THE UNTANGLING THEOREM

Yoshihiro TAKEUCHI
Department of Mathematics, Aichi University of Education, I Hirosawa, Igaya, Kariya, 448, Japan

Received 13 October 1987
Revised 8 August 1988
We show a tangle $\left(B, t_{1}, t_{2}\right)$ is trivial if and only if $\pi_{1}\left(B-\left(t_{1} \cup t_{2}\right)\right) \cong \mathbb{Z} * \mathbb{Z}, \pi_{1}\left(B-t_{1}\right) \cong \mathbb{Z}$ and $\pi_{1}\left(B-t_{2}\right) \cong \mathbb{Z}$. We use mainly the methods of the combinatorial group theory.

```
AMS (MOS) Subj. Class.: Primary 57M99;
secondary 57M25,57N10
handlebody of genus 2 canonical longitude
characteristic loop tangle
```


Introduction

A tangle is a triple ($B ; t_{1}, t_{2}$) where B is a 3 -ball and t_{i} 's are mutually disjoint properly embedded PL-arcs in B with $t_{i} \cap \partial B=\partial t_{i}, i=1,2$, and such a tangle is trivial if there is a homeomorphism from a triple ($B ; t_{1}, t_{2}$) onto a triple ($D \times I$; $x \times I, y \times I$), where D is a disc, x and y are distinct points in the interior of D, and I is the interval.

The purpose of this paper is to show:
Untangling Theorem. A tangle ($B ; t_{1}, t_{2}$) is trivial if and only if the following three conditions hold:
(1) $\pi_{1}\left(B-\left(t_{1} \cup t_{2}\right)\right) \cong \mathbb{Z} * \mathbb{Z}$,
(2) $\pi_{1}\left(B-t_{1}\right) \cong \mathbb{Z}$,
(3) $\pi_{1}\left(B-t_{2}\right) \cong \mathbb{Z}$.

Figures 1 and 2 are two examples who show that those conditions (1), (2) and (3) in the theorem above are mutally independent.

Fig. 1.

Fig. 2.
J. Simon announced this theorem in a more general situation (abstracts of Amer. Math. Soc. $7(5)(1986) 310$, ref. 828-57-67). He solved the "unknotting conjecture for planer graphs". Also Boileau and Costa have an alternative proof by using orbifolds and branched coverings. We have given the different proof by studying the handle body of genus 2 .

1. Preliminaries

In this paper, we shall work in the PL category.
Let ($B ; t_{1}, t_{2}$) be a tangle. A second tangle ($B^{\prime} ; t_{1}^{\prime}, t_{2}^{\prime}$) is equivalent to ($B ; t_{1}, t_{2}$), if there is a homeomorphism $h: B \rightarrow B^{\prime}$ such that $h\left(t_{1} \cup t_{2}\right)=t_{1}^{\prime} \cup t_{2}^{\prime}$. Recall that ($B ; t_{1}, t_{2}$) is trivial or untangled if it is equivalent to the trivial tangle ($D \times I ; x \times I, y \times$ 1). A characteristic loop of a tangle ($B ; t_{1}, t_{2}$) is a simple closed curve C on ∂V which is a meridian loop of either t_{1} or t_{2}, where $V=B-N\left(t_{1} \cup t_{2}\right)$ and N is the regular neighborhood in B. Thus there are only two distinct characteristic loops a, b of V up to isotopy (see Fig. 3). An unordered pair $\{a, b\}$ will be called the characteristic loop system of ($B ; t_{1}, t_{2}$).

We can easily observe that ($B ; t_{1}, t_{2}$) and ($B^{\prime} ; t_{1}^{\prime}, t_{2}^{\prime}$) are equivalent if and only if there exists a homeomorphism from $B-\stackrel{N}{N}\left(t_{1} \cup t_{2}\right)$ to $B^{\prime}-\stackrel{N}{N}\left(t_{1}^{\prime} \cup t_{2}^{\prime}\right)$ which preserves their characteristic loop systems.

