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Abstract

Let R be a Noetherian commutative ring of dimension n > 2 and let A = R[T ,T −1]. Assume that the
height of the Jacobson radical of R is at least 2. Let P be a projective A-module of rank n = dimA − 1
with trivial determinant. We define an abelian group called the “Euler class group of A,” denoted by E(A).
Let χ be an isomorphism from A to det(P ). To the pair (P,χ), we associate an element of E(A), called
the Euler class of P , denoted by e(P,χ). Then we prove that a necessary and sufficient condition for P to
have a unimodular element is the vanishing of e(P,χ) in E(A).

Earlier, Bhatwadekar and Raja Sridharan have defined the Euler class group of R, denoted by E(R), and
have proved similar results for projective R-module of rank n. Later, M.K. Das defined the Euler class group
of the polynomial ring R[T ], denoted by E(R[T ]), and proved similar results for projective R[T ]-modules
of rank n with trivial determinant.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Let A be a commutative Noetherian ring of dimension d . A classical result of Serre [18]
asserts that if P is a projective A-module of rank > d , then P has a unimodular element. It is
well known that this result is not true in general if rankP = d = dimA. Therefore, it is interesting
to know the obstruction for projective A-modules of rank = dimA to have a unimodular element.
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Let A be a commutative Noetherian ring of dimension n containing Q and let P be a projective
A-module of rankn. In [8], an abelian group E(A), called the Euler class group of A is defined
and it is shown that P has a unimodular element if and only if the Euler class of P in E(A)

vanishes (see [8] for the definition of Euler class of P ).
In view of the above result [8], we can ask the following:

Question 1.1. Let A be a commutative Noetherian ring containing Q. Let P be a projective
A-module of rank r < dimA having trivial determinant. What is the obstruction for P to have a
unimodular element?

Let R be a commutative Noetherian ring of dimension n containing Q. In [10], an abelian
group E(R[T ]), called the Euler class group of R[T ] is defined and it is shown that if P is a
projective R[T ]-module of rankn = dimR[T ] − 1 with trivial determinant, then P has a uni-
modular element if and only if the Euler class of P in E(R[T ]) vanishes, thus answering the
above question in the case r = dimA − 1 and A = R[T ].

In this paper, we prove results similar to [10] for the ring R[T ,T −1] under the assumption
that height of the Jacobson radical of R is � 2. More precisely, we define the Euler class group
of R[T ,T −1] and prove that if P̃ is a projective R[T ,T −1]-module of rankn = dimR with trivial
determinant, then P̃ has a unimodular element if and only if the Euler class of P̃ in E(R[T ,T −1])
vanishes (Corollary 4.8).

In Appendix A, we prove the following “Symplectic” cancellation theorem (Theorem A.7)
(it is used in Section 7) which is a generalization of [3, Theorem 4.8], where it is proved in the
polynomial ring case.

Theorem 1.2. Let B be a ring of dimension d and A = B[Y1, . . . , Ys,X
±1
1 , . . . ,X±1

r ]. Let
(P, 〈 , 〉) be a symplectic A-module of rank 2n > 0. If 2n � d , then ESp(A2 ⊥ P, 〈 , 〉) acts tran-
sitively on Um(A2 ⊕ P).

As an application, we get the following result (Theorem A.8), which gives a partial answer to
a question of Weibel [22, Introduction].

Theorem 1.3. Let R be a ring of dimension 2 and A = R[X1, . . . ,Xr,Y
±1
1 , . . . , Y±1

s ]. Assume A2

is cancellative. Then every projective A-module of rank 2 with trivial determinant is cancellative.

2. Preliminaries

All the rings considered in this paper are assumed to be commutative Noetherian and all the
modules are finitely generated. We denote the Jacobson radical of A by J (A).

Let B be a ring and let P be a projective B-module. Recall that p ∈ P is called a unimodular
element if there exists an element ψ ∈ P ∗ = HomB(P,B) such that ψ(p) = 1. We denote by
Um(P ), the set of all unimodular elements of P .

Given an element ϕ ∈ P ∗ and an element p ∈ P , we define an endomorphism ϕp as the com-

posite P
ϕ−→ B

p−→ P . If ϕ(p) = 0, then ϕp
2 = 0 and hence 1+ϕp is a unipotent automorphism

of P .
By a transvection, we mean an automorphism of P of the form 1 + ϕp , where ϕ(p) = 0 and

either ϕ is unimodular in P ∗ or p is unimodular in P . We denote by E(P ) the subgroup of
Aut(P ) generated by all transvections of P . Note that E(P ) is a normal subgroup of Aut(P ).
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An existence of a transvection of P pre-supposes that P has a unimodular element. Now,
let P = B ⊕ Q, q ∈ Q,α ∈ Q∗. Then Δq(b, q ′) = (b, q ′ + bq) and Γα(b, q ′) = (b + α(q ′), q ′)
are transvections of P . Conversely, any transvection Θ of P gives rise to a decomposition P =
B ⊕ Q in such a way that Θ = Δq or Θ = Γα .

We begin by stating two classical results of Serre [18] and Bass [1], respectively.

Theorem 2.1. Let A be a ring of dimension d . Then any projective A-module P of rank > d

has a unimodular element. In particular, if dimA = 1, then any projective A-module of trivial
determinant is free.

Theorem 2.2. Let A be a ring of dimension d and let P be a projective A-module of rank > d .
Then E(A ⊕ P) acts transitively on Um(A ⊕ P). In particular, P is cancellative.

The following result is due to Lindel [11, Theorem 2.6].

Theorem 2.3. Let A be a ring of dimension d and R = A[T1, . . . , Tn,Y
±1
1 , . . . , Y±1

r ]. Let P be a
projective R-module of rank � max(2, d + 1). Then E(P ⊕ R) acts transitively on Um(P ⊕ R).
In particular, projective R-modules of rank > d are cancellative.

The following result is due to Bhatwadekar and Roy [5, Proposition 4.1] and is about lifting
an automorphism of a projective module.

Proposition 2.4. Let A be a ring and J ⊂ A an ideal. Let P be a projective A-module of rank n.
Then any transvection Θ̃ of P/JP , i.e. Θ̃ ∈ E(P/JP ), can be lifted to a (unipotent ) automor-
phism Θ of P . In particular, if P/JP is free of rank n, then any element Ψ of E((A/J )n) can
be lifted to Ψ ∈ Aut(P ). If, in addition, the natural map Um(P ) → Um(P/JP ) is surjective,
then the natural map E(P ) → E(P/JP ) is surjective.

The following result is a consequence of a theorem of Eisenbud–Evans as stated in [17,
p. 1420].

Lemma 2.5. Let R be a ring and let P be a projective R-module of rank r . Let (α, a) ∈ (P ∗ ⊕R).
Then there exists an element β ∈ P ∗ such that ht Ia � r , where I = (α + aβ)(P ). In particular, if
the ideal (α(P ), a) has height � r , then ht I � r . Further, if (α(P ), a) is an ideal of height � r

and I is a proper ideal of R, then ht I = r .

The following result is due to Bhatwadekar and Keshari [4, Lemma 4.4].

Lemma 2.6. Let C be a ring with dimC/J (C) = r and let P be a projective C-module of
rankm � r + 1. Let I and L be ideals of C such that L ⊂ I 2. Let φ :P � I/L be a surjection.
Then φ can be lifted to a surjection Ψ :P � I .

The following result is due to Mandal and Raja Sridharan [16, Theorem 2.3].

Theorem 2.7. Let A be a ring and let I1, I2 be two comaximal ideals of A[T ] such that
I1 contains a monic polynomial and I2 = I2(0)A[T ] is an extended ideal. Let I = I1 ∩ I2.
Suppose P is a projective A-module of rankn � dim(A[T ]/I1) + 2. Let α :P � I (0) and
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φ :P [T ]/I1P [T ] � I1/I
2
1 be two surjections such that φ(0) = α ⊗ A/I1(0). Then there exists a

surjective map Ψ :P [T ] � I such that Ψ (0) = α.

Now, we state the Addition and Subtraction principles, respectively, for arbitrary ring B ([4],
Theorem 5.6 and Theorem 3.7, respectively). Note that the following results are valid in the case
d = n = 2 also ([8], Theorem 3.2 and Theorem 3.3, respectively).

Proposition 2.8. Let B be a ring of dimension d and let I1, I2 ⊂ B be two comaximal ideals of
height n, where 2n � d + 3. Let P = P1 ⊕ B be a projective B-module of rankn. Let Φ :P � I1
and Ψ :P � I2 be two surjections. Then there exists a surjection Δ :P � I1 ∩ I2 with Δ ⊗
B/I1 = Φ ⊗ B/I1 and Δ ⊗ B/I2 = Ψ ⊗ B/I2.

