(Hk)i‖ → 0, we can conclude that condition (4.17)

holds. Then, from [7, Theorem 6.4] it follows that �k = 1 will eventually satisfy (2.11).
Hence, the method reduces to an inexact Newton method with forcing term #k (see (4.16)), and

#k → 0 implies the superlinear convergence rate [6, Theorem 3.3].

So far, we have studied the convergence behavior of the PLIP method assuming the invertibility
of the Jacobian of H in L ∩ V(�), �¿ 0. We end this section by discussing the occurrence where
H ′ is not ensured to be invertible everywhere in V(�), i.e., singular nonstationary points might be
present.

At the end of Section 2 we pointed out that when a classical interior point method approaches a
singular nonstationary point x̃, the length of pN

k tends to in9nity and the generated sequence {xk}
might get trapped around x̃ for two di3erent reasons. In the 9rst type of failure, the scalars �c

k
(see (4.14)) and �k tends to zero to enforce the bounds. In this case, we cannot prove that the
convergence properties of our method are superior to those of the basic linesearch methods. In fact,
when ∇ T

k Wk 	= 0 our alternative direction dk has the same norm of pN
k and it is not ensured to

point inwards.
On the contrary, the second type of failure is not related to the presence of bounds: the Newton

direction tends to become orthogonal to the gradient of the merit function and classical methods
become stuck near x̃ in order to satisfy a suJcient decrease condition on  . The PLIP method can
prevent this failure by using dk since the angle between dk and −∇ k is bounded away from 6=2
when liminf k→∞‖∇ T

k Wk‖ 	= 0, see Lemma 4.3. Next theorem proves this fact: if the centering
conditions are satis9ed with bounded �c

k , then the sequence {xk} cannot tend to a singular point
x̃ = (ṽ; s̃; z̃) with s̃¿ 0, except in the special case when F(x̃) ∈ Ker(J T(x̃)).
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Theorem 4.4. Let {xk} be generated by the PLIP algorithm. Assume that (A1)–(A3) are satis7ed
and #k is bounded away from one. Let x̃ = (ṽ; s̃; z̃) be an accumulation point of the sequence such
that s̃¿ 0 an J (x̃) be the matrix (2.6) at x̃. If the sequence {�c

k}, de7ned in (4.14) is bounded
away from zero, then ∇ (x̃)TW (x̃) = 0, i.e., one of the following situations occurs:

(a) ∇ (x̃) = 0,
(b) ∇ (x̃) 	= 0 and F(x̃)∈Ker(J T(x̃)).

Proof. Let {xkj} be a subsequence such that xkj → x̃.
Suppose that liminf k→∞‖∇ T

kjWkj‖ 	= 0. Taking into account that s̃¿ 0 implies that ‖Wkj‖ is
bounded above, we have that ‖∇ kj‖ 9 0. Since the sequence {�c

kj} is bounded away from zero,
the backtracking linesearch used in our algorithm, produces

∇ T
k Rxk

‖Rxk‖ → 0

(see [18, Theorem 3.2]). From Lemma 4.3 there exists 8¿ 0 such that

∇ T
kjRxkj

‖Rxkj‖
¿8‖∇ kj‖

for k suJciently large. Consequently ‖∇ kj‖ → 0. This is a contradiction.
Thus, it must be ‖∇ T

kjWkj‖ → 0 and ∇ (x̃)TW (x̃) = 0. Since

∇ (x)TW (x) = F(x)TJ (x);

condition ∇ (x̃)TW (x̃) = 0 occurs if ∇ (x̃) = 0 or ∇ (x̃) 	= 0 and F(x̃)∈Ker(J T(x̃)).

5. Numerical results

In this section, we are mainly interested in how the PLIP method compares to the basic linesearch
interior point methods. Hence, we apply it in the solution of the hard tests given in [5,14,24,28,29],
that cannot be solved by classical linesearch interior point methods.

We implemented the PLIP and CLIP methods as MATLAB programs and run them under MAT-
LAB version 5.3 with machine precision about 10−16. The numerical experiments were done on an
HP 9000 C200 workstation.

In (2.9) the value of #k needed to form �k was set equal to

#k = min{0:5; ‖Hk‖1=2}:
This choice ensures superlinear asymptotic rate of convergence of the PLIP method (see Theorem
4.3) and of the CLIP method, see [1]. Then, pN

k;v and pN
k;s were computed solving the linear system

(2.5) by Gaussian elimination and pN
k;z was computed by (2.4).

The parameter (k used in the centering conditions (2.12) and (2.13) was taken constant and set
to 10−6, the parameter % in the Armijo condition (2.11) was set to 10−4.

