Online-Only Abstracts: Population-based burden of bloodstream infections in Finland

Nosocomial transmission of NDM-1-producing *Escherichia coli* within a non-endemic area in France

C. Denis, L. Poirel, A. Carricajo, F. Grattard, P. Fascia, P. Verhoeven, P. Gay, C. Nuti, P. Nordmann, B. Pozzetto and P. Berthelot

1) Groupe Immunité des Muqueuses et Agents Pathogènes (GIMAP), EA 3064 Université de Lyon, Université Jean Monnet et CHU de Saint-Etienne, 2) Infection Control Unit, Infectious Diseases Department, University Hospital of Saint-Etienne, 3) INSERM U914, Emerging Resistance to Antibiotics and Laboratory of Bacteriology-Virology-Hygiene, Faculté de Médecine et Université Paris-Sud, Kremlin-Bicêtre, 4) Laboratory of Bacteriology-Virology-Hygiene, University Hospital of Saint-Etienne, Saint-Etienne, 5) Laboratory of Bacteriology, Hospital of Firminy, Firminy and 6) Department of Neurosurgery, University Hospital of Saint-Etienne, Saint-Etienne, France

Original Submission: 31 October 2011; Revised Submission: 14 December 2011; Accepted: 28 December 2011

Editor: R. Cantón

Article published online: 3 January 2012

Clin Microbiol Infect 2012; 18: E128–E130

10.1111/j.1469-0691.2012.03761.x

Abstract

Two patients with no travel history and sharing the same room were colonized by the same strain of New Delhi metallo-β-lactamase 1 (NDM-1)-producing *Escherichia coli* within a geographical area not endemic for this highly multidrug-resistant bacterium. It was documented an absence of an epidemiological and bacteriological link with a third patient returning from India after surgery and found to be infected by an NDM-1-producing *Citrobacter* strain during the same period. Despite extensive investigation, the source of contamination of the two former patients was not elucidated. This case report illustrates the need of investigating rapidly the emergence of highly multidrug-resistant *Enterobacteriaceae*, to stop their dissemination in a nosocomial setting.

The use of *rpoB* sequence analysis in the differentiation of *Mycobacterium abscessus* and *Mycobacterium chelonae*: a critical judgement in cystic fibrosis?

C. Arnold, A. Barrett, L. Cross and J. G. Magee

1) Applied and Functional Genomics Unit, HPA Microbiology Services, Centre for Infections, London and 2) North of England Mycobacterium Reference Laboratory, HPA Microbiology Services, Newcastle upon Tyne, UK

Original Submission: 7 October 2011; Revised Submission: 9 December 2011; Accepted: 23 January 2011

Editor: M. Drancourt

Article published online: 30 January 2012

Clin Microbiol Infect 2012; 18: E131–E133

10.1111/j.1469-0691.2012.03785.x
Abstract

Individuals suffering from fibrocystic disease may acquire non-tuberculous mycobacteria as colonizing or infecting organisms. Mycobacterium abscessus is of particular concern because it may be very difficult to eradicate and may mitigate against lung transplantation. However, this species may be difficult to reliably differentiate from the closely related M. chelonae. We have developed a rapid, low-cost, short sequence-based technique to confirm species identity by analysis of a segment of the RNA Polymerase B (rpoB) gene.

Isolation of *Kingella kingae* in the oropharynx during *K. kingae* arthritis in children

¹) University Paris Diderot, Sorbonne Paris Cité, 2) AP-HP, Laboratoire de Microbiologie, Hôpital Robert-Debré, 3) AP-HP, Service de Chirurgie Orthopédique Pédiatrique, Hôpital Robert-Debré and 4) AP-HP, Service de Pédiatrie Générale, Hôpital Robert-Debré, Paris, France

Original Submission: 27 December 2011; Revised Submission: 2 February 2012; Accepted: 3 February 2012

Editor: F. Allerberger

Article published online: 23 February 2012

Clin Microbial Infect 2012; 18: E134–E136

10.1111/j.1469-0691.2012.03799.x

Abstract

Kingella kingae arthritis in children is now mainly diagnosed by PCR, which has surpassed conventional culture of joint fluid. As oropharynx colonization is the first step of *Kingella kingae* invasion, we prospectively investigated the possibility of cultivating it from throat swabs, in children hospitalized for *K. kingae* arthritis. Throat culture was 5.6-fold more sensitive than joint fluid cultures in isolating *K. kingae* (66.7% vs. 11.9% respectively, p <0.001) and may be used to perform antibiotic susceptibility testing.