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1. Introduction

1.1. The problem

A first order linear system

dw

dx
= A(x)w, with w ∈ C

d, A(x) ∈ Md(C), (1)

is called Fuchsian if all its singularities in C are regular. For such systems A(x) has the form
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A(x) =
S+1∑
j=0

1

x − p j
A j, with w ∈ C

d, A j ∈ Md(C), (2)

and then (1) is singular at p0, . . . , pS+1,∞, all of them regular singular points.1,2 This linear context
appears in a wide range of problems of mathematics and physics, and has been the topic of extensive
studies.

The present paper studies nonlinear systems having a Fuchsian linear part:

du

dx
= A(x)u + 1

Q (x)
f(x,u), u ∈ C

d, (3)

with A(x) given by (2). The term 1
Q f collects the nonlinear terms in u and Q denotes the product

Q (x) =
S+1∏
j=0

(x − p j). (4)

The question addressed is: under which conditions systems (3) are analytically equivalent to their
linear part (1) on a domain in x large enough to encompass all the singularities p0, . . . , pS+1?

This is a question of classification of differential equations in singular regions. It is well known
that in a neighborhood of a regular point, all equations are analytic equivalent. But this is no longer
true on a domain including singularities.

1.2. Motivation

The question of linearization and, more generally, of equivalence, is a fundamental problem in the
theory of differential equations.

Besides the clear theoretical interest, linearization and equivalence are used as instrumental meth-
ods in control theory, and in devising algorithms for numerical and symbolic calculations (see, to
cite just a few authors, [12–14,17,18]). Often the methods used are developed from the method of
equivalence introduced by Cartan [2] to decide whether two differential structures can be mapped
one to another by a transformation taken in a given pseudogroup [20,25]. In the case of differential
equations, the method was used for regular systems and extended for a neighborhood of one singular
manifold [21,22].

There are many classes of problems that reduce to Eqs. (2), (3). Vector fields with an eigenvalue
equal to 1 at a singular point can be reduced to the study of a Fuchsian system near one singu-
larity by eliminating time. Similarly, vector fields in regions containing two, or more singular points
are reducible to (3). More generally, Hamiltonian systems with polynomial potentials near particular,
periodic, or doubly-periodic solutions can be reduced to (3) [4,5].

In dimension one nonlinear equations near a singular point (regular, or irregular) were studied in
detail by Martinet and Ramis. Autonomous nonlinear equations near a singular point have been also
studied, have generated deep results, and are relatively well understood.

The present paper considers systems in regions encompassing two, or more, singularities. The
study also reveals a close connection between three concepts: linearizability, integrability and multi-
ple orthogonal polynomials, and leads to generalizations of the latter.

The result of Theorem 3 has an interesting similarity with needed corrections found in other
problems: Écalle and Vallet showed that resonant systems are linearizable after appropriate correc-
tion [15]; also Gallavotti showed that there exist appropriate corrections of Hamiltonian systems so

1 See Sections A.1, A.2 of Appendix A for a classification of singularities.
2 The peculiar choice of the limits of summation in (2) is for the convenience of the present paper.
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that the new system is integrable [19], convergence being proved later by Eliasson [16]. This suggests
the possible existence of an underlying general structure.

1.3. Notations used

Denote N = {0,1,2, . . .}.
For u,λ ∈ C

d and m ∈ N
d , denote

um = um1
1 um2

2 · · · umd
d ,

|m| = m1 + m2 + · · · + md,

m · λ = m1λ1 + · · · + mdλd.

Md(C) denotes the d × d matrices with complex entries.
C

N [x] denotes the polynomials in x with coefficients in C
N .

MN [x] denotes the polynomials in x with coefficients in MN (C).
ei denotes the unit vector in C

d with coordinate i equal to 1.

1.4. Prior results

1.4.1. Systems near one singularity
If Eq. (2)–(3) is studied for x in a domain small enough to include only one of the singularities p j ,

and placing this singularity conventionally at x = 0, such a system has the form

du

dx
= 1

x
L(x)u + 1

x
f(x,u), u ∈ C

d, (5)

with L(x) a matrix analytic at 0 and f(x,u) analytic at x = 0, with a zero of order two at u = 0.
If the eigenvalues of L(0) are linearly nonresonant, in the sense of (69), then after an analytic

change of coordinates the matrix L(x) can be assumed constant L(x) ≡ L(0) = L (see Section A.2).
Theorem 1 shows that analytic linearization near one singularity holds for generic systems [6]:

Theorem 1. Consider an equation

du

dx
= 1

x
Lu + 1

x
f(x,u) (6)

where f(x,u) is analytic for |u| < R (R > 0) and for x ∈ D, where D is a disk centered at 0 (or an annulus
centered at 0).