Let M be an oriented 3 -manifold, L a closed oriented 1 -submanifold properly embedded in M, and S an oriented properly embedded 2 -submanifold of M. We

Fig. 3.
suppose L and S to be in general position in M. So $L \cap S$ are points. We denote the number of the components of $L \cap S$ by $|L \cap S|$, and the algebraic intersection number of L and S by $\langle[L],[S]\rangle$, where [] means the homology class in $H_{i}(M, \partial M)$.

Let H be a handlebody of genus 2 . Let A and B be disjoint, properly embedded discs in H. We call the disc system $\{A, B\}$ a canonical meridian disc system of H if $H-\dot{N}(A \cup B)$ is a 3-ball. Suppose that we are given an embedding of H in S^{3}. We call H standard if $S^{3}-\dot{H}$ is a handlebody of genus 2 . Let H be the standard handlebody of genus 2 . We call an ordered pair $\{a, b\}$ of simple closed curves on ∂H a canonical longitude system of H if there exists a canonical meridian disc system $\{A, B\}$ of H such that $|a \cap A|=|b \cap B|=1,|a \cap B|=|b \cap A|=0$, and there exists a canonical meridian disc system $\left\{A^{\prime}, B^{\prime}\right\}$ of $S^{3}-\stackrel{\circ}{H}$ such that $\partial A^{\prime}=a$ and $\partial B^{\prime}=b$. Note that a canonical longitude system represents a generating system of $\pi_{1}(H)$ and that a tangle ($B ; t_{1}, t_{2}$) is trivial if and only if $V=B-N\left(t_{1} \cup t_{2}\right)$ is homeomorphic to the standard handlebody of genus 2 and the characteristic loop system of $\left(B ; t_{1}, t_{2}\right)$ becomes a canonical longitude system of V.

Let H_{0} be the 3 -cell which is obtained by cutting H open along A and B, and A^{+}, A^{-}and B^{+}, B^{-}be the parallel copies of A and B in H_{0}. To draw the standard handlebody of genus 2 , we shall use Fig. 4.

Fig. 4.

Lemma 1. Let H be a standard handlebody of genus $2,\{A, B\}$ a canonical meridian disc system of H, and l an arc on ∂H with $I \cap A=\partial l$ and $l \cap B=\emptyset$. Then there exists a homeomorphism $h: H \rightarrow H$ such that $h(l)$ is one of 1)-5) in Fig. 5.

Proof. We may assume $\partial l \subset \partial A^{+}$in H_{0}. Take a simple closed curve C on $\partial H_{0}-\operatorname{Int}\left(A^{+} \cup A^{-} \cup B^{+} \cup B^{-}\right)$. Let R be a rectangle on ∂H_{0} whose boundary consists of four arcs $r_{1}, r_{2}, r_{3}, r_{4}$ with $r_{1} \cap r_{3}=\emptyset, r_{2} \cap r_{4}=\emptyset, R \cap A^{+}=r_{1}, R \cap A^{-}=R \cap B^{+}=$ $R \cap B^{-}=\emptyset, R \cap C=r_{3}$, and $\partial r_{1}=\partial l$. Then $r_{2} \cup\left(C-r_{3}\right) \cup r_{4}$ is an arc whose end points coincide those of l. We call such an arc a band sum from ∂l to C. The equivalence class of l by ambient isotopies of $\partial H_{0}-\operatorname{Int}\left(A^{+} \cup A^{-} \cup B^{+} \cup B^{-}\right)$is represented by a band sum from ∂l to C. At first we classify the simple closed curve C on ∂H_{0} up to ambient isotopies of $\partial H_{0}-\operatorname{Int}\left(A^{+} \cup A^{-} \cup B^{+} \cup B^{-}\right)$. Note that there is a 1-1-correspondence between such an ambient isotopy class and the free

Fig. 5.
homotopy classes of simple closed curves on $\partial H_{0}-\operatorname{Int}\left(A^{+} \cup A^{-} \cup B^{+} \cup B^{-}\right)$. We can see that there are seven representatives of such C as in Fig. 6 by observing primitive elements of π_{1} (disc with 3 holes). Note that the positions of B^{+}and B^{-}are interchanged in Fig. 6.2), 3), 6), 7).