Proposition 2.9. Let B be a ring of dimension d and let I1, I2 ⊂ B be two comaximal ideals of
height n, where 2n � d + 3. Let P = P1 ⊕ B be a projective B-module of rankn. Let Φ :P � I1
and Ψ :P � I1 ∩ I2 be two surjections such that Φ ⊗ B/I1 = Ψ ⊗ B/I1. Then there exists a
surjection Δ :P � I2 such that Δ ⊗ B/I2 = Ψ ⊗ B/I2.

We end this section by recalling some results from [8, 4.2, 4.3, 4.4] for later use.

Theorem 2.10. Let B be a ring of dimension n � 2 containing Q. Let J be an ideal of B of
height n such that J/J 2 is generated by n elements. Let wJ : (B/J )n � J/J 2 be a surjection.
Let P be a projective B-module of rankn with trivial determinant and χ :B

∼−→ ∧n
P . Then the

following hold:

(1) If (J,wJ ) = 0 in E(B), then wJ can be lifted to a surjection from Bn to J .
(2) Suppose e(P,χ) = (J,wJ ) in E(B). Then there exists a surjection α :P � J such that

(J,wJ ) is obtained from (α,χ).
(3) e(P,χ) = 0 in E(B) if and only if P has a unimodular element.

3. Some addition and subtraction principles

We begin with the following result which is proved in [6, Lemma 3.6]: in the case A is an
affine algebra over a field, f = T and R = A[T ]. Since the same proof works in our case also,
we omit the proof.

Lemma 3.1. Let A be a ring of dimension d and R = A[T ,T −1]. Let P̃ be a projective R-module
of rankn, where 2n � d + 3. Let I ⊂ R be an ideal of height n. Let J ⊂ I ∩ A be any ideal of
height � d −n+ 2 and let f ∈ R be any element. Assume that we are given a surjection φ : P̃ �
I/(I 2f ). Then φ has a lift φ̃ : P̃ → I such that φ̃(P̃ ) = I ′′ satisfies the following properties:

(1) I ′′ + (J 2f ) = I ,
(2) I ′′ = I ∩ I ′, where ht I ′ � n, and
(3) I ′ + (J 2f ) = R.

Notation 3.2. Let A be a ring and R = A[T ,T −1]. We say f (T ) ∈ A[T ] is a special monic
polynomial if f (T ) is a monic polynomial with f (0) = 1. By R we denote the ring obtained from
R by inverting all the special monic polynomials of A[T ]. It is easy to see that dimR= dimA.
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The following result is an analogue of [4, Lemma 4.5] for A[T ,T −1].

Lemma 3.3. Let A be a ring with dimA/J (A) = r and R = A[T ,T −1]. Let I and L be ideals
of R such that L ⊂ I 2 and L contains a special monic polynomial. Let Q be a projective R-
module of rankm � r +1. Let φ :Q⊕R � I/L be a surjection. Then we can lift φ to a surjection
Φ :Q ⊕ R � I with Φ(0,1) a special monic polynomial.

Proof. Let Φ ′ = (Θ,g) be a lift of φ. Let f ∈ L be a special monic polynomial. By adding some
multiple of f to g, we can assume that the lift Φ ′ = (Θ,g) of φ is such that g is a special monic
polynomial. Let C = R/(g). Since A ↪→ C is an integral extension, we have J (A) = J (C) ∩ A

and, hence, A/J (A) ↪→ C/J (C) is also an integral extension. Therefore, dimC/J (C) = r .
Let “bar” denote reduction modulo (g). Then Θ induces a surjection α :Q � I/L, which

by 2.6 can be lifted to a surjection from Q to I . Therefore, there exists a map Γ :Q → I such
that Γ (Q) + (g) = I and (Θ − Γ )(Q) = K ⊂ L + (g). Hence Θ − Γ ∈ KQ∗. This shows that
Θ − Γ = Θ1 + gΓ1, where Θ1 ∈ LQ∗ and Γ1 ∈ Q∗.

Let Φ1 = Γ + gΓ1 and let Φ = (Φ1, g). Then Φ(Q⊕ R) = Φ1(Q)+ (g) = Γ (Q)+ (g) = I .
Thus, Φ :Q⊕R � I is a surjection. Moreover, Φ(0,1) = g is a special monic polynomial. Since
Φ − Φ ′ = (Φ1 − Θ,0), Φ1 − Θ ∈ LQ∗ and Φ ′ is a lift of φ, we see that Φ is a (surjective) lift
of φ. This proves the result. �

The proof of the following result is the same as of [4, Lemma 4.6] using 2.3 and 3.3. Hence,
we omit the proof.

Lemma 3.4. Let A be a ring of dimension d and R = A[T ,T −1]. Let n be an integer such
that 2n � d + 3. Let I be an ideal of R of height n such that I + J (A)R = R. Assume that
htJ (A) � d − n + 2. Let P = Q ⊕ R2 be a projective R-module of rankn and let φ :P � I/I 2

be a surjection. If the surjection φ ⊗ R :P ⊗ R � IR/I 2R can be lifted to a surjection from
P ⊗R to IR, then φ can be lifted to a surjection Φ :P � I .

Proposition 3.5 (Addition Principle). Let A be a ring of dimension d and R = A[T ,T −1]. Let
I1, I2 ⊂ R be two comaximal ideals of height n, where 2n � d + 3. Let P = P ′ ⊕ R2 be a
projective R-module of rankn. Assume that htJ (A) � d −n+2. Let Φ :P � I1 and Ψ :P � I2
be two surjections. Then there exists a surjection Δ :P � I1 ∩ I2 with Δ ⊗ R/I1 = Φ ⊗ R/I1
and Δ ⊗ R/I2 = Ψ ⊗ R/I2.

Remark 3.6. Since dimR = d +1, if 2n � d +4, then we can appeal to 2.8 for the proof (without
the assumption htJ (A) � d −n+2). So, we need to prove the result only in the case 2n = d +3.
However, the proof given below works equally well for 2n > d + 3 and, hence, allows us to give
a unified treatment. The same remark is also applicable to 3.7.

Proof. Step 1. Write I = I1 ∩I2. Let J = (I ∩A)∩J (A). Since ht(I ∩A) � n−1 � (d −n+2),
we have htJ � d − n + 2. The surjections Φ and Ψ induce a surjection Γ :P � I/I 2 with
Γ ⊗ R/I1 = Φ ⊗ R/I1 and Γ ⊗ R/I2 = Ψ ⊗ R/I2. It is enough to show that Γ has a surjective
lift from P to I .

Applying 3.1 with f = 1, we get a lift Γ1 ∈ HomR(P, I) of Γ such that the ideal Γ1(P ) =
I ′′ satisfies the following properties: (1) I = I ′′ + J 2, (2) I ′′ = I ∩ K , where htK � n, and
(3) K + J = R.
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Since dimR = d , applying 2.8 in the ring R for the surjections Φ ⊗ R :P ⊗ R � I1R and
Ψ ⊗ R :P ⊗ R � I2R, we get a surjective map Δ :P ⊗ R � IR such that Δ ⊗ R/I1R =
Φ ⊗R/I1R and Δ ⊗R/I2R = Ψ ⊗R/I2R. It is easy to see, from the very construction of Γ ,
that Δ is a lift of Γ ⊗R.

We have two surjections, Γ1 :P � I ∩ K and Δ :P ⊗ R � IR. Since Γ1 is a lift of Γ , we
have Γ1 ⊗R/IR = Δ ⊗R/IR. Applying 2.9 in the ring R for the surjections Γ1 ⊗R and Δ,
we get a surjection Δ1 :P ⊗R� KR with Δ1 ⊗R/KR = Γ1 ⊗R/KR. Since K is comaximal
with J and hence with J (A), applying 3.4, we get a surjection Δ2 :P � K which is a lift of
Γ1 ⊗ R/K :P � K/K2.

Step 2. We have two surjections, Γ1 :P � I ∩ K and Δ2 :P � K , with Γ1 ⊗ R/K = Δ2 ⊗
R/K . Recall that P = P ′ ⊕ R2, J = (I ∩ A) ∩ J (A), K is comaximal with J and htJ �
d − n + 2. Write P1 = P ′ ⊕ R and P = P1 ⊕ R.

Let “bar” denote reduction modulo J 2. Then R = A/J 2[T ,T −1] and dimA/J � d −(d −n+
2) = n−2. Hence applying 2.3 and 2.4, we can assume that after performing some automorphism
of P1 ⊕ R, Δ2(P1) = R modulo J 2 and Δ2((0,1)) ∈ J 2. Assume that Δ2((0,1)) = λ ∈ J 2.
Replacing Δ2 by Δ2 + λΔ3 for some Δ3 ∈ P1

∗, we can assume, by 2.5, that htΔ2(P1) = n − 1.
Let Δ2(p1) = 1 modulo J 2 for some p1 ∈ P1. Further, replacing λ by λ + Δ2(p1), we can
assume that λ = 1 modulo J 2.