It is assumed that L is a diagonalizable matrix with eigenvalues λ1, . . . , λd satisfying the following Dio-
phantine condition: there exist constants C, ν > 0 so that

|k + m · λ − λi| > C
(|m| + |k|)−ν

(7)

for all i ∈ {1, . . . ,d}, m ∈ Nd, |m| � 2, and for k ∈ N (respectively, k ∈ Z).
Then the system (6) is analytically equivalent to its linear part

dw

dx
= 1

x
Lw (8)

for x ∈ D ′ ⊂ D and |w| < R ′ < R.
Furthermore, D ′ can be made arbitrarily close to D if R ′ is small enough.
Also, the analytic equivalence map is unique if no λi is an integer.
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As a clear consequence of Theorem 1 the study of the local analytic properties of systems (6)
reduces to the study of the linear ones (8).

One application is to the study of integrability. Linear equations (8) have a full number of linearly
independent first integrals which are analytic for small x and w, except for the singular manifolds
x = 0 and/or w = 0, where (generically) these first integrals have accumulation of poles: they are not
meromorphic [6]. Then the same holds for the nonlinear systems (6).

A posteriori, it is clear that one should expect that first integrals, when they exist, are usually not
meromorphic. On the other hand, when looking for first integrals in concrete problems, meromor-
phicity is often assumed. Such assumptions simplify the study, since under (some form of) regularity
assumptions the integrals are guaranteed to have specific types of expansions (e.g. Poincaré series,
Laurent series) allowing for a study by successive approximations.

1.4.2. Systems in regions with two regular singularities
As seen in Section 1.4.1, near one singularity generic systems (2)–(3) are linearizable, and inte-

grable. Let us consider a larger domain of x, so that it includes two singularities. More precisely,
consider (3) for S = 0:

du

dx
=

(
1

x − p0
A0 + 1

x − p1
A1

)
u + 1

(x − p0)(x − p1)
f(x,u). (9)

Of course, the position of the two singularities p0, p1 can be arbitrarily placed in the complex plane
using a linear change of variables.

The situation changes dramatically from the study near one singularity (6): Eqs. (9) are not neces-
sarily linearizable for x in a domain D containing both singularities p0 and p1.

This fact can be understood by applying Theorem 1 near singularity p0, and then, near singular-
ity p1. Then (generically3) there exists a unique linearization map analytic at x = p0, and there exists
a unique linearization map analytic at x = p1. But the two maps do not necessarily coincide, as the
map analytic at x = p j is usually branched at x = p1− j ( j = 0,1).

This fact has important consequences, as it turns out that linearizability and integrability are inti-
mately connected [7]:

Theorem 2. Consider Eq. (9) in dimension 1:

du

dx
=

(
a0

x − 1
+ a1

x + 1

)
u + f (x, u)

x2 − 1
. (10)

If Eq. (10) is not analytically linearizable then no single-valued integrals exist on domains encircling ±1 for
generic4 a0,a1 .

It is then important to determine which equations are linearizable, and which are not, and to find
the equivalence classes with respect to analytic equivalence in this semi-local context.

This problem was studied in [8] for S = 0; the results follow from Theorem 3 proved here.

2. Main results

2.1. Setting

Let S � 0, let p0, p1, . . . , pS+1 be distinct points in C and let A0, A1, . . . , A S+1 be d × d matrices.
Consider the differential system (3) with (2), (4).

3 Existence of an analytic linearization map for x close to p j follows from Theorem 1 if A j is diagonalizable, satisfies the
Diophantine condition (7), and is linearly nonresonant, Section A.3.

4 Precise conditions are given in [7].
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Let D be a simply connected domain in the complex plane containing the singularities p0, . . . ,

pS+1.
It is assumed that f(x, ·) has a zero of order two at u = 0, and is assumed analytic for x ∈ D and

small |u|.
The denominator Q of the nonlinear part 1

Q f of (3) simply shows that this nonlinear part may
have at most poles of order one at p0, . . . , pS+1.

Denote

A∞ =
S+1∑
j=0

A j . (11)

Note that A(x) ∼ A∞x−1 as x → ∞.

Definition. A matrix M ∈ Md(C) is called nonlinearly nonresonant if its eigenvalues λ1, . . . , λd satisfy

k + λ · m − λi 	= 0, for all k ∈ N, m ∈ N
d, |m| � 2, i = 1, . . . ,d. (12)

Assumption. It is assumed that each matrix A0, A1, . . . , A S+1, A∞ is nonlinearly nonresonant.

2.2. Main results

Theorem 3. Consider Eq. (2)–(3) under the notations and assumptions of Section 2.1.
Then there exists a unique correction of the nonlinear part as a formal series

φ(x,u) =
∑

m∈Nd, |m|�2

φm(x)um (13)

where φm(x) are polynomials in x of degree at most S, such that the corrected system

du

dx
= A(x)u + 1

Q (x)

[
f(x,u) − φ(x,u)

]
, u ∈ C

d, (14)

is formally linearizable through a change of variable as a series

u = w + h(x,w) = w +
∑

|m|�2

hm(x)wm (15)

with hm(x) analytic on D.

Remarks. 1. Eq. (3) is formally linearizable if and only if φ(x,u) ≡ 0. Therefore this unique correction
gathers the obstructions to linearizability.