There are five types of C up to ambient isotopies of $\partial H_{0}-\operatorname{Int}\left(A^{+} \cup A^{-} \cup B^{+} \cup B^{-}\right)$, and there is a unique band from ∂l to C up to ambient isotopies of ∂H_{0} $\operatorname{lnt}\left(A^{+} \cup A^{-} \cup B^{+} \cup B^{-}\right)$as in Fig. 7.

Let I be the ambient isotopy. We can extend $I(1)$ to a homeomorphism of the 2 -sphere and further to a homeomorphism of the 3-ball. Since the homeomorphism preserves A^{+}, A^{-}, B^{+}, and B^{-}, by pasting A^{+}to A^{-}, and B^{+}to B^{-}, we can get a standard handlebody of genus 2 again. Thus we can extend the homeomorphism of the 3-ball to a homeomorphism of H. We can take the homeomorphism as the desired h.

Lemma 2. Let H be the standard handlebody of genus $2, C$ a simple closed curve on ∂H, and $\{a, b\}$ a canonical longitude system of H. If C is freely homotopic in H to

Fig. 6.

Fig. 7.
$a^{ \pm 1}$, then there exist a homeomorphism $h: H \rightarrow H$ and a meridian disc system M_{1}, M_{2} of $h(H)$, such that $\left|h(C) \cap M_{1}\right|=1$ and $\left\langle[h(C)],\left[\partial M_{2}\right]\right\rangle=0$.

Proof. Take a canonical meridian disc system A, B of H so that C intersects $A \cup B$ transversally, and $|a \cap A|=|b \cap B|=1$ and $|a \cap B|=|b \cap A|=0$. We read C as a word $W(a, b)$ in symbols $a^{ \pm 1}$ and $b^{ \pm 1}$ according to the order and directions in which C meets the discs A, B (cf. Fig. 8).

Let n be the number of occurrences of a in the word $W(a, b)$. We prove Lemma 2 by induction on n.

If $n=1$, then we can take $M_{1}=A, M_{2}=B$ and $h=i d$. Suppose that $n>1$. Since $W(a, b)$ can be reduced to a by trivial reductions, there is a trivial part $a a^{-1}$ (or $a^{-1} a$) in $W(a, b)$ or there is a part $a x a^{-1}$ (or $a^{-1} x a$) in $W(a, b)$, where x is a word in b which is nonempty and reducible to the empty word by trivial reductions. At first, we consider the case that there is a trivial part $a a^{-1}$ (or $a^{-1} a$). There must be a subarc l of C such that $\operatorname{Int}(l)$ intersects neither A nor B and $\partial l \subset \partial A$. By Lemma 1, we may assume that l is one of 1)-5) in Fig. 5. There are two subarcs l_{1} and l_{2} in ∂A such that $l_{1} \cap l_{2}=\partial l_{1}=\partial l_{2}=\partial l$. We characterize $l_{i}, i=1,2$, by the homology class $\left[l_{i} \cup l\right] \in H_{1}(\partial H)$ in 1)-5) of fig. 5 , as in Table 1.

We can find discs D, D^{\prime} properly embedded in H such that $\partial D=l_{1} \cup l$ and $\partial D^{\prime}=l_{2} \cup l$ (cf. Fig. 9).

Fig. 8.

Table 1

	$1)$	$2)$	$3)$	4)	5)
$\left[l_{1} \cup \eta\right]$	$[\partial A]$	0	$[\partial A]$	$[\partial B]$	$[\partial A]+[\partial B]$
$\left[I_{2} \cup I\right]$	0	$[\partial A]$	0	$[\partial A]+[\partial B]$	$[\partial B]$

Fig. 9.