Regarding the backtracking process, in the PLIP and CLIP methods we used the same strategy to
shrink the step. First, �k;1 was computed by solving n quadratic equations. Then in Step 11 of the
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PLIP algorithm �k was updated using the constant ) = 0:1. Analogously, in the CLIP method, the
selected step had the form �k pN

k where �k = )i�k;1, ) = 0:1 and i is the smallest integer such that
(2.11) and (2.13) are satis9ed.

In the PLIP method the thresholds -̂ and /̂ were set to 10−8 and 10−2, respectively. Further, in
Step 13 the threshold /̂k+1 was computed using the following rule:

if ‖Hk+1‖¿ 0:9‖Hk‖ then
/̂k+1 = min(1; 2/̂k)

else if ‖Hk+1‖6 0:6‖Hk‖ then
/̂k+1 = max(/̂; 0:5 /̂k)

else
/̂k+1 = /̂k .

Clearly, we update the value of the threshold /̂k depending on the actual reduction of ‖Hk+1‖
with respect to ‖Hk‖. The threshold is halved if a great reduction in the value of ‖H‖ occurs. On
the contrary, if a poor reduction in the value of norm of H is detected, /̂k+1 is the double of /̂k .
Finally, i.e., for 0:6¡ ‖Hk+1‖=‖Hk‖¡ 0:9, the threshold is kept the same for the next step.

For both methods we terminated the iteration when

‖Hk‖6 10−6
√
m + 2n:

Failure was declared when 50 backtracks were not enough to satisfy the centering conditions and
the Armijo condition, or if within 300 iterations the stopping criterion was not met. Also, failure of
the CLIP method was declared if �k;1 ¡ 10−12 was detected.

Through the iterations we monitored the following quantities:

�k;1: the steplength taken in order to satisfy condition (2.12) in the CLIP method;
�k : the steplength taken in order to satisfy conditions (2.11)–(2.13);
cos(-k); cos(2k): the angles de9ned in (3.6) and (3.18).

Concerning the PLIP method it is important to monitor the steps used, too. In the following tables
for a given iterate k we indicate the line segment I of xk + *k(�) on which the accepted point xk+1

lies. Speci9cally, since the accepted step Rxk has the form *k(�) where � belongs to one of the
intervals I = I1; k ; I2; k ; I3; k given in (3.13),(3.14), (3.15) we drop the index k for brevity and let
I = I1 ; I2; I3, respectively.

In the sequel we report some results obtained with meaningful test problems from Wachter and
Biegler [28], Byrd et al. [5] and Simantiraky and Shanno [24].

Example 1 (Wachter and Biegler [28]). Consider the problem:

min w1

s:t: w2
1 − w2 − 1 = 0;

w1 − w3 − 2 = 0;

w2¿ 0 w3¿ 0;
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Table 1
Example 1. CLIP method with starting point in D

k ‖Hk‖ �k;1 �k |cos(-k)|
1 5.2e0 2.0e-1 2.0e-1 2.0e-1
...
10 4.8e0 5.2e-3 5.2e-4 8.2e-4
...
50 4.8e0 6.7e-4 6.7e-6 1.6e-6
...
100 4.8e0 4.3e-4 4.3e-6 3.9e-7
...
200 4.8e0 1.7e-4 1.7e-6 2.5e-8
...
300 4.8e0 7.9e-5 7.9e-8 2.3e-9

which is a special case of the example presented in [28]. It has only one stationary point which is
the global minimizer, too.

In [28] the authors showed that starting from an initial point belonging to the set

D = {w1 ¡−
√

w2 + 1; w2 ¿ 0; w3 ¿ 0};
any classical linesearch interior point method generates a sequence that is con9ned in a region where
w1 − w3 − 2 is bounded away from zero. Therefore, classical methods cannot generate a sequence
converging to the solution of the problem.

We solved the MCP problem given by the KKT condition. This way we obtain an MCP problem
of form (1.1) with v = (w; y) where y∈R2 is the vector of Lagrange multipliers of the equality
constraints, s∈R2 are the slack variables and z is the vector of Lagrange multipliers of the inequality
constraints.

First, we focus on the behavior of the PLIP method and of the CLIP method when the starting
point v0 = (−2; 1; 1; 1; 1)T, s0 = z0 = (1; 1)T is used. This initial guess belongs to D.

In Table 1 we report the results obtained using the CLIP method. Note that the method is not
able to converge within 300 iterations and both �k;1 and �k tend to zero. Further, the Newton step
pN

k tends to become orthogonal to ∇ k . We remark also that the matrix H ′(x300) is numerically
singular and ∇ (x300) = 8:4e2.