Let K1 and K2 be two ideals of R[Y ] defined by K1 = (Δ2(P1), Y + λ) and K2 = IR[Y ].
Then K1 + K2 = R[Y ] since Δ2(P1) + J = R and J ⊂ I . Let K3 = K1 ∩ K2. Then we have
two surjections, Γ1 :P � K3(0) = I ∩ K and Λ1 :P [Y ] � K1, defined by Λ1 = Δ2 on P1
and Λ1((0,1)) = Y + λ. Then Λ1(0) = Γ1 mod K1(0)2, as Δ2 ⊗ R/K = Γ1 ⊗ R/K . Also,
note that, since htΔ2(P1) = n − 1 and Δ2(P1) + J (A) = R, dimR[Y ]/K1 = dimR/Δ2(P1) �
d − n + 1 � n − 2. Hence applying 2.7, we get a surjection Λ2 :P [Y ] � K3 with Λ2(0) = Γ1.
Putting Y = 1 − λ, we get a surjection Δ̃ = Λ2(1 − λ) :P � I with Δ̃ ⊗ R/I = Γ1 ⊗ R/I .

Since Γ1 is a lift of Γ :P � I/I 2, we have Δ̃ ⊗ R/I = Γ ⊗ R/I . This proves the result. �
Proposition 3.7 (Subtraction Principle). Let A be a ring of dimension d and R = A[T ,T −1].
Let I1, I2 ⊂ R be two comaximal ideals of height n, where 2n � d + 3. Let P = P ′ ⊕ R2 be
a projective R-module of rankn. Assume that htJ (A) � d − n + 2. Let Φ :P � I1 ∩ I2 and
Ψ :P � I1 be two surjections with Φ⊗R/I1 = Ψ ⊗R/I1. Then there exists a surjection Δ :P �
I2 with Φ ⊗ R/I2 = Δ ⊗ R/I2.

Proof. Let J = (I2 ∩ A) ∩ J (A). Since ht(I2 ∩ A) � n − 1 and n − 1 � d − n + 2, we have
htJ � d − n + 2. We have a surjection φ :P � I2/I

2
2 induced by Φ . Applying 3.1 with f = 1,

we get a lift φ̃ ∈ Hom(P, I2) of φ such that φ̃(P ) = I ′′ satisfies the following properties: (1) I2 =
I ′′ + J 2, (2) I ′′ = I2 ∩ K , where htK � n, and (3) K + J 2 = R.

We have two surjections, Φ :P � I1 ∩ I2 and Ψ :P � I1, with Φ ⊗R/I1 = Ψ ⊗R/I1. Since
dimR= d , applying 2.9 in the ring R for the surjections Φ ⊗R and Ψ ⊗R, we get a surjection
Γ :P ⊗R� I2R with Γ ⊗R/I2R = Φ ⊗R/I2R = φ̃ ⊗R/I2R.

Again applying 2.9 for the surjections Γ and φ̃ ⊗ R, we get a surjection Γ1 :P ⊗ R � KR
with Γ1 ⊗ R/KR = φ̃ ⊗ R/KR. Since K + J (A) = R, applying 3.4, we get a surjection
Γ2 :P � K with Γ2 ⊗ R/K = φ̃ ⊗ R/K .

We have two surjections, φ̃ :P � I2 ∩ K and Γ2 :P � K , with Γ2 ⊗ R/K = φ̃ ⊗ R/K .
Recall that K + J (A) = R. Following the proof of 3.5 Step 2, we get a surjection Δ :P � I2
with Δ ⊗ R/I2 = φ̃ ⊗ R/I2 = Φ ⊗ R/I2. This proves the result. �
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Theorem 3.8. Let A be a ring of dimension d and R = A[T ,T −1]. Let n be an integer such
that 2n � d + 3. Let I be an ideal of R of height n. Assume that htJ (A) � d − n + 2. Let
P = P ′ ⊕ R2 be a projective R-module of rankn and let φ :P � I/I 2 be a surjection. Assume
that φ ⊗ R :P ⊗ R � IR/I 2R can be lifted to a surjection Φ :P ⊗ R � IR. Then φ can be
lifted to a surjection Δ :P � I .

Proof. Let J = (I ∩ A) ∩ J (A). Note that htJ � d − n + 2. Applying 3.1 with f = 1, we get
a lift Φ1 ∈ Hom(P, I ) of φ such that the ideal Φ1(P ) = I ′′ satisfies the following properties:
(1) I = I ′′ + J 2, (2) I ′′ = I ∩ K , where htK � n, and (3) K + J 2 = R.

If htK > n, then K = R and Φ1 is a lift of φ. Hence, we assume that htK = n. We have two
surjections, Φ :P ⊗R � IR and Φ1 :P � I ∩ K , with Φ ⊗R/IR = Φ1 ⊗R/IR. Applying
2.9 in the ring R for the surjections Φ and Φ1 ⊗ R, we get a surjection Ψ :P ⊗ R � KR
such that Ψ ⊗R/KR = Φ1 ⊗R/KR. Since K +J (A) = R, applying 3.4, we get a surjection
Δ1 :P � K which is a lift of Φ1 ⊗ R/K .

We have two surjections, Φ1 :P � I ∩ K and Δ1 :P � K , with Φ1 ⊗ R/K = Δ1 ⊗ R/K .
Applying 3.7, we get a surjection Δ :P � I such that Δ ⊗ R/I = Φ1 ⊗ R/I = φ. This proves
the result. �

As a consequence of the above result, we have the following:

Corollary 3.9. Let A be a ring of dimension n � 3 with htJ (A) � 2 and R = A[T ,T −1]. Let I

be an ideal of R of height n. Let φ : (R/I)n � I/I 2 be a surjection. Assume that φ ⊗R can be
lifted to a surjection from Rn to IR. Then φ can be lifted to a surjection Φ :Rn � I .

4. Euler class group of A[T,T −1]

Notation 4.1. We will denote the following hypothesis by (∗): Let A be a ring containing Q of
dimension n � 3 with htJ (A) � 2 and R = A[T ,T −1].

Assume (∗). We proceed to define the nth Euler class group of R. The results of this section
are similar to [10, Section 4], where it is proved for the ring A[T ] (without the assumption
htJ (A) � 2).

Let I ⊂ R be an ideal of height n such that I/I 2 is generated by n elements. Let α and β

be two surjections from (R/I)n to I/I 2. We say that α and β are related if there exists σ ∈
SLn(R/I) such that ασ = β . It is easy to see that this is an equivalence relation on the set of
surjections from (R/I)n to I/I 2. Let [α] denote the equivalence class of α. We call such an
equivalence class [α] a local orientation of I .

If a surjection α from (R/I)n to I/I 2 can be lifted to a surjection Θ :Rn � I , then so can any
β equivalent to α. For, let β = ασ for some σ ∈ SLn(R/I). If IR= R, then β ⊗R can be lifted
to a surjection from Rn � IR and hence we can appeal to 3.9. We assume that IR is a proper
ideal of R. Since dimR = n, we have dimR/IR = 0. Hence, SLn(R/IR) = En(R/IR).
Therefore, by 2.4, σ ⊗ R can be lifted to an element of SLn(R). Thus β ⊗ R can be lifted
to a surjection from Rn � IR. By 3.9, β can be lifted to a surjection from Rn � I . Therefore,
from now on, we shall identify a surjection α with the equivalence class [α] to which it belongs.

We call a local orientation [α] of I a global orientation of I , if the surjection α : (R/I)n �
I/I 2 can be lifted to a surjection Θ :Rn � I .
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Let G be the free abelian group on the set of pairs (I,wI ), where I ⊂ R is an ideal of height n

having the property that Spec(R/I) is connected, I/I 2 is generated by n elements and wI :Rn �
I/I 2 is a local orientation of I .

Let I ⊂ R be an ideal of height n such that I/I 2 is generated by n elements. Then I can
be decomposed as I = I1 ∩ · · · ∩ Ir , where Ik’s are pairwise comaximal ideals of R of height
n and Spec(R/Ik) is connected. From [10, Lemma 4.4], it follows that such a decomposition
is unique. We say that Ik’s are the connected components of I . Let wI : (R/I)n � I/I 2 be
a surjection. Then wI induces surjections wIk

: (R/Ik)
n � Ik/I

2
k . By (I,wI ), we denote the

element
∑

(Ik,wIk
) of G.

Let H be the subgroup of G generated by the set of pairs (I,wI ), where I ⊂ R is an ideal of
height n and wI is a global orientation of I . We define the nth Euler class group of R, denoted by
En(R), to be G/H . By abuse of notation, we will write E(R) for En(R) throughout this paper.