In any case, $|D \cap C|,\left|D^{\prime} \cap C\right|<|A \cap C|$. By an easy homology argument, $\left\langle\left[\partial D^{\prime}\right]\right.$, $[C]\rangle= \pm 1$ in 2) and 4) in Fig. 5, and $([\partial D],[C]\rangle= \pm 1$ in 1), 3), and 5) in Fig. 5. We take D as the new A in 1), 3), and 5) in Fig. 5, D^{\prime} in 2) and 4) in Fig. 5, B remains unaltered in all cases. For these new $A, B,\langle[C],[\partial A]\rangle= \pm 1,\langle[C],[\partial B]\rangle=0$ and $|C \cap A|<n$. So the lemma follows by induction. Next, we consider the case the' here are no trivial parts $a a^{-1}$ (or $a^{-1} a$). In this case, there is a part $a x a^{-1}$ (or $\left.a^{-1} x a\right)$ in $W(a, b)$, where x is a word in b which is nonempty and reducible to the empty word by trivial reductions. So there must be a subarc l of C corresponding to x and a subarc l^{\prime} of ∂A, such that $l \cup l^{\prime}$ bounds a disc properly embedded in H. Let H_{1} be the solid torus which is obtained by cutting H open along A. Since l does not intersect ∂A, we may assume that $l \cup l^{\prime}$ is a simple closed curve on ∂H_{1} which is contractible in H_{1}. Since $\operatorname{Ker}\left(\pi_{1}\left(\partial H_{1}\right) \rightarrow \pi_{1}\left(H_{1}\right)\right)=\langle[\partial B]\rangle$, we can isotope $l(\mathrm{rel} \partial l)$ on ∂H so that l does not intersect B. So we can reduce to the case where x is empty.

Remark. We can find a homeomorphism $f: H \rightarrow H$ such that $f(C)$ is a canonical longitude of $f(H)$ by cutting $h(H)$ open along M_{1} and sliding M_{1}^{+}along $h(C)$ and pasting M_{1}^{+}to M_{1}^{-}(see Fig. 10).

We can prove the following statement in almost the same way as lemma 2. In this case, since b does not intersect l, we may assume l is one of 1), 2) or 3) in Fig. 11.

Lemma 3. Let H be the standard handlebody of genus $2, C$ a simple closed curve on ∂H, and $\{a, b\}$ a canonical longitude system of H. If C is freely homotopic in H to $a^{ \pm 1} b^{r}$ for some integer r and is disjoint from b, then there exist a homeomorphism $h: H \rightarrow H$ and a meridian disc system M_{1}, M_{2} of $h(H)$ such that

$$
\left|h(C) \cap M_{1}\right|=1, \quad\left|h(b) \cap M_{1}\right|=0, \quad\left|h(b) \cap M_{2}\right|=1 .
$$

Fig. 10.
1)

2)

3)

Fig. 11.
Lemma 3 follows as in the proof of Lemma 2, except that as C is disjoint from b, subcases 4) and 5) of Fig. 5 do not occur when considering $a a^{-1}$ (see Fig. 11).

We can find a homeomorphism $f: H \rightarrow H$ such that $\{f(C), f(b)\}$ is a canonical longitude system of $f(H)$ as in the remark following Lemma 2 (see Fig. 10).

2. The proof of the main theorem

Untangling Theorem. A tangle $\left(B ; t_{1}, t_{2}\right)$ is trivial if and only if $\pi_{1}\left(B-\left(t_{1} \cup t_{2}\right)\right) \equiv$ $\mathbb{Z} * \mathbb{Z}, \pi_{1}\left(B-t_{1}\right) \cong \mathbb{Z}$, and $\pi_{1}\left(B-t_{2}\right) \cong \mathbb{Z}$.

Proof. The "only if" part is trivial. We show the "if" part. First we show that $B-\dot{N}\left(t_{1} \cup t_{2}\right)$ is homeomorphic to the handlebody of genus 2. By the hypothesis that $\pi_{1}\left(B-\left(t_{1} \cup t_{2}\right)\right) \equiv \mathbb{Z} * \mathbb{Z}$ and since $B-\dot{N}\left(t_{1} \cup t_{2}\right)$ is irreducible, we can show that there exists a disc which separates B into two 3-balls B_{1} and B_{2} such that each of those contains an arc t_{1} and t_{2}, respectively, and hence that $\pi_{1}\left(B_{i}-t_{i}\right) \cong \mathbb{Z}, i=1$, 2. The fact that $\pi_{1}\left(B_{i}-t_{i}\right) \cong \mathbb{Z}, i=1,2$ implies that t_{i} is a trivial arc in B_{i}. So $B_{i}-\stackrel{\circ}{N}\left(t_{i}\right)$ is homeomorphic to the solid torus. Since $B-\stackrel{\circ}{N}\left(t_{i} \cup t_{2}\right)$ is a boundary connected sum of $B_{1}-\stackrel{N}{N}\left(t_{1}\right)$ and $B_{2}-\dot{N}\left(t_{2}\right), B-\stackrel{\circ}{N}\left(t_{1} \cup t_{2}\right)$ is a handlebody of genus 2.

