It is well known that if \hat{X} is a Hausdorff compactification of a Tychonoff space X, then there is a precompact uniformity compatible with the topology of X such that the Samuel compactification obtained from it is \hat{X}. We say that a compactification is Wallman if it can be constructed from a normal base of closed sets as described by Frink [1].

The purpose of this note is to characterize those precompact uniformities whose Samuel compactification is Wallman. The criterion is surprisingly simple.

Let μ be the family of uniform covers of some precompact uniformity. If there is some base B for open sets in the uniform topology such that the family of all finite covers from B is a base for μ, we will say that μ is generated by B.

THEOREM. The Samuel compactification is Wallman if and only if the associated precompact uniformity possesses a generating base of open sets.

Proof. Let μ be a precompact uniformity compatible with the topology of X, B a generating base of open sets, and $\beta\mu X$ the Samuel compactification. To show $\beta\mu X$ is a Wallman compactification, it suffices to find a base \mathcal{F} for closed sets in $\beta\mu X$ with the trace property with respect to X (i.e. if $F_i \in \mathcal{F}$, $i = 1, \ldots, n$, then $\bigcap \{F_i\} \neq \emptyset$ implies $\bigcap \{F_i\} \cap X \neq \emptyset$, cf. [4]).

Let $\mathcal{F} = \{(X - O)^{-} | O \in B\}$, where $A = \text{cl}_{\beta\mu X} A$. Suppose $F_i = (X - O_i)^{-}$, $O_i \in B$, $i = 1, \ldots, n$ and $\bigcap \{F_i\} \cap X = \emptyset$. Then the family $\{O_i\}$ is a cover in μ and there exists a finite open cover \mathcal{U} of $\beta\mu X$ such that the trace of \mathcal{U} on X refines $\{O_i\}$. Since the complement of each member of \mathcal{U} contains some F_i, it follows that $\bigcap \{F_i\} = \emptyset$.

It remains to show that \mathcal{F} is a base for closed sets. Let U be an open set containing x and let V and W be open sets satisfying $x \in V \subset \overline{V} \subset C W \subset \overline{W} \subset U$. The family $\{W, \beta\mu X - \overline{V}\}$ covers $\beta\mu X$ so its trace on X is refined by a finite open cover D of sets in B.

1) Research supported by the National Science Foundation, Grant GP 6529.
Letting \(D' = \beta \mu X - (X - D)^{-} \), we see that \(D' \cap X = D \) and \(\{ D' | D \in \mathcal{D} \} \) is a cover of \(\beta \mu X \). Thus \(x \in D'_k \) for some \(D_k \in \mathcal{D} \). Since \(X \) is dense, \(D'_k = D_k \). Now, \(D_k \) is either in \(W \) or \(\beta \mu X - \bar{V} \), but \(x \in D'_k \subset D_k \) implies \(D_k \subset W \). Hence, \(x \in D'_k \subset U \) and the family of complements of elements in \(\mathcal{I} \) forms a base for the open sets. Thus \(\mathcal{I} \) is a base for the closed sets and \(\beta \mu X \) is a Wallman compactification.

Now suppose \(\hat{X} \) is a Wallman compactification of \(X \). It is also \(\beta \mu X \) for some precompact uniformity \(\mu \). There is a family \(\mathcal{J} \) which is a base for closed sets in \(\hat{X} \) and has the trace property with respect to \(X \). We will show that \(\mu \) is generated by \(\mathcal{B} = \{ X - (F \cap X) | F \in \mathcal{I} \} \).

Let \(\{ O_i | i = 1, \ldots, n \} \) be an open cover from \(\mathcal{B} \), where \(O_i = X - (F_i \cap X) \), \(F_i \in \mathcal{I} \). It follows from the trace property that \(\{ \hat{X} - F_i \} \) is an open cover of \(\hat{X} \). Since every open cover is in the uniformity for a compact space, \(\{ O_i \} \in \mu \).

Let \(\mathcal{U} \in \mu \). Then it is induced by some member \(\mathcal{U}' \) in the uniformity of \(\beta \mu X \). Since \(\hat{X} \) is compact and \(\mathcal{I} \) is a base for closed sets, \(\mathcal{U}' \) can be refined by a finite open cover \(\mathcal{U}'' \) consisting of complements of members of \(\mathcal{I} \). The trace of \(\mathcal{U}'' \) on \(X \) is a finite cover from \(\mathcal{B} \) which refines \(\mathcal{U} \). Thus \(\mu \) is generated by \(\mathcal{B} \).

Recent work (cf. [2], [3], [4], [5]) has shown that a vast number of compactifications are Wallman. Possibly they all are. Thus, at least all of the common precompact uniformities have generating bases.

REFERENCES