Let P be a projective R-module of rankn having trivial determinant. Let χ :R
∼−→ ∧n

P be
an isomorphism. To the pair (P,χ), we associate an element e(P,χ) of E(R) as follows:

Let λ :P � I be a surjection, where I ⊂ R is an ideal of height n (such a surjection exists
by 2.5). Let “bar” denote reduction modulo I . We obtain an induced surjection λ :P/IP �
I/I 2. Since P has trivial determinant and dimR/I � 1, by 2.1, P/IP is a free R/I -module of
rankn. We choose an isomorphism γ : (R/I)n

∼−→ P/IP such that
∧n

(γ ) = χ . Let wI be the
surjection λγ : (R/I)n � I/I 2. Let e(P,χ) be the image of (I,wI ) in E(R). We say that (I,wI )

is obtained from the pair (λ,χ).

Lemma 4.2. The assignment sending the pair (P,χ) to the element e(P,χ), as described above,
is well defined.

Proof. Let μ :P � I1 be another surjection, where I1 ⊂ R is an ideal of height n. Let (I1,wI1)

be obtained from the pair (μ,χ). Let J = (I ∩ I1) ∩ A. Recall that wI : (R/I)n � I/I 2 is a
surjection. By 3.1, wI can be lifted to Φ :Rn � I ∩ K , where htK = n and K + J = R.

Since K and I are comaximal, Φ induces a local orientation wK of K . Clearly, (I,wI ) +
(K,wK) = 0 in E(R). Let L = K ∩ I1. Since K + I1 = R, wK and wI1 together induce a
local orientation wL of L. It is enough to show that (L,wL) = 0 in E(R). (Since (L,wL) =
(K,wK) + (I1,wI1) in E(R) and (L,wL) = 0 implies (I,wI ) = (I1,wI1) in E(R).)

Since dimR= n = rankP , e(P ⊗R, χ ⊗R) is well defined in E(R) [8, Section 4]. Hence, it
follows that wL ⊗R is a global orientation of LR. Therefore, by 3.9, wL is a global orientation
of L, i.e. (L,wL) = 0 in E(R). This proves the lemma. �
Notation 4.3. We define the Euler class of (P,χ) to be e(P,χ).

Theorem 4.4. Assume (∗). Let I ⊂ R be an ideal of height n such that I/I 2 is generated by n

elements and let wI :Rn � I/I 2 be a local orientation of I . Suppose that the image of (I,wI )

in E(R) is zero. Then wI is a global orientation of I .

Proof. Since (I,wI ) = 0 in E(R), (IR,wI ⊗R) = 0 in E(R). Therefore, by 2.10, wI ⊗R can
be lifted to a surjection from Rn � IR (as dimR = n). By 3.9, wI can be lifted to a surjection
from Rn � I and hence is a global orientation of I . �
Theorem 4.5. Assume (∗). Let P be a projective R-module of rankn with trivial determinant and
let I ⊂ R be an ideal of height n. Assume that we are given a surjection ψ :P � I/I 2. Assume
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further that ψ ⊗R can be lifted to a surjection Ψ :P ⊗R � IR. Then there exists a surjection
Ψ̃ :P � I , which is a lift of ψ .

Proof. Let J = I ∩ J (A). Then htJ � 2. By 3.1, ψ can be lifted to Φ :P � I ∩ I ′, where
ht I ′ = n and I ′ + J 2 = R.

Fix χ :R
∼−→ ∧n

P . Let λ : (R/(I ∩ I ′))n ∼−→ P/(I ∩ I ′)P such that
∧n

λ = χ ⊗
R/(I ∩ I ′). Then e(P,χ) = (I ∩ I ′,wI∩I ′) in E(R), where wI∩I ′ = (Φ ⊗ R/(I ∩ I ′))λ.
Therefore, e(P,χ) = (I,wI ) + (I ′,wI ′), where wI and wI ′ are local orientations of I and I ′,
respectively, induced from wI∩I ′ .

Since e(P ⊗R, χ ⊗R) = (IR,wI ⊗R) (using Ψ ), (I ′R,wI ′ ⊗R) = 0 in E(R), i.e. wI ′ ⊗R
can be lifted to a surjection from Rn to I ′R. By 3.9, wI ′ can be lifted to a set of n generators
of I ′, say I ′ = (f1, . . . , fn). Since I ′ +J (A) = R and ht I ′ = n, dimR/I ′ = 0. Hence, applying
2.3, 2.4 and 2.5, after performing some elementary transformation on the generators of I ′, we
can assume that

(1) ht(f1, . . . , fn−1) = n − 1,
(2) dimR/(f1, . . . , fn−1) � 1, and
(3) fn = 1 modulo J 2.

Write C = R[Y ], K1 = (f1, . . . , fn−1, Y + fn), K2 = IC and K3 = K1 ∩ K2.

Claim. There exists a surjection Δ(Y) :P [Y ] � K3 such that Δ(0) = Φ .

First we show that the theorem follows from the claim. Specializing Δ(Y) at Y = 1 − fn, we
obtain a surjection Δ1 :P � I . Since 1 − fn ∈ J 2 ⊂ I 2, Δ1 = Φ modulo I 2. Therefore, Δ1 is a
lift of ψ . This proves the result.

Proof of the claim. λ induces an isomorphism δ : (R/I ′)n ∼−→ P/I ′P such that
∧n

δ =
χ ⊗ R/I ′. Also, (Φ ⊗ R/I ′)δ = wI ′ . Since dimC/K1 = dimR/(f1, . . . , fn−1) � 1, and P

has trivial determinant, by 2.1, P [Y ]/K1P [Y ] is free of rank n. Choose an isomorphism
Γ (Y ) : (C/K1)

n ∼−→ P [Y ]/K1P [Y ] such that
∧n

(Γ (Y )) = χ ⊗ C/K1.
Since

∧n
δ = χ ⊗ R/I ′, Γ (0) and δ differ by an element of SLn(R/I ′). Since dimR/I ′ = 0,

SLn(R/I ′) = En(R/I ′). Therefore, we can alter Γ (Y ) by an element of SLn(C/K1) and assume
that Γ (0) = δ.

Let Λ(Y) : (C/K1)
n � K1/K

2
1 be the surjection induced by the set of generators (f1, . . . ,

fn−1, Y + fn) of K1. Thus, we get a surjection

Δ(Y) = Λ(Y)Γ (Y )−1 :P [Y ]/K1P [Y ] � K1/K
2
1 .

Since Γ (0) = δ, Φ ⊗R/I ′ = wI ′δ−1 and Λ(0) = wI ′ , we have Δ(0) = Φ ⊗R/I ′. By 2.7, we
get a surjection Δ̃ :P [Y ] � K3 such that Δ̃(0) = Φ . This proves the claim. �
Lemma 4.6. Assume (∗). Let P be a projective R-module of rankn having trivial determinant
and χ :R

∼−→ ∧n
P . Let e(P,χ) = (I,wI ) in E(R), where I ⊂ R is an ideal of height n. Then

there exists a surjection Δ :P � I such that (I,wI ) is obtained from (Δ,χ).
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Proof. Since dimR/I � 1 and P has trivial determinant, by 2.1, P/IP is a free R/I -module
of rankn. Choose λ : (R/I)n

∼−→ P/IP such that
∧n

λ = χ ⊗ R/I . Let γ = wIλ
−1 :P/IP �

I/I 2.
Since e(P ⊗R, χ ⊗R) = (IR,wI ⊗R) in E(R), by 2.10, there exists a surjection Γ :P ⊗

R� IR such that (IR,wI ⊗R) is obtained from the pair (Γ,χ ⊗R), i.e. Γ is a lift of γ ⊗R.
Applying 4.5, there exists a surjection Δ :P � I such that Δ is a lift of γ . Since (Δ ⊗ R/I)λ =
wI and

∧n
(λ) = χ ⊗ R/I , (I,wI ) is obtained from the pair (Δ,χ). �

The following result is essentially 3.1.

Lemma 4.7. Assume (∗). Let (I,wI ) ∈ E(R). Then there exist an ideal I1 ⊂ R of height n and a
local orientation wI1 of I1 such that (I,wI ) + (I1,wI1) = 0 in E(R). Further, I1 can be chosen
to be comaximal with any ideal K ⊂ R of height � 2.

Corollary 4.8. Assume (∗). Let P be a projective R-module of rankn with trivial determinant and
χ :R

∼−→ ∧n
(P ). Then e(P,χ) = 0 if and only if P has a unimodular element. In particular, if

P has a unimodular element, then

(1) P maps onto any ideal of height n generated by n elements (see Lemma 4.6).
(2) Let β :P � I be a surjection, where I is an ideal of R of height n. Then I is generated by n

elements.

Proof. Let α :P � I be a surjection, where I ⊂ R is an ideal of height n. Let e(P,χ) = (I,wI )

in E(R), where (I,wI ) is obtained from the pair (α,χ).
Assume that e(P,χ) = 0 in E(R). Then (I,wI ) = 0 in E(R). By 4.7, there exist an

ideal I ′ of height n such that I ′ + J (A) = R and a local orientation wI ′ of I ′ such that
(I,wI ) + (I ′,wI ′) = 0 in E(R). Since (I,wI ) = 0, (I ′,wI ′) = 0 in E(R). Hence, without loss
of generality, we can assume that I +J (A)R = R.