2. Obviously, if an equation is not formally linearizable, then it is not analytically linearizable
either.

Since Eqs. (3) are not necessarily linearizable, then they are not all equivalent either. Theorem 4
provides the classification of these equations by specifying formal normal forms:

Theorem 4. Consider Eq. (2), (3) under the notations and assumptions of Section 2.1.
Then there exists a unique formal series

ψ(x,u) =
∑

m∈Nd, |m|�2

ψm(x)um (16)
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where ψm(x) are polynomials in x of degree at most S, such that the system (3) is formally equivalent to

dw

dx
= A(x)w + 1

Q (x)
ψ(x,w), w ∈ C

d, (17)

through a change of variable as a series of the form (15) with hm(x) analytic on D.

Comments about convergence. While φm(x), ψm(x) are polynomials, and hm(x) are analytic func-
tions, the series in w (13)–(16) are formal.

Convergence of (13) and of the linearization (15) were proved in [9] for S = 0 under the sup-
plementary assumptions that A0, A1 are simultaneously diagonalizable, and have eigenvalues with
positive real parts.

For convergence to hold in general it is reasonable to expect that the nonresonance condition (12)
should be strengthened to a Diophantine condition. This could be a Siegel-type condition, like (7),
or even a Bruno-type condition; the latter was proved by Yoccoz to be optimal for the problem of
iteration of holomorphic germs in one variable, and under this condition convergence holds in the
linearization problem for vector fields at a resonant point, as proved by Écalle and Vallet [15].

3. Proofs

3.1. The structure of the proofs

The main steps in the proofs of Theorems 3 and 4 are as follows. Using power series expansions
in w it turns out that the terms hm(x) in (15) satisfy recursive systems of differential equations
which are first order, linear nonhomogeneous. Remarkably, their linear part is Fuchsian. The burden
of proof is carried by the study of these Fuchsian nonhomogeneous systems, and the structure of their
solutions turns out to be rich and interesting.

3.2. A fundamental lemma

Consider a Fuchsian equation with a nonhomogeneous term:

y′(x) + B(x)y(x) = 1

Q (x)
g(x), y,g ∈ C

N , B(x) ∈ MN(C), (18)

where

B(x) =
S+1∑
j=0

1

x − p j
B j, Q (x) =

S+1∏
j=0

(x − p j). (19)

Let

B∞ =
S+1∑
j=0

B j . (20)

It is assumed that

k + B j are invertible for all k ∈ N and j = 0,1, . . . , S + 1,∞. (21)
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Lemma 5. Consider Eq. (18)–(19) under the assumption (21).
Let D be a simply connected domain containing the singularities p0, . . . , pS+1 .
Then for any function g(x) analytic on D there exists a unique φ(x) ∈ C

N [x] polynomial of degree at most
S so that the corrected equation

y′(x) + B(x)y(x) = 1

Q (x)

[
g(x) − φ(x)

]
(22)

has a solution y(x) which is analytic on D.

The proof of Lemma 5 is the topic of Section 4. Before providing its details, which involve both
analytic and algebraic arguments, and leads to generalizations of multiple orthogonal polynomials to
matrix-valued ones, let us assume Lemma 5 true for the moment and show its usefulness by providing
the proofs of Theorems 3 and 4.

3.3. Proof of Theorem 3

The change of variables (15) provides a linearization of (14) if and only if h satisfies the nonlinear
partial differential equation

∂xh + dwhAw = Ah + 1

Q (x)

[
f(x,w + h) − φ(x,w + h)

]
. (23)

Searching for solutions of (23) as power series in w, denote by hn the homogeneous part degree n
of h(x,w); in the notation (15) we have

hn(x,w) =
∑

|m|=n

hm(x)wm. (24)

We use similar notations to denote by fn and φn the homogeneous part of degree n of f, respec-
tively φ.

Eq. (23) splits into blocks of systems of ordinary differential equations for {hm}|m|=n , recursive
in n:

∂xhn + dwhn Aw − Ahn = 1

Q (x)
Rn(x,w), n � 2, (25)

where

Rn = fn − φn + R̃n (26)

with R̃n a polynomial in φm , hm , fm with |m| < n, and R̃2 = 0.
Each hn and φn are to be determined from (25)–(26) inductively on n. This can be done as follows.
Note that, remarkably, for each n, (25) is a Fuchsian nonhomogeneous system.
To see this, denote by Pn the space of vector-valued polynomials in w ∈ C

d , homogeneous de-
gree n:

Pn =
{

q; q(w) =
∑

m∈Nd, |m|=n

qmwm, qm ∈ C
d
}
. (27)

Note the canonical basis of the linear space Pn:
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rm,i = wmei, |m| = n, i = 1, . . . ,d, (28)

and its finite dimension dim Pn = N = N(d,n).5

Denote by B(x) the linear operator on Pn taking hn to

B(x)hn = dwhn Aw − Ahn.