Let V be the standard handlebody of genus $2, h$ a homeomorphism from $B-$ $\stackrel{\circ}{N}\left(t_{1} \cup t_{2}\right)$ to V, and m_{1}, m_{2} a characteristic loop system of $B-\stackrel{\circ}{N}\left(t_{1} \cup t_{2}\right)$ of $\left(B ; t_{1}, t_{2}\right)$.

We have only to show that there exists a homeomorphism h_{1} of V such that $\left\{h_{1}\left(h\left(m_{1}\right)\right), h_{1}\left(h\left(m_{2}\right)\right)\right\}$ is a canonical longitude system of V. Since

$$
\begin{aligned}
& \pi_{1}\left(B-t_{2}\right) \cong \pi_{1}\left(B-\left(t_{1} \cup t_{2}\right)\right) /\left\langle\left[m_{1}\right]\right\rangle \cong \pi_{1}(V) /\left\langle\left[h\left(m_{1}\right)\right]\right\rangle \\
& \pi_{1}\left(B-t_{2}\right) \cong \mathbb{Z}
\end{aligned}
$$

we have

$$
\mathbb{Z} * \mathbb{Z} /\left\langle\left[h\left(m_{1}\right)\right]\right\rangle \cong \mathbb{Z}
$$

Thus, by [5 , Proposition 5.10 of Chapter II], $\left.h\left(m_{1}\right)\right]$ is an element of a generating system of $\pi_{1}(V) \cong \mathbb{Z} * \mathbb{Z}$. So $h\left(m_{1}\right)$ is freely homotopic in V to a canonical longitude of V. Thus, by Zieschang [9] and Lemma 2, there exists a homeomorphism h_{2} of V such that $h_{2}\left(h\left(m_{1}\right)\right)$ is a canonical longitude of $h_{2}(V)$.

Let a, b be a generating system of $\pi_{1}\left(h_{2}(V)\right)$ which is represented by a canonical longitude system of $h_{2}(V)$. We may assume that $a=\left[h_{2}\left(h\left(m_{1}\right)\right)\right]$. Since

$$
\begin{aligned}
\pi_{1}\left(B-t_{1}\right) & \cong \pi_{1}\left(B-\left(t_{1} \cup t_{2}\right)\right) /\left\langle\left[m_{2}\right]\right\rangle \\
& \cong \pi_{1}\left(h_{2}(V)\right) /\left\langle\left[h_{2}\left(h\left(m_{2}\right)\right)\right]\right\rangle \\
\pi_{1}\left(B-t_{1}\right) & \cong \mathbb{Z}
\end{aligned}
$$

we have

$$
\left.\mathbb{Z} * \mathbb{Z} /\left\langle h_{2}\left(h\left(m_{2}\right)\right)\right]\right\rangle \cong \mathbb{Z}
$$

Thus $\left[h_{2}\left(h\left(m_{2}\right)\right)\right]$ is an element of a generating system of $\pi_{1}\left(h_{2}(V)\right) \cong \mathbb{Z} * \mathbb{Z}$. Thus, by Kaneto [3] or Cohen, Mitzler and Zimmermann [1], $\left[h_{2}\left(h\left(m_{2}\right)\right)\right]$ is written up to cyclic permutations and inversions, in the following two forms:
(1) $a b^{\varepsilon_{1}} \ldots a b^{\varepsilon_{k}}$, or
(2) $a^{\varepsilon_{1}} b \ldots a^{\varepsilon_{k}} b$,
where $\varepsilon_{i} \in \mathbb{Z}$ and $\left|\varepsilon_{i}-\varepsilon_{j}\right| \leqslant 1,1 \leqslant i, j \leqslant k$.
Since $\pi_{1}\left(B-\left(t_{1} \cup t_{2}\right)\right) /\left\langle\left[m_{1}\right]\right\rangle \cong \pi_{1}\left(B-t_{2}\right) \cong\left\langle\left[m_{2}\right]\right\rangle,\left[h_{2}\left(h\left(m_{2}\right)\right)\right]$ must become $b^{ \pm 1}$ when we put $\left[h_{2}\left(h\left(m_{1}\right)\right)\right]=a=1$. Thus, $\left[h_{2}\left(h\left(m_{2}\right)\right)\right]$ is $a^{\prime} b^{ \pm 1}$ for some $r \in \mathbb{Z}$. Thus, by Lemma 3, there exists a homeomorphism h_{3} of $h_{2}(V)$ such that $h_{3}\left(h_{2}\left(h\left(m_{1}\right)\right)\right.$), $h_{3}\left(h_{2}\left(h\left(m_{2}\right)\right)\right.$) is the canonical longitude system of $h_{3}\left(h_{2}(V)\right)$. We may take $h_{1}=$ $h_{3} \circ h_{2}$.