Table 2 shows that the PLIP method succeeds in solving the problem. The iteration history
highlights that the use of the alternative direction dk (3.1) is crucial to obtain convergence. In
fact, this direction is selected in the 9rst 9ve iterations and at the third iteration, x3 leaves the area
in which the CLIP method gets trapped. Also, we point out that the angle 2k remains bounded away
from 6=2 and in the last six iterates the full Newton step is taken.

Now, we consider an “easy” starting point i.e., a point that does not belong to D: v0=(20; 1; 1; 1; 1)T,
s0 = z0 = (1; 1)T. Starting from this point both methods succeeded. In Table 3 for both methods we
report the number Nit of performed iterations, the number Nbt of performed backtracks and the
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Table 2
Example 1. PLIP method with starting point in D

k ‖Hk‖ �k |cos(2k)| I

1 5.3e0 5.3e-2 9.9e-1 I3

...
5 3.4e0 1.0e-1 6.0e-1 I3

...
15 1.1e0 1.0e-1 4.1e-1 I2

...
32 9.5e-8 1.0e0 1.0e-1 I1

Table 3
Example 1. Performance of the CLIP and PLIP method with starting point �∈ D

Nit Final ‖H‖ Nbt NH

CLIP 46 1.e-8 23 70
PLIP 45 1.e-7 40 86

number NH of performed H -evaluation. Results in Table 3 are typical. Our approach and the clas-
sical back tracking interior point method have similar cost, i.e., the use of the alternative path does
not e3ect the overall performance of the basic interior point method.

Example 2 (Byrd et al. [5]). Consider the problem:

min (w1)2 + (w2)2 + (w3)2

s:t: 1
2 (w1 + w2 +

√
2w3 + (w2 − w1)2) = 0;

√
2

2 (w1 + w2 +
√

2w3 − 2)(w2 − w1) = 0;

w3¿− 1:

In [5] it was enlighted that, for a range of infeasible initial points any interior point method that
performs backtracking along pN

k will fail. More precisely, starting from such set of initial points, any
linesearch algorithm whose search direction satis9es the linearization of the equality constraints will
never achieve feasibility. In this case, the failure is not related to the presence of bounds, actually
the iterates approach a singular nonstationary point and the Newton direction becomes increasing
orthogonal to the gradient of the merit function. Hence, the Armijo condition forces the steps to
be truncated. This happens regardless of the choice of the merit function and of the step selection
strategy.

We considered the MCP given by KKT conditions for this problem. Hence, we have v = (w; y),
where y∈R2 is the vector of Lagrange multipliers of the equality constraints, s∈R is the slack
variable and z ∈R is the Lagrange multiplier of the inequality constraint.
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Table 4
Example 2. CLIP method with the starting point (5.1)

k ‖Hk‖ �k;1 �k |cos(-k)|
1 3.2e0 7.7e-1 7.7e-1 4.4e-1
...
10 3.2e0 1.0e0 1.0e-3 4.6e-3
...
50 3.1e0 1.0e0 1.0e-4 3.2e-4
...
100 3.1e0 1.0e0 1.0e-4 6.1e-5
...
200 3.1e0 1.0e0 1.7e-5 2.1e-5
...
300 3.1e0 1.0e0 1.0e-5 1.2e-5

Table 5
Example 2. PLIP method with the starting point (5.1)

k ‖Hk‖ �k |cos(2k)| I

1 3.1e0 7.7e-1 4.4e-1 I1

2 2.0e0 1.0e-2 9.7e-1 I3

3 3.8e-1 1.0e0 7.3e-1 I1

...
8 1.5e-7 1.0e0 7.6e-1 I1

We used the following starting guess:

v0 = (−
√

2=2;
√

2=2;
√

2; 1; 1)T; s0 = z0 = 1; (5.1)

which is one of the diJcult initial guesses.
In Table 4 we report the iteration history of the CLIP method. Note that the Newton direction

tends to become orthogonal to ∇ k and therefore the steplength �k tends to zero. However, it should
be noted that the steplength �k;1 does not tend to zero and eventually it is equal to one. In fact,
RsNk and RzNk are bounded while ‖RvNk ‖ → ∞. Therefore, this is an example of the second type
of failure: the sequence generated by the CLIP method approaches a singular nonstationary point
x̃=(ṽ; s̃; z̃)T such that s̃ and z̃ are strictly positive and the steplength �k;1 is bounded away from zero.
Moreover F(x̃) 	∈ Ker(J T(x̃)).