We have

B(x) =
S+1∑
j=0

1

x − p j
B j where B jq = dwqA jw − A jq (29)

hence in the canonical base (28) B(x) is given by a Fuchsian matrix: for each n the system (25), (26)
has the form (22) (with g = fn + R̃n and φ = φn).

Note that B∞ = dwqA∞w − A∞q.
Theorem 3 now follows from Lemma 5 once we show that its assumption (21) is satisfied. This is

proved by the following result:

Lemma 6. Let M be a d × d matrix with eigenvalues λ1, . . . , λd (not necessarily distinct).
Let J M be the following linear operator on Pn:

( J M q)(w) = (dwq)Mw − Mq. (30)

Then the eigenvalues of J M are λ · m − λi , i = 1, . . . ,d, |m| = n.

The proof of Lemma 6 is found in Section A.4.
In the notation (29), (30) we have B j = J A j for all j = 0, . . . , S + 1,∞. Therefore, in view of

Lemma 6, (12) implies (21).

3.4. Proof of Theorem 4

The change of variables (15) transforms (14) into (17) if and only if h satisfies the nonlinear partial
differential equation

∂xh + dwh
(

Aw + 1

Q
ψ(x,w)

)
= Ah + 1

Q

[
f(x,w + h) − ψ(x,w)

]
. (31)

Expanding in power series in w we obtain, as in the proof of Theorem 3, that the homogeneous
parts hn (n � 2) of h satisfy systems of equations which can be solved recursively in n:

∂xhn + dwhn Aw − Ahn = 1

Q (x)
Rn(x,w), n � 2, (32)

where

Rn = fn − ψn + R̃n (33)

with R̃n a polynomial in ψm , hm , dwhm , fm with |m| < n, and R̃2 = 0.
Each hn and φn can now be determined from (32) as in the proof of Theorem 3.

5 In fact N = d(n + d − 1)!/n!/(d − 1)!.
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4. Proof of Lemma 5

The proof consists of several parts. Section 4.2 shows that if the correction φ exists, then it is
unique.

Section 4.3 proves Lemma 5 for the case when g(x) is a polynomial. The proof is algebraic, and so-
lutions are found as expansions in terms of multiple orthogonal polynomials and their generalizations
introduced here.

Section 4.4 proves Lemma 5 for the case when the eigenvalues of all matrices B j have positive
real parts. An analytic approach is used.

Section 4.5 shows that the general case can be reduced to Section 4.4, thus completing the proof
of Lemma 5. The algebraic results of Section 4.3 are used to construct this reduction.

4.1. Existence of local analytic solutions

The existence and uniqueness of an analytic at p j solution of (18) follows from the rest of Sec-
tion 4. Due to its own intrinsic interest the statement and a simple proof are included here.

Lemma 7. Under the assumption (21) Eq. (18)–(19) has a unique solution y(x) which is analytic at the singular
point x = p j (for 0 � j � S + 1).

Proof. Substituting a power series y(x) = y0 + (x − p j)y1 + (x − p j)
2y2 + · · · in (18) one obtains a

recursive system for the coefficients y0,y1,y2, . . .:

B jy0 = g0,

(1 + B j)y1 = g1 −
∑

k;k 	= j

1

p j − pk
Bky0,

...

(k + B j)yk = rk(y0, . . . ,yn−1,g),

...

which has a unique solution by the assumption (21).
The series converges since Eq. (18) is linear nonhomogeneous. �

4.2. Uniqueness of corrections

If there are two corrections φ = φ1, and φ = φ2, so that Eq. (22) has the analytic on D solu-
tions y = y1, respectively y = y2, then y = y1 − y2 is an analytic solution of (18) with g = φ2 − φ1 a
polynomial degree at most S . Lemma 9 shows that this implies φ1 = φ2 and y1 = y2.

The following result is needed.

Lemma 8. If g(x) is a polynomial then any solution of (18)–(19) is polynomially bounded for x → ∞.

Proof. Denote by W (x) the integrating factor of (18): an invertible matrix satisfying

d
W (x) = W (x)B(x). (34)
dx
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Note that W (x) is a fundamental matrix for the equation

v′ = vB(x) (35)

and that W is the inverse of a fundamental matrix of the linear equation y′ + B(x)y = 0.

Since for (35) the point at ∞ is Fuchsian the matrix W can be chosen such that W (x) = xB̂∞Φ(x)
where B̂∞ is a constant matrix whose eigenvalues (not counting the multiplicity) are also eigenvalues
of B∞ , with Φ(x) analytic at ∞ and Φ(x) = I + o(1) as x → ∞ (see Section A.2 for details). Therefore

W (x) = xB̂∞(
I + o(1)

)
for x → ∞. (36)

The general solution of (18) is

W (x)−1ξ + W (x)−1

x∫
Q (t)−1W (t)g(t)dt (37)

where the path of integration avoids the singularities p j , the integral starts at an arbitrary, but fixed
point, and ξ is a constant vector.

Denote g(x) = gmxm + · · · + g1x + g0.