By 4.4, I is generated by n elements, say I = (f1, . . . , fn). Since I + J (A)R = R,
dimR/I = 0. Hence, applying 2.3 and 2.4, after performing some elementary transformations
on the generators of I , we can assume that dimR/(f1, . . . , fn−1) � 1.

Let C = R[Y ] and K = (f1, . . . , fn−1, Y + fn) be an ideal of C. We have two surjections,
α :P � K(0)(= I ) and φ :P [Y ]/KP [Y ] � K/K2, such that φ(0) = α mod K(0)2, where φ

is the composition of two maps, φ1 :P [Y ]/KP [Y ] ∼−→ (C/K)n with
∧n

φ1 = χ−1 ⊗ C/K and
φ2 : (C/K)n � K/K2 defined by (f1, . . . , fn−1, Y +fn). Applying 2.7 with I1 = K and I2 = C,
we get a surjection Φ :P [Y ] � K . Since Φ(1 − fn) :P � R, P has a unimodular element.

Conversely, we assume that P has a unimodular element. Applying 2.10, we have (IR,wI ⊗
R) = 0 in E(R). By 3.9, (I,wI ) = 0 = e(P,χ) in E(R). This proves the result. �

The following result is a direct consequence of 3.9.

Theorem 4.9. Assume (∗). Then the canonical map E(R) → E(R) is injective.

Assume (∗). We have a canonical map Φ :E(A) → E(R). It is easy to see that Φ is injective.
It is natural to ask, when is Φ surjective? First, we prove an analogue of [4, Theorem 4.13] for
A[T ,T −1].
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Theorem 4.10. Let A be a regular domain of dimension d essentially of finite type over an
infinite perfect field k and R = A[T ,T −1]. Let n be an integer such that 2n � d + 3. Let I ⊂ R

be an ideal of height n and let P be a projective A-module of rankn. Assume that I contains
some f ∈ A[T ] such that either f is a monic polynomial or f (0) = 1. Then any surjection
φ :P ⊗ R � I/I 2 can be lifted to a surjection Φ :P ⊗ R � I .

Proof. First we assume that f (0) = 1. Let J = I ∩ A[T ]. Let ψ :P ⊗ R → I be a lift of φ.
Since (P ⊗ R)∗ = P ∗ ⊗ R, there exists ψ̃ ∈ P [T ]∗ such that ψ = ψ̃/T r for some positive
integer r . It follows that ψ̃ :P [T ] → J . Let Ψ :P [T ] → J/J 2 be the map induced by ψ̃ . Since
ΨT = φ and (J/J 2)f = 0, we get that Ψ is a surjection. Since f ∈ I , by [4, Lemma 3.5], Ψ can
be lifted to a surjection Δ :P [T ] � J/J 2(f − 1). Since f − 1 ∈ (T ), Δ induces a surjection
Δ̃ :P [T ] � J/J 2T . Applying [4, Theorem 4.13], we get a surjection Φ :P [T ] � J which lifts
Δ̃ and hence Ψ . Now, T r(Φ ⊗ R) :P ⊗ R � I is a lift of φ. This proves the result in the case
f (0) = 1.

Now, we assume that f (T ) is a monic polynomial. Let J = I ∩ A[X], where X = T −1. Then
J contains an element g(X) = T −rf (T ), where r = deg f . Note that g(0) = 1. Now, we are
reduced to the previous case. �

As a consequence of 4.10, we have the following result.

Theorem 4.11. Let A be a regular domain of dimension n � 3 essentially of finite type over an
infinite perfect field k with htJ (A) � 2. Let (I,wI ) ∈ E(A[T ,T −1]). Assume that I contains
some f (T ) ∈ A[T ] such that either f is a monic polynomial or f (0) = 1. Then (I,wI ) = 0.

Remark 4.12. In [15], 4.10 is proved for an arbitrary ring under the assumption that I contains a
special monic polynomial. Hence 4.11 is valid for an arbitrary ring if I contains a special monic
polynomial.

Let A be a ring of dimension n containing an infinite field and let P be a projective A[T ]-
module of rankn. In [9], it is proved that if Pf (T ) has a unimodular element for some monic
polynomial f (T ) ∈ A[T ], then P has a unimodular element. We will prove the analogous result
for A[T ,T −1].

Theorem 4.13. Assume (∗). Let P be a projective R-module of rankn with trivial determinant.
If Pf (T ) has a unimodular element for some special monic polynomial f (T ) ∈ A[T ], then P has
a unimodular element.

Proof. Fix χ :R
∼−→ ∧n

(P ). Since Pf has a unimodular element, e(P ⊗ R, χ ⊗ R) = 0 in
E(R). By 4.9, e(P,χ) = 0 in E(R). Hence P has a unimodular element, by 4.8. �
5. Weak Euler class group of A[T,T −1]

Results in this section are similar to [10, Section 5]. Assume (∗). We define the nth weak
Euler class group En

0 (R) of R in the following way:
Let G be the free abelian group on (I ), where I ⊂ R is an ideal of height n with the prop-

erty that I/I 2 is generated by n elements and Spec(R/I) is connected. Let I ⊂ R be an ideal
of height n such that I/I 2 is generated by n elements. Then I can be decomposed as I =
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I1 ∩ · · · ∩ Ir , where Ii ’s are pairwise comaximal ideals of height n and Spec(R/Ii) is connected
for each i. In the previous section, we have seen that such a decomposition of I is unique. By (I ),
we denote the element

∑
i (Ii) of G.

Let H be the subgroup of G generated by elements of the type (I ), where I ⊂ R is an ideal
of height n such that I is generated by n elements.

We define En
0 (R) = G/H . By abuse of notation, we will write E0(R) for En

0 (R) in what
follows. Note that there is a canonical surjective homomorphism from E(R) to E0(R) obtained
by forgetting the orientations.

Remark 5.1. Assume (∗). Let I ⊂ R be an ideal of height n and let wI : (R/I)n � I/I 2 be a
local orientation of I . Let θ ∈ GLn(R/I) be such that det θ = f . Then wIθ is another orientation
of I , which we denote by f wI . On the other hand, if wI and w̃I are two local orientations of I ,
then by [8, Lemma 2.2], it is easy to see that w̃I = f wI for some unit f ∈ R/I .

The proof of the following lemma is contained in [8, 2.7, 2.8 and 5.1] and, hence, we omit the
proof.

Lemma 5.2. Assume (∗). Let P be a projective R-module of rankn having trivial determinant
and χ :R

∼−→ ∧n
P . Let α :P � I be a surjection, where I ⊂ R is an ideal of height n. Let

(I,wI ) be obtained from (α,χ). Let f ∈ R be a unit mod I . Then there exist a projective R-
module P1 of rankn such that [P ] = [P1] in K0(R), χ1 :R

∼−→ ∧n
P1, and a surjection β :P1 �

I such that (I, f n−1wI ) is obtained from (β,χ1).

The following lemma can be proved using [8, Lemmas 5.3, 5.4] and 3.9.

Lemma 5.3. Assume (∗). Let (I,wI ) ∈ E(R). Let f ∈ R/I be a unit. Then (I,wI ) = (I, f 2wI )

in E(R).

Adapting the proof of [7, Lemma 3.7] and using 2.5 in place of Swan’s Bertini theorem, the
proof of the following lemma follows.

Lemma 5.4. Assume (∗) with n even. Let P be a stably free R-module of rankn and χ :R
∼−→∧n

P . Suppose that e(P,χ) = (I,wI ) in E(R). Then (I,wI ) = (I1,wI1) in E(R) for some ideal
I1 ⊂ R of height n generated by n elements. Moreover, I1 can be chosen to be comaximal with
any ideal of R of height � 2.

The following result can be proved by adapting the proofs of [7, 3.8, 3.9, 3.10, 3.11].

Proposition 5.5. Assume (∗) with n even. Then we have the following:

(1) Let I1, I2 ⊂ R be two comaximal ideals of height n and I3 = I1 ∩ I2. If any two of I1, I2 and
I3 are surjective images of stably free R-modules of rankn, then so is the third.

(2) Let (I,wI ) ∈ E(R). Then (I ) = 0 in E0(R) if and only if I is a surjective image of a stably
free projective R-module of rankn.

(3) Let P be a projective R-module of rankn with trivial determinant. Then e(P ) = 0 in E0(R)

if and only if [P ] = [Q ⊕ R] in K0(R) for some projective R-module Q of rankn − 1.



678 M.K. Keshari / Journal of Algebra 308 (2007) 666–685
(4) Let P be a projective R-module of rankn with trivial determinant. Suppose that e(P ) = (I )

in E0(R), where I ⊂ R is an ideal of height n. Then there exists a projective R-module Q of
rankn such that [Q] = [P ] in K0(R) and I is a surjective image of Q.