An application. Situate two arcs A, B in \mathbb{R}_{+}^{3} as in Fig. 12.
Zeeman [8] shows that $G=\pi_{1}\left(\mathbb{R}_{+}^{3}-(A \cup B)\right)$ is not free by using a lower central series. We give here a proof using our main theorem. The pair $\left(\mathbb{R}_{+}^{3}, A, B\right)$ is homeomorphic to a tangle (B, t_{1}, t_{2}) as in Fig. 1. Since t_{1} and t_{2} are trivial arcs and $B-\dot{N}\left(t_{1} \cup t_{2}\right)$ is irreducible, if G is free, then $\pi_{1}\left(B-\left(t_{1} \cup t_{2}\right)\right) \cong \mathbb{Z} * \mathbb{Z}$. Then the tangle (B, t_{1}, t_{2}) is the untangle by the Untangling Theorem. But this tangle is not the untangle because any sum of two untangles is a 2 -bridge knot or link. The untangle can be added to this tangle to produce the square knot and the bridge index of the square knot is 3 . So G is not free.

Fig. 12.

Finally we remark that the statement of the theorem is the best possible. As mentioned above, an example of a nontrivial tangle which satisfies $\pi_{i}\left(B-t_{i}\right) \cong \mathbb{Z}$, $i=1,2$ and $\pi_{1}\left(B-\left(t_{1} \cup t_{2}\right)\right) \cong \mathbb{Z} * \mathbb{Z}$ is shown in Fig. 1. An example of a nontrivial tangle which satisfies $\pi_{1}\left(B-\left(t_{1} \cup t_{2}\right)\right) \equiv \mathbb{Z} * \mathbb{Z}$ and $\pi_{1}\left(B-t_{1}\right) \cong \mathbb{Z}$ is in Fig. 2. As to the tangle of Fig. 2, note that $B-\dot{N}\left(t_{1} \cup t_{2}\right)$ is homeomorphic to the standard handlebody (cf. Rolfsen [7]).

References

[1] M. Cohen, W. Mitzler and A. Zimmermann, What does a basis of $F(a, b)$ look like?, Math. Ann. 257 (1981) 435-445.
[2] J. Hempel, 3-manifolds, Ann. of Math. Studies 86 (1976).
[3] T. Kaneto, On presentations of the fundamental group of the 3-sphere associated with genus two Heegaard diagrams, Kokyuroku of R.I.M.S., Kyoto University 369 (1979) 144-163 (in Japanese).
[4] W.B.R. Lickorish, Prime knots and tangles, Trans. Amer. Math. Soc. 267 (1981) 321-332.
[5] R.C. Lyndon and P.E. Schupp, Combinatorial Group Theory (Springer, Berlin, 1977).
[6] W. Magnus, A. Karass and D. Solitar, Combinatorial Group Theory (Dover, New York, 1966).
[7] D. Rolfsen, Knots and Links (Publish or Perish, Berkeley, CA, 1976).
[8] E.C. Zeeman, Linking spheres, Abh. Math. Sem. Univ. Hamburg 24 (1960) 149-153.
[9] H. Zieschang, On simple systems of paths on complete pretzels, Amer. Math. Soc. Transl. (2) 92 (1970) 127-137.