For x → ∞ we have W (x) ∼ xB̂∞ , Q (x) ∼ xS+2 and g(x) ∼ gmxm therefore (37) is polynomially
bounded for x → ∞. �
Lemma 9. Consider Eqs. (18)–(19) under the assumption (21).

If g(x) is a polynomial of degree at most S then Eq. (18) has a solution which is analytic at all the singular
points p0, . . . , pS+1 only for g(x) ≡ 0, and in this case the only analytic solution is y(x) ≡ 0.

Proof. Assume that there exists y(x) a solution of (18) which is analytic at all the singular points
p0, . . . , pS+1 of the equation. Since (18) is a linear nonhomogeneous ordinary differential equation
then y(x) can have no other singularities and therefore y(x) is entire. By Lemma 8 then y(x) is a
polynomial.

If y(x) ≡ 0 then (18) implies g(x) ≡ 0.
Assume, to obtain a contradiction, that y(x) 	≡ 0. Denote y(x) = ynxn + · · · + y0 with yn 	= 0 and

g(x) = gmxm + · · · + g1x + g0. Substituting these expansions in (18), for x → ∞ the left-hand side has
the dominant term (n + B∞)ynxn−1 and the right-hand side has the dominant term gmxm−S−2. Since
m � S then m − S − 2 < n − 1 therefore we must have (n + B∞)yn = 0, and by assumption (21) then
yn = 0, which is a contradiction. �
4.3. Algebraic structure: Proof of Lemma 5 for g(x) polynomials using expansions in multiple orthogonal
polynomials and their generalizations

In this section it is assumed that g(x) are polynomials. Lemma 5, stating existence of corrections
and of corresponding analytic solutions (which turn out to be polynomials in this case) is proved
using expansions in multiple orthogonal polynomials and their generalizations, introduced here.

Let B(x) be a Fuchsian matrix (19), with the notation (20). Condition (21) is not used until Sec-
tion 4.3.2.

Let W (x) be a fundamental matrix of (35).
For any n = 0,1,2, . . . denote

n = (S + 1)m + i with m = ⌊
n/(S + 1)

⌋
, and i = 0,1, . . . , S. (38)

A precise notation requires m = mn and i = in , but the subscript will be omitted to avoid a heavy no-
tation. Anyhow, the one-to-one correspondence n → (m, i) implied by (38) is only used in Section 4.3.
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With the notation (38), define

P (W )
n (x) ≡ Pn(x) = W (x)−1 dm

dxm

[
xi Q (x)m W (x)

]
. (39)

Remarks. 1. In dimension one (N = 1) we have B j = b j ∈ C, and W (x) has the form

W (x) =
S+1∏
j=0

(x − p j)
b j . (40)

1a. In particular, for S = 0 only i = 0 can occur in (38), and (39) is the Rodrigues formula defining
the Jacobi polynomials P (b0,b1)

n (x) (up to a multiplicative constant).
1b. For S = 1 formula (39) defines the Jacobi–Angelesco multiple orthogonal polynomials intro-

duced and studied in [24] (see also [23]).
1c. For higher S the Pn(x) defined by (39) are a natural extension of the Jacobi–Angelesco polyno-

mials.
2a. For higher dimensions (N > 1) and S = 0 formula (39) was studied in [10] where it is shown

that Pn(x) are polynomials and that they form a complete system. In addition they satisfy a two step
recurrence relation, and, in the commutative case, other beautiful properties of orthogonal polynomi-
als also hold: they are eigenfunctions for a second order differential operator, and they are orthogonal
with respect to the weight W (x) (when integrals exist).

2b. For S = 0 the polynomials occurring in the proof of Theorem 3 were studied in [11].

For the proofs in the present paper we need to show that formula (39) defines polynomials indeed
(done in Proposition 10), that they form a complete system (Proposition 11), and that (22) is solved
in terms of them, Section 4.3.2.

4.3.1. Pn(x) are polynomials
Note first that Pi(x) = xi for i = 0,1, . . . , S .
The following reformulation of Rodrigues-type formula (39) helps simplify the proofs considerably

(the case S = 0 appears in [10]).
We let d

dx = ∂x .

Proposition 10. Denote by Ak the following linear operators on MN [x]:

Ak = kQ ′(x) + Q (x)B(x) + Q (x)∂x. (41)

Then the functions Pn defined by (39) satisfy

Pn(x) = A1 A2 · · · Amxi (42)

for n � S + 1.
As a consequence, Pn(x) are polynomials in x (matrix-valued).