The proof of the following result is the same as of [8, Proposition 6.5] using the above results.

Theorem 5.6. Assume (∗) with n even. Let (I, w̃I ) ∈ E(R) belong to the kernel of the canoni-
cal homomorphism E(R) � E0(R). Then there exists a stably free R-module P1 of rankn and
χ1 :R

∼−→ ∧n
P1 such that e(P1, χ1) = (I, w̃I ) in E(R).

6. The case of dimension two

In this section, we briefly outline the results similar to those in the previous sections in the case
when dimension of the base ring is two. The results of this section are similar to [10, Section 6],
where they are proved for A[T ].

We begin by stating the following result of Mandal [14].

Lemma 6.1. Let A be a ring and R = A[T ,T −1]. Let P be a projective R-module. Let f ∈ R be
a special monic polynomial. If Pf is free, then P is free.

The proof of the following result is similar to [10, Theorem 7.1].

Theorem 6.2. Let A be a ring of dimension 2 and R = A[T ,T −1]. Let I ⊂ R be an ideal of
height 2 such that I = (f1, f2) + I 2. Suppose that there exist F1,F2 ∈ IR such that IR =
(F1,F2) and Fi − fi ∈ I 2R for i = 1,2. Then there exist h1, h2 ∈ I and θ ∈ SL2(R/I) such that
I = (h1, h2) and (f 1, f 2)θ = (h1, h2), where “bar” denotes reduction modulo I .

Proof. Since a unimodular row of length two is always completable to a matrix of determinant 1,
it follows (using patching argument) that there is a projective R-module P of rank 2 with triv-
ial determinant mapping onto I . Let α :P � I be the surjection. Fix χ :R

∼−→ ∧2
P . Since

dimR/I � 1, by 2.1, P/IP is free of rank 2. Hence α and χ induce a set of generators of I/I 2,
say I = (g1, g2) + I 2.

It is easy to see that there exists a matrix σ ∈ GL2(R/I) with determinant f such that
(f 1, f 2) = (g1, g2)σ . Now, following [8, Lemmas 2.7 and 2.8], there exist a projective
R-module P1 of rank 2 having trivial determinant, χ1 :R

∼−→ ∧2
P1, and a surjection β :P1 � I

such that if the set of generators of I/I 2 induced by β and χ1 is h1, h2, then (h1, h2) = (g1, g2)δ,
where δ ∈ GL2(R/I) has determinant f . Therefore, the two sets of generators, (f 1, f 2) and
(h1, h2) of I/I 2, are connected by a matrix in SL2(R/I).

From the above discussion, it is easy to see that e(P1 ⊗R, χ1 ⊗R) = (IR,wI ⊗R) in E(R),
where wI : (R/I)2 � I/I 2 is the surjection corresponding to the generators (f 1, f 2). Therefore,
from the given condition of the theorem, it follows that (IR,wI ⊗R) = 0 in E(R). Hence, we
have e(P1 ⊗ R, χ1 ⊗ R) = 0 in E(R). Since dimR = 2, by 2.10, P1 ⊗ R has a unimodular
element and hence is free (as rankP1 = 2 and determinant of P1 is trivial). Therefore, by 6.1,
P1 is a free R-module.

Assume that the surjection β is given by h1, h2. Then I = (h1, h2) and (f 1, f 2)θ = (h1, h2),
for some θ ∈ SL2(R/I). This proves the result. �
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As applications of the above theorem, we prove the following results.

Corollary 6.3 (Addition Principle). Let A be a ring of dimension 2 and R = A[T ,T −1]. Let
I1, I2 ⊂ R be two comaximal ideals of height 2. Suppose that I1 = (f1, f2) and I2 = (g1, g2).
Then there exist h1, h2 ∈ I1 ∩ I2 and θi ∈ SL2(R/Ii), i = 1,2, such that I1 ∩ I2 = (h1, h2) and
(f1, f2) ⊗ R/I1 = ((h1, h2) ⊗ R/I1)θ1 and (g1, g2) ⊗ R/I2 = ((h1, h2) ⊗ R/I2)θ2.

Proof. Write I for I1 ∩ I2. The generators of I1 and I2 induce a set of generators of I/I 2, say
I = (H1,H2) + I 2. Since dimR = 2, applying 2.8 in the ring R, we get IR = (F1,F2) with
Fi − fi ∈ I1

2R and Fi − gi ∈ I2
2R. Hence, it is easy to see that Fi − Hi ∈ I 2R, for i = 1,2.

Applying 6.2, there exist h1, h2 ∈ I and θ ∈ SL2(R/I) such that I = (h1, h2) and (H1,H2)⊗
R/I = ((h1, h2) ⊗ R/I)θ . Let θi = θ ⊗ R/Ii . Then θi ∈ SL2(R/Ii), i = 1,2, and we have
(f1, f2) ⊗ R/I1 = ((h1, h2) ⊗ R/I1)θ1 and (g1, g2) ⊗ R/I2 = ((h1, h2) ⊗ R/I2)θ2. �
Corollary 6.4 (Subtraction Principle). Let A be a ring of dimension 2 and R = A[T ,T −1]. Let
I1, I2 ⊂ R be two comaximal ideals of height 2. Suppose that I1 = (f1, f2) and I1 ∩I2 = (h1, h2)

such that fi − hi ∈ I 2
1 , for i = 1,2. Then there exist g1, g2 ∈ I2 and θ ∈ SL2(R/I2) such that

I2 = (g1, g2) and (g1, g2) ⊗ R/I2 = ((h1, h2) ⊗ R/I2)θ .

Proof. We have I2 = (h1, h2) + I 2
2 . Since dimR = 2, applying 2.9 in the ring R, we get that

I2R = (G1,G2) with Gi − hi ∈ I 2
2R. Now, applying 6.2, we get the result. �

Remark 6.5. Let A be a ring of dimension 2 and R = A[T ,T −1]. We can define the Euler class
group and the weak Euler class group of R in exactly the same way as we did in the previous
sections. The only difference is that, for an ideal I of R of height 2, a local orientation [α] will be
called a global orientation if there is a surjection θ :R2 � I and some σ ∈ SL2(R/I) such that
ασ = θ ⊗ R/I . For a rank 2 projective R-module P having trivial determinant, the Euler class
of P is defined as in the previous section.

The following result can be proved using 6.2 and 2.10 ((i) follows from 4.4, (ii)’s proof is
similar to [10, Theorem 7.6] using A.7 and (iii), (iv) follow from 6.1).

Theorem 6.6. Let A be a ring of dimension 2 and R = A[T ,T −1]. Let I ⊂ R be an ideal of height
2 such that I/I 2 is generated by 2 elements. Let wI : (R/I)2 � I/I 2 be a local orientation of I .
Let P be a projective R-module of rank 2 with trivial determinant and χ :R

∼−→ ∧2
P . We have

the following results:

(i) Suppose that the image of (I,wI ) is zero in E(R). Then I is generated by 2 elements and
wI is a global orientation of I .

(ii) Suppose that e(P,χ) = (I,wI ) in E(R). Then there exists a surjection α :P � I such that
(I,wI ) is obtained from (α,χ).

(iii) e(P,χ) = 0 in E(R) if and only if P has a unimodular element and hence P is free.
(iv) The canonical map E(R) → E(R) is injective.

Remark 6.7. Let A be a ring of dimension 2 and R = A[T ,T −1]. Let I ⊂ R be an ideal of
height 2 such that I/I 2 is generated by 2 elements and let wI be a local orientation of I . It
is easy to see, as in 6.2, that there exist a projective R-module P of rank 2 together with an
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isomorphism χ :R
∼−→ ∧2

P and a surjection α :P � I such that (I,wI ) is obtained from the
pair (α,χ)

The theory of weak Euler class group described in the last section also follows in a like manner
in the two-dimensional case.

7. Relations between E(R) and ˜K0Sp(R)

In this section, we prove results similar to [8, Section 7].
Let A be a ring of dimension 2 and R = A[T ,T −1]. Let K̃0Sp(R) be the set of isome-

try classes of (P, s), where P is a projective R-module of rank 2 with trivial determinant and
s :P × P → R a non-degenerate alternating bilinear form. We note that there is (up to isom-
etry) a unique non-degenerate alternating bilinear form on R2, which we denote by h, namely
h((a, b), (c, d)) = ad − bc. We write H(R) for (R2, h).