Theorem 4.4 ensures that the sequence generated by the PLIP method cannot approach such a
singular nonstationary point. Actually, from Table 5 we see that the PLIP method succeeded. In
particular, at the second iteration, the direction dk is used and for this reason the iterate x2 leaves
the area in which the CLIP method gets stuck. In the last six iterates the full Newton step is taken
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and the asymptotical behavior of the classical interior point method is recovered. Finally, note that
the angle 2k remains bounded away from 6=2.

Example 3 (Simantiraky and Shanno [24]). In [24] the problem of computing equilibria of oligo-
polistic pricing models was formulated as a nonlinear complementarity problem with de9ning function
f as follows:

f(y; w; r) =




n∑
j=1

rij − 1 i = 1; : : : ; n

wi −
n∑

j=1

6ijrij − 8
n∑

j=1

yjrij i = 1; : : : ; n

yi − 8wj − 6ji i; j = 1; : : : ; n




;

where 8∈R and 6∈Rn × Rn are given. In particular, in [24] the authors considered an example
where n = 7, 8 = 0:9 and

6 =




0 0 0 0 0 0 0

0 5=2 5 5 5 5 5

0 0 4 8 8 8 8

0 0 0 9=2 9 9 9

0 0 0 0 4 8 8

0 0 0 0 0 5=2 5

0 0 0 0 0 0 0




:

Letting si = yi for i = 1; : : : ; 7, si = wi−7 for i = 8; : : : ; 14 and si+14+7( j−1) = rij for i; j = 1; : : : ; 7, and
z = f(s), the following 126-variables problem is obtained:

H (s; z) =

(
f(s) − z

SZe

)
= 0:

Although the problem is known to have numerous solution, in [24] it was shown that the CLIP
method failed to converge when started from certain starting points. Essentially, the same type of
failure that occurs in the Example 1 was observed: the sequence approaches a singular nonstationary
point, the Newton step becomes very large and the step �k;1 is forced to zero.

We performed several experiments applying both the CLIP method and the PLIP method and both
methods resulted to be very sensitive to the selection of the parameters (k and #k , (see also [24]).

With the choices of the parameters indicated at the beginning of the section, 9rst we considered
the initial guess si = zi = 1, i = 1; : : : ; 63. The CLIP method failed in solving the problem because at
the 44th iteration �k;1 was less than 10−12. On the contrary, the PLIP method succeeded in solving
the problem, even if the convergence was very slow. In fact, it needed 237 iterations to satisfy the
stopping criterion and only in the last six iterations the full Newton step was taken. Convergence to
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the following equilibrium occurred:

R̂∗
1 =




%1 0 0 0 %2 %3 %4

0 1 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 0




with %i ¿ 0 i = 1; : : : ; 4
4∑

i=1

%i = 1;

v = (22:88; 25; 27:5; 28:25; 31:27; 31:27; 31:27);

w = (25:42; 25; 22:5; 24:75; 25:42; 25:42; 25:42):

As reported in [24], the model has at least two symmetric Markov perfect equilibria, one of this
(the kinked demand curve) is

R∗
1 =




0 0 0 0 1 0 0

0 /(8) 0 1 − /(8) 0 0 0

0 1 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 0




with /(8) = (5 + 8)=(58 + 982);

v = (40:5; 40:5; 43; 45; 49:5; 49:5; 49:5);

w = (40:5; 42:22; 36:45; 45; 40:5; 40:5; 40:5):

Following [24], we perturbed the equilibrium R∗
1 by adding an �¿ 0 to all its zero elements, and

we used this new point as a starting point. This way we investigated the behavior of the CLIP and
PLIP method near this equilibrium. In Table 6 we report for di3erent values of � the performance of
both methods and the equilibrium to which they converged. The symbol ‘*’ means that the method
failed because 300 iterations were not enough to satisfy the stopping criterion. It should be noted
that for �6 10−3, no backtracks were performed and therefore the PLIP method reduces to the
CLIP method. By an �¿ 10−3 the PLIP method no longer converges to R∗

1 , while the CLIP method
converged to this equilibrium also for � = 10−3. However, with �¿ 10−8 the CLIP method failed in
solving this problem, while the PLIP method succeeded and converged to R̂∗

1 .
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Table 6
Example 3. Behavior of the CLIP method and PLIP method near the point R̂∗

1

CLIP method PLIP method

� Nit Equilibrium Nit Equilibrium

10−6 1 R∗
1 1 R∗

1

10−3 5 R∗
1 5 R∗

1

10−2 8 R∗
1 8 R∗

1

10−1 19 R∗
1 14 R̂∗

1

3 ∗ 10−1 21 R̂∗
1 34 R̂∗

1

5 ∗ 10−1 21 R̂∗
1 39 R̂∗

1

8 ∗ 10−1 * * 42 R̂∗
1

1 * * 39 R̂∗
1
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