Proof. Calculating successively the m derivatives in (39) we obtain, using (34) and (41),

d

dx

[
xi Q m W

] = mxi Q m−1 Q ′W + xi Q m W ′ + Q m W ∂xxi

= Q m−1W
[(

mQ ′ + Q W −1W ′)xi + Q ∂xxi] = Q m−1W Amxi (43)

then
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d2

dx2

[
xi Q m W

] = d

dx

[
Q m−1W Amxi] = Q m−2W Am−1 Amxi, (44)

and so on. �
Proposition 11. (i) The polynomial Pn defined by (39) has degree at most n, and the coefficient of xn is

Cn =
m∏

j=1

( j + n + B∞) for n � S + 1. (45)

(ii) If B∞ satisfies

k + B∞ is invertible for all k � S + 2, k ∈ N, (46)

then (45) is an invertible matrix, and therefore the degree of Pn is exactly n.
As a consequence, the set {Pn(x)}n∈N is complete in the sense that any polynomial f(x) ∈ C

N [x] can be
written as an expansion in Pn’s:

f(x) =
deg f∑
n=0

Pn(x)fn, for some fn ∈ C
N , (47)

and the expansion is unique.

Proof. (i) Retain only the dominant coefficients in (41) using the fact that Q (x) ∼ xS+2 and B(x) ∼
x−1 B∞ as x → ∞. We then have

Ak ∼ xS+1[k(S + 2) + B∞ + x∂x
]
.

Therefore

Amxi ∼ [
m(S + 2) + B∞ + i

]
xi+S+1

then

Am−1 Amxi ∼ [
(m − 1)(S + 2) + B∞ + i + S + 1

][
m(S + 2) + B∞ + i

]
xi+2(S+1),

and so on. Using (42) therefore

Pn(x) ∼
m∏

j=1

[
j(S + 2) + B∞ + i + (m − j)(S + 1)

]
xi+m(S+1)

which equals Cnxn , proving (45).
(ii) Condition (46) clearly ensures that (45) is an invertible matrix. Invertibility of the dominant

coefficient of Pn implies, using induction over the degree of f, the existence of the unique expan-
sion (47). �
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4.3.2. Proof of Lemma 5 for g(x) polynomial
Assume (21) satisfied.

Denote ˜̃W = 1
Q W . Note that ˜̃W is a fundamental matrix of solutions for the Fuchsian equation

˜̃v′ = ˜̃v ˜̃B where ˜̃B = B − Q ′/Q . Note that ˜̃B = ∑ 1
x−p j

˜̃B j with ˜̃B j = B j − I , and therefore

˜̃B∞ = B∞ − (S + 2)I. (48)

Consider the polynomials associated to ˜̃W by a formula (39): P (
˜̃W )

n ≡ ˜̃Pn . Note that we have

˜̃Pn+S+1(x) = Q (x)W (x)−1 dm+1

dxm+1

[
xi Q (x)m W (x)

]
. (49)

Using the integrating factor W Eq. (22) can be rewritten as

d

dx

[
W (x)y(x)

] = ˜̃W (x)
[
g(x) − φ(x)

]
. (50)

In view of (39), (49) and (50) we see that if g = ˜̃Pn+S+1 then y = Pn is a solution of (18).

For general polynomial g we only need to expand g in the special polynomials ˜̃Pn , as guaranteed

by Proposition 11 (note that (21), (48) imply that ˜̃B∞ satisfies (46)):

g(x) =
deg g∑
n=0

˜̃Pn(x)gn.

Letting

y(x) =
deg g∑

n=S+1

Pn−S−1(x)gn and φ(x) =
S∑

n=0

˜̃Pn(x)gn

the polynomial y(x) satisfies (22).

Remark. Note that deg y(x) = deg g(x) − S − 1.

4.4. Analytic structure: Proof of Lemma 5 when the eigenvalues of all matrices B j have positive real parts

In Section 4.1 the unique solution of (18) which is analytic at x = p0 was constructed via its Taylor
series. Lemma 12 shows that if the eigenvalues of all matrices B j have positive real parts this solution
can be written in an integral form (52).

Under the assumptions of Section 4.4 we can choose the starting point of the integral in (37) to
be a singularity of the equation, and the general solution of (18) has the form

W (x)−1ξ + y(x) (51)

where

y(x) = W (x)−1

x∫
p0

Q (t)−1W (t)g(t)dt (52)

and ξ ∈ C
N .
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Lemma 12. If the eigenvalues of B0 have positive real parts, then (52) is the unique solution of (18) which is
analytic at x = p0 .

Proof. Let us first convince ourselves that (52) is analytic at x = p0.

There exists a fundamental matrix for (35) of the form W0(x) = (x − p0)
B̂0Φ0(x) where Φ0(x)

is analytic at p0, Φ0(p0) = I , and B̂0 is a constant matrix (see Section A.2 for details). Therefore
W (x) = T0W0(x) for some constant, invertible matrix T0. Note that (52) is the same if we replace
W (x) by W0(x).

Expanding in a convergent series,

Q (t)−1Φ0(t)g(t) =
∞∑

n=−1

(t − p0)
nfn

we see that it is enough to show that (x − p0)
−B̂0

∫ x
p0

(t − p0)
B̂0+n dt is analytic at p0 for all n � −1.

This is clearly true: the usual integration formula for powers applies because the matrix B̂0 + n + 1 is
invertible due to the assumption (21) (and any eigenvalue of B̂0 is also an eigenvalue of B0).