We define a binary operation ∗ on K̃0Sp(R) as follows. Let (P1, s1) and (P2, s2) be two
elements of K̃0Sp(R). Since dimA = 2, R = A[T ,T −1] and P1 ⊕ P2 has rank 4, hence
by 2.1, P1 ⊕ P2 has a unimodular element, say p. Then there exists q ∈ P1 ⊕ P2 such that
if s = s1 ⊥ s2, then s(p, q) = 1. Let P3 = {p̃ ∈ P1 ⊕ P2 | s(p, p̃ ) = 0 = s(q, p̃ )}. Then the
restriction s3 :P3 × P3 → R of s to P3 is non-degenerate (i.e. (P3, s3) is symplectic) and
P1 ⊕ P2 = (Rp ⊕ Rq) ⊕ P3. Hence (P1, s1) ⊥ (P2, s2) is isometric to (P3, s3) ⊥ (R2, h).
We define (P1, s1) ∗ (P2, s2) = (P3, s3). By A.7, (P3, s3) is determined uniquely up to isome-
try. Hence ∗ is a well defined operation and for every symplectic R-module (P, s) of rank 2,
(P, s) ∗ (R2, h) = (P, s). Hence K̃0Sp(R) is a commutative semigroup under ∗ with the isom-
etry class of (R2, h) as the identity element. We will briefly indicate that in fact K̃0Sp(R) is an
abelian group under ∗.

For a projective R-module P of rank 2 with trivial determinant, the alternating bilinear form
sP on P ⊕ P ∗ defined by

sP
(
(p,f ), (q, g)

) = g(p) − f (q), p, q ∈ P, f,g ∈ P ∗

is non-degenerate. We write H(P ) for the symplectic module (P ⊕ P ∗, sP ). If (P, s) is a
symplectic R-module of rank 2, then (P, s) ⊥ (P,−s)

∼−→ H(P ) [21, Lemma A.3]. By [12,
Theorem 2.1], every projective R-module of rank � 3 has a unimodular element. Hence, by 2.2,
there exists a projective R-module P1 of rank 2 such that P ⊕ P1

∼−→ R4. Therefore,

H(P1) ⊥ (P,−s) ⊥ (P, s)
∼−→ H(P1 ⊕ P)

∼−→ H
(
R4) ∼−→ H

(
R2) ⊥ H(R) ⊥ H(R).

Since the symplectic module H(P1) ⊥ (P,−s) has rank 6, H(P1) ⊥ (P,−s)
∼−→ H(R2) ⊥

(P̃ , s̃ ) for some symplectic R-module (P̃ , s̃ ) of rank 2. By Bass result [2],

(P̃ , s̃ ) ⊥ (P, s)
∼−→ H(R) ⊥ H(R)

and therefore (P̃ , s̃ ) ∗ (P, s) = H(R). Thus, K̃0Sp(R) is an abelian group under ∗.
Let P be a projective R-module of rank 2 with trivial determinant. Then having a non-dege-

nerate alternating bilinear form s on P is equivalent to giving an isomorphism λ :
∧2

P
∼−→ A.

Thus, we can identify the pair (P, s) with (P,χ), where χ is the generator of
∧2

P given by
λ−1(1). It is easy to see that the isometry classes of (P, s) coincide with the isomorphism classes
of (P,χ).

We will begin with the following result, the proof of which is the same as of [8, Theorem 7.2].
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Theorem 7.1. Let A be a ring of dimension 2 and R = A[T ,T −1]. Then the map from K̃0Sp(R)

to E(R) sending (P,χ) to e(P,χ) is an isomorphism.

Let A be a ring of dimension 2 and R = A[T ,T −1]. Let G be the set of isometry classes
of non-degenerate alternating bilinear forms on R4. Let H(R4) = (R2, h) ⊥ (R2, h). As before,
we can define the group structure on G as follows: We set (R4, s1) ∗ (R4, s2) = (R4, s3), where
s3 is the unique (up to isometry) alternating bilinear form on R4 satisfying the property that
(R4, s1) ⊥ (R4, s2) is isometric to (R4, s3) ⊥ H(R2). Then G is a group with H(R2) as the
identity element. Let s be a non-degenerate alternating bilinear form on R4. Since dimA = 2 and
R = A[T ,T −1], by 2.2, we get (R4, s)

∼−→ (P, s′) ⊥ (R2, h). The assignment sending (R4, s)

to (P, s′) gives rise to an injective homomorphism from G to K̃0Sp(R).
In view of the above theorem, we have the following result, the proof of which is the same as

[8, Theorem 7.3].

Theorem 7.2. Let A be a ring of dimension 2 and R = A[T ,T −1]. Then we have the following
exact sequence

0 → G → K̃0Sp(R)
( ∼−→ E(R)

) → E0(R) → 0.

Corollary 7.3. Assume (∗). Let (I,wI ) be an element of E(R) such that its image in E0(R)

(which is independent of wI ) is zero. Then the element (I,wI ) + (I,−wI ) = 0 in E(R).

Proof. Let (I,wI )+ (I,−wI ) = (J,wJ ) in E(R). Since dimR= n, applying [8, Corollary 7.9]
in the ring R, we get that (J ⊗ R,wJ ⊗ R) = 0 in E(R). By 4.9, (J,wJ ) = 0 in E(R). This
proves the result. �

As an application of 7.3, following the proof of [8, Corollary 7.10], we have the following
result.

Corollary 7.4. Assume (∗) with n odd. Let P be a projective R-module of rankn having trivial
determinant. Assume that the kernel of the canonical surjection E(R) � E0(R) has no non-
trivial 2-torsion. If e(P ) = 0 in E0(R), then P has a unimodular element.

Following the proof of [8, Theorem 7.13] gives the following result.

Theorem 7.5. Assume (∗) with n odd. Let P be a projective R-module of rankn having trivial
determinant. Suppose that there exists a projective R-module Q of rankn − 1 such that [P ] =
[Q ⊕ R] in K0(R). Then P has a unimodular element.
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Appendix A

We will freely use results and notations from [3]. Let (P, 〈 , 〉) be an A-module with an al-
ternating bilinear form 〈 , 〉 (P need not be projective and 〈 , 〉 need not be non-degenerate). Let
E(A2 ⊥ P, 〈 , 〉) denote the subgroup of Aut(A2 ⊥ P, 〈 , 〉) generated by θ(c,q) and σ(d,q) for
c, d ∈ A and q ∈ P , where θ(c,q) and σ(d,q) are defined as

θ(c,q)(a, b,p) = (
a, b + ca + 〈p,q〉,p + aq

)
,

σ(d,q)(a, b,p) = (
a + bd + 〈q,p〉, b,p + bq

)

for (a, b,p) ∈ A2 ⊕ P .

Remark A.6. It is easy to see that [3, Lemmas 4.3, 4.5, 4.7] holds for (P, 〈 , 〉) replacing
ESp(A2 ⊥ P, 〈 , 〉) with E(A2 ⊥ P, 〈 , 〉) with further assumption in 4.5 that sP ⊂ F .

The following result is a symplectic analogue of 2.3 and is a generalization of [2] and [3,
Theorem 4.8], where it is proved for r = r ′ = 0 and r = 0, respectively. Our proof closely fol-
lows [3].

Theorem A.7. Let B be a ring of dimension d and A = B[Y1, . . . , Yr ′ ,X±1
1 , . . . ,X±1

r ]. Let
(P, 〈 , 〉) be a symplectic A-module of rank 2n > 0. If 2n � d , then ESp(A2 ⊥ P, 〈, 〉) acts tran-
sitively on Um(A2 ⊕ P).

Proof. Let (g1, g2,p) ∈ Um(A2 ⊕P). We want to show that there exists Γ ∈ ESp(A2 ⊥ P, 〈 , 〉)
such that Γ (g1, g2,p) = (1,0,0). We prove the result by induction on r .

If r = 0, then the result follows from [3, Theorem 4.8]. Hence, we assume that the result is
proved for r − 1 and r � 1. For the sake of simplicity, we write R = B[Y1, . . . , Yr ′ ,X±1

1 , . . . ,

X±1
r−1] and Xr = X.
Without loss of generality, we can assume that B is reduced. Let S be the set of non-zero

divisors of B . Then BS is a finite direct product of fields and therefore, by [19,20], every
projective AS -module is free. Hence, we can find a basis p̃1, . . . , p̃n, q̃1, . . . , q̃n of PS such
that 〈p̃i , p̃j 〉 = 0 = 〈q̃i , q̃j 〉 for 1 � i, j � n, 〈p̃i , q̃i〉 = 1 for 1 � i � n and 〈p̃i , q̃j 〉 = 0 for
1 � i, j � n, i �= j .