Uniqueness of the analytic at p0 solution of (18) was proved in Section 4.1. Alternatively, a direct
proof is by noting that W (x)−1ξ is analytic at p0 only for the constant vector ξ = 0. Indeed, assuming
otherwise, W (x)−1ξ is a nonzero solution of y′ + B(x)y = 0 which is analytic at x = p0 and this
implies that −B0 has an eigenvalue in N, which contradicts assumption (21). �

Note that in Lemma 12 we can replace p0, B0 by any p j, B j , and these results are now used to
determine the condition for the solution (52) to be analytic at other points p j as well. Rewriting (52)
as

y(x) = W (x)−1

p j∫
p0

Q (t)−1W (t)g(t)dt + W (x)−1

x∫
p j

Q (t)−1W (t)g(t)dt (53)

and using Lemma 12 it follows that y(x) is analytic at the point p j if and only if

p j∫
p0

Q (t)−1W (t)g(t)dt = 0. (54)

Then y(x) is analytic on D if (54) holds for all j = 1,2, . . . , S + 1.
Thus a correction φ(x) needs to be determined so that

p j∫
p0

Q (t)−1W (t)
[
g(t) − φ(t)

]
dt = 0, ∀ j = 1,2, . . . , S + 1. (55)

Denote φ(x) = ∑S
i=0 φi x

i . Conditions (55) become

S∑
i=0

p j∫
p

xi Q (x)−1W (x)dxφ i =
p j∫

p

Q (x)−1W (x)g(x)dx, j = 1, . . . , S + 1.
0 0
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It is enough to show that the system of equations

S∑
i=0

M jiφi = ξ j, j = 1,2, . . . , S + 1, (56)

where

M ji =
p j∫

p0

xi Q (x)−1W (x)dx and ξ j ∈ C
N

has a unique solution φ0, . . . ,φS .
The linear system (56) has N(S + 1) equations and N(S + 1) unknowns, and by Lemma 9 the only

solution of the homogeneous system is the zero solution. Therefore the system (56) has a unique
solution, completing the proof of Lemma 5 under the assumptions of Section 4.4.

4.5. Proof of Lemma 5 in the general case: Analytic and algebraic methods complementing each other

Lemma 13 shows that there is an affine transformation of the dependent variable mapping (18)
into a similar system which has the eigenvalues of the matrices B j increased by one:

Lemma 13. Consider a nonhomogeneous Fuchsian equation (18). There exists a polynomial y0(x) of degree at
most S + 1 so that the substitution

y = y0(x) + Q (x)ỹ (57)

takes (18) into the system

ỹ′(x) + B̃(x)ỹ(x) = 1

Q (x)
g̃(x) (58)

with

B̃(x) = B(x) + Q ′(x)

Q (x)
I, therefore B̃ j = B j + I (59)

and g̃(x) analytic on D.

Proof. Decompose g as

g(x) = gP (x) + Q (x) ˜̃g(x) (60)

where gP is a polynomial degree at most S + 1 and ˜̃g is analytic on D .
Substituting (57) in (18) we obtain (58) with

g̃(x) = ˜̃g(x) − y′
0(x) + 1

gP (x) − B(x)y0(x).

Q (x)
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The polynomial y0(x) is now determined so that the difference 1
Q (x) gP (x)− B(x)y0(x) has no poles,

therefore it is a polynomial in x, degree at most S . Indeed, if g j are the residues of gP /Q at x = p j :

gp(x) = Q (x)

(
S+1∑
j=0

1

x − p j
g j

)
(61)

then take

y0(x) = Q (x)

(
S+1∑
j=0

1

x − p j

1

Q ′(p j)
B−1

j g j

)
(62)

giving (57) and completing the proof of Lemma 13. �
Remark 1. Note that y0 depends linearly on gP , and it does not depend on ˜̃g.

By repeated use of Lemma 13 we can link solutions of systems (18) with matrices B j with non-
positive real parts to solutions of systems with positive real parts. For such systems the existence of
corrections was proved in Section 4.4. What is still needed is to show that these corrections can be
carried back to the initial system. The following lemma shows that this is indeed possible.

Lemma 14. Consider Eq. (18) and its transformation (58) provided by Lemma 13.
Let φ̃ be a polynomial of degree at most S and consider the following modification of (58):

ỹ′(x) + B̃(x)ỹ(x) = 1

Q (x)

[
g̃(x) − φ̃(x)

]
. (63)

Then for any φ̃ there exists φ a polynomial of degree at most S, so that Eq. (22) transforms to (63) using an
affine substitution

y = yφ(x) + Q (x)ỹ (64)

with yφ(x) a polynomial of degree at most S + 1.