We can choose some t ∈ S such that p̃i = ei/t , q̃i = fi/t for some ei, fi ∈ P for 1 � i � n.
Let s = t2 and F = ∑n

i=1 Aei + ∑n
i=1 Afi . Then, by [3, Lemma 4.2], F is a free A-submodule

of P of rank 2n and sP ⊂ F .
Let F1 = ∑n

i=1 R[X]ei + ∑n
i=1 R[X]fi . Let P be generated by μ1, . . . ,μl as an A-module

such that (1) the set μ1, . . . ,μl contains e1, . . . , en, f1, . . . , fn, (2) sμi ∈ F1 for 1 � i � l, and
(3) 〈μi,μj 〉 ∈ R[X] for 1 � i, j � l. Let M = ∑l

i=1 R[X]μi . Then MA = P and sM ⊂ F1.
Since s ∈ B is a non-zero-divisor, B1 = B[X±1]/(s(X − 1)) is a ring of dimension d and

A = A/(s(X − 1)) = B1[Y1, . . . , Yr ′ ,X±1
1 , . . . ,X±1

r−1]. Moreover, since rankP � d , by [11,

Theorem 1.19], the map Um(A2 ⊕ P) → Um(A2 ⊕ (P/s(X − 1)P )) is surjective. Therefore,
by [3, Lemma 4.1] and induction hypothesis, there exists Ψ ∈ ESp(A2 ⊥ P, 〈 , 〉) such that
Ψ (g1, g2,p) = (1,0,0) modulo s(X − 1)A.
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Replacing (g1, g2,p) with Ψ (g1, g2,p), we may assume that (g1, g2,p) = (1,0,0) modulo
s(X − 1)A. By 2.5, there exist h ∈ A and p1 ∈ P such that ht(Ag3 + I ) � d + 1, where g3 =
g1 + hg2, p2 = p + g2p1 and I = p2(P

∗) = 〈P,p2〉. Put α = g3 + 〈p1,p〉 ∈ A. Then

σ(h,p1)(g1, g2,p) = (
g1 + g2h + 〈p1,p〉, g2,p + g2p1

) = (α, g2,p2).

Since (g3, g2,p) = (1,0,0) modulo s(X − 1)A, we have α = 1 modulo s(X − 1)A. More-
over, since 〈p1,p2〉 = 〈p1,p〉 ∈ I , hence (g3, I )A = (α, I )A = (α, s(X − 1)I )A. Now, since
(α, s(X − 1)I )A is an ideal of A of height > d = dimB , by Mandal’s theorem [13],
(α, s(X − 1)I )A contains a special monic polynomial, say γ , in the variable X. We write
γ = γ (X) ∈ R[X].

Let β(X) = g2 + γ (X)γ1 for some suitable γ1 ∈ A such that β(X) ∈ R[X] is a special monic
polynomial. Let γ (X)γ1 = μα + ν for some μ ∈ A and ν ∈ s(X − 1)I . Since I = 〈P,p2〉, there
exists p3 ∈ s(X − 1)P such that ν = 〈−p3,p2〉 = 〈p2,p3〉. Put p4 = p2 + αp3. Then

θ(μ,p3)(α, g2,p2) = (
α,g2 + μα + 〈p2,p3〉,p2 + αp3

) = (
α,β(X),p4

)
.

Note that (α,p4) = (1,0) modulo s(X − 1)A and β(X) is special monic polynomial.
Since sP ⊂ F , let p4 = (X − 1)(

∑n
i=1 hiei + ∑n

j=1 kjfj ) for some hi, kj ∈ A. Let h1 =
−λX−r0 + h̃1, where h̃1 ∈ A has X−1 degree � r0 − 1 and λ ∈ R. Let a0 = (X − 1)X−r0λ. Then

σ(0,a0e1)

(
α,β(X),p4

) = (
α + a0〈e1,p4〉, β(X),p4 + β(X)a0e1

)
.

Note that if p4 + a0β(X)e1 = (X − 1)(e1h11 + ∑n
i=2 hiei + ∑n

j=1 kjfj ), then degree of X−1 in
h11 ∈ A is � r0 − 1. Also note that α + a0〈e1,p4〉 = 1 modulo s(X − 1)A. Hence, by induction
on the X−1 degree, applying such symplectic transvections, say Ψ1 ∈ ESp(A2 ⊥ P, 〈, 〉), we can
assume that if Ψ1(α,β(X),p4) = (α1, β(X),p5), then p5 ∈ (X − 1)F1. Now, we write p5 as
p5(X). We still have α1 = 1 mod s(X − 1)A. Write Γ1 = Ψ1θ(μ,p3)σ(h,p1). Then Γ1(g1, g2,p) =
(α1, β(X),p5(X)).

Since σ(d,0)(α1, β(X),p5(X)) = (α1 + β(X)d,β(X),p5(X)) for d ∈ A, applying symplec-
tic transvections of the type σ(d,0), say Ψ2, we may assume that if Ψ2(α1, β(X),p5(X)) =
(α2, β(X),p5(X)), then α2 ∈ R[X] and α2 = 1 modulo s(X − 1)R[X]. Now, we write α2 as
α2(X). Since β(0) = 1, (α2(X),β(X),p5(X)) ∈ Um(R[X]2 ⊥ F1, 〈 , 〉).

Let β(X) = 1 − Xw and α2(X) = 1 + s(X − 1)w′ for some w,w′ ∈ R[X]. Then s =
sXw + sβ(X) and α2(X) = 1 + sXw′ − (sXw + sβ(X))w′. Let α3(X) = 1 + sXw′(1 − w).
Then σ(sw′,0)(α2(X),β(X),p5(X)) = (α3(X),β(X),p5(X)) with α3(X) = 1 modulo sXR[X].

Since (α3(X), s)R[X] = R[X] and β(X) is monic, there exists c ∈ R such that 1 − cs ∈
R ∩ (α3(X),β(X)). Recall that sM ⊂ F1. Therefore, writing b = 1, b′ = 1 − sc and applying [3,
Lemma 4.7], there exists Ψ3 ∈ SL2(R[X], (sX))E(R[X]2 ⊥ M, 〈 , 〉) such that

Ψ3
(
α3(X),β(X),p5(X)

) = (
α3(b

′X),β(b′X),p5(b
′X)

)
.

Since α3(X) = 1 modulo (sX)R[X], we have α3(b
′X) = 1 modulo (sb′X)R[X]. Moreover, b′ =

1 − cs ∈ R ∩ (α3(b
′X),β(b′X)). Therefore, [α3(b

′X),β(b′X)] is a unimodular row.
Let Ψ3 = Δ−1Φ , where Δ ∈ SL2(R[X], (sX)) and Φ ∈ E(R[X]2 ⊥ M, 〈 , 〉). Let Δ(α3(b

′X),

β(b′X)) = (α4(X),β1(X)). Then

Φ
(
α3(X),β(X),p5(X)

) = (
α4(X),β1(X),p5(b

′X)
)
.
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Since Δ ∈ SL2(R[X], (sX)), hence α4(X) = 1 modulo (sX)R[X] and [α4(X),β1(X)] is a uni-
modular row.

Write Γ2 = (Φ ⊗ A)(σ(sw′,0) ⊗ A)Ψ2Γ1. Then Γ2 ∈ Esp(A2 ⊥ P, 〈 , 〉) and Γ2(g1, g2,p) =
(α4(X),β1(X),p5(b

′X)) with [α4(X),β1(X)] a unimodular row. Therefore, by [3, Lemma 4.1],
there exists Φ1 ∈ ESp(A2 ⊥ P, 〈 , 〉) such that

Φ1
(
α4(X),β1(X),p5(b

′X)
) = (

α4(X),β1(X), e1
)
.

Since 〈e1, f1〉 = s, (α4(X), e1) is an element of Um(A⊕P). Therefore, by [3, Lemma 4.4], there
exists Φ2 ∈ ESp(A2 ⊥ P, 〈 , 〉) such that Φ2(α4(X),β1(X), e1) = (1,0,0).

Let Γ = Φ2Φ1Γ2. Then Γ (g1, g2,p) = (1,0,0). Hence, the theorem is proved. �
The proof of the following result follows from [3, Lemmas 5.2 and 5.4] and A.7.

Theorem A.8. Let R be a ring of dimension 2 and A = R[X1, . . . ,Xr,Y
±1
1 , . . . , Y±1

r ′ ]. Let P

be a projective A-modules of rank 2 with trivial determinant. If A2 is cancellative, then P is
cancellative.

Proposition A.9. Let R be a smooth affine domain of dimension 2 over an algebraically closed
field k of characteristic 0. Let A = R[X1, . . . ,Xn,Y

±1]. Then A2 is cancellative and hence every
projective A-module of rank 2 with trivial determinant is cancellative, by A.8.

Proof. Let P be a stably free A-module of rank 2. By 2.3, we may assume that P ⊕ A
∼−→ A3.

Since A1+Yk[Y ] = R̃[X1, . . . ,Xn], where R̃ is a smooth affine domain over a C1 field k(Y ).
Hence, by [3, Theorem 5.5], P ⊗ A1+Yk[Y ] is free. There exists h ∈ 1 + Yk[Y ] such that Ph is
free. Patching P and A2

h, we get a projective R[X1, . . . ,Xn,Y ] = B-module Q of rank 2 such

that Qh
∼−→ P . Since (Q⊕B)Y is free, Q⊕B is free. Applying [3, Theorem 5.5], Q is free and

hence P is free. This proves that A2 is cancellative. �
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