Proof. It is easy to see (by Remark 1, or by direct calculation) that the substitution (64) transforms
(22) to (63) if yφ = y0 − y1 with y0(x) as in the proof of Lemma 13 (see (60)–(62)), and y1(x) a
polynomial solution, degree at most S + 1, of

y′
1 + B(x)y1 = 1

Q
[Q φ̃ − φ]. (65)

The existence of φ and of the polynomial solution of (65) were proved in Section 4.3. �
Reduction of the general case to the case of Section 4.4. Let −n (with n ∈ N) be a lower bound for the

real parts of the eigenvalues of all the matrices B0, . . . , B S+1.
If n = 0 this means that Section 4.4 applies to the system.
If n = 1 then using Lemma 13 we obtain a system to which Section 4.4 applies, a correction φ̃ is

found, and using Lemma 14 a correction φ is obtained for the original system.
If n � 2 then one uses Lemma 13 repeatedly, n times, then Section 4.4 applies, a correction is

found, and using Lemma 14 repeatedly, n times, a correction is found for the original system.
The proof of Lemma 5 is now complete.
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Appendix A

Sections A.1–A.2 summarize a few known facts regarding solutions of linear, first order differential
equations, near an isolated singularity of the equation. For proofs see [3], followed here except for
notation.

A.1. Singularities of linear differential equation

Consider a linear system

dy

dx
= M(x)y, y ∈ C

d. (66)

If the matrix M(x) is analytic at x0 then this point is called a regular point of Eq. (66). It is well
known that any first order systems (linear or nonlinear) are analytically equivalent to each other near
a regular point.

If the matrix M(x) is not analytic at x0 then x0 is called a singular point of the equation.
If the singular point x0 of M(x) is isolated6 then every fundamental matrix Y (x) of (66) has the

form

Y (x) = Φ(x)(x − x0)
P (67)

where Φ(x) has an isolated singularity at x0 and P is a constant matrix.
Classification based on the regularity of solutions. If Φ(x) has at most a pole singularity at x0, then

the point x0 is called a regular singularity. Otherwise it is called an irregular singularity.
Note that if x0 is a regular singularity then, from (67), the fundamental matrix Y (x) has a con-

vergent expansion as a sum of series in integer powers of x − x0 possibly multiplied by noninteger
powers of x − x0 and integer powers of ln(x − x0).

Classification based on the regularity of the equation. Assume the isolated singularity x0 of M(x) is a
pole: M(x) = (x − x0)

−r−1L(x) with L(x) is analytic at x = x0 and r � 0. The number r is called the
rank of the singularity.

If r = 0 the point x0 is called a singular point of the first kind, or a Fuchsian point. It turns out
that a Fuchsian point is necessarily a regular singularity.

More details about the structure of solutions at a Fuchsian point are discussed in the following
Section A.2.

A.2. Systems near a Fuchsian point

Consider a linear system

dy

dx
= 1

x − x0
L(x)y, y ∈ C

d, (68)

with L(x) a matrix analytic at x0.
The structure of the matrix P in (67) is particularly simple if the eigenvalues of L(x0) are linearly

nonresonant, in the sense that

any two different eigenvalues do not differ by an integer. (69)

6 By an isolated singularity it is meant here that M(x) is analytic in a punctured disk 0 < |x − x0| < δ. In particular M(x) is
single-valued at x0.
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In this case we can take P = L(x0) and choose a fundamental matrix in the form

Y (x) = Φ(x)(x − x0)
L(x0) with Φ(x0) = I (70)

and Φ(x) analytic at x0.
In linearly resonant cases (when there are distinct eigenvalues of L(x0) which differ by an integer)

the matrix P may differ from L(x0). However, the eigenvalues of P (not counting their multiplicity)
form a subset of the eigenvalues of L(x0).7

Another representation of the general solution in resonant cases is again (70), only that this time
Φ(x) is a convergent power series in both x − x0 and ln(x − x0).

Note that in (35) there is a different order of multiplication in the differential equation, and the
Fuchsian point in (36) is x0 = ∞.

A.3. Nonlinear perturbation of first order systems with a nonresonant Fuchsian point

Consider a nonlinear equation

du

dx
= 1

x − x0
L(x)u + 1

x − x0
f(x,u), u ∈ C

d, (71)

with f(x,u) analytic at x = x0, with a zero of order two at u = 0 and L(x0) linearly nonresonant.
Let Φ(x) be as in (70). The substitution u = Φ(x)ũ in (71) yields

dũ

dx
= 1

x − x0
L(x0)ũ + 1

x − x0
Φ(x)−1f

(
x,Φ(x)ũ

)
(72)

which is an equation with the same regularity as (71) for small x − x0 and u and with a constant
matrix in the linear part.

A.4. Proof of Lemma 6

This result appears in [1, Chapter 5, §22], where it is proved for M diagonal, and it is stated for M
in Jordan normal form. A proof is included here for completeness.

I. Note that (after a change of coordinates in C
d) we can assume that M is in normal form.

Indeed, upon a change of coordinates in C
d , taking w to Sw, a C

d-valued polynomial q(w), q ∈ Pn ,
becomes S−1q(Sw). Denote by S# this induced change of coordinates on Pn: the operator J M be-
comes, in the new coordinates, S−1

# J M S#, which equals J S−1 M S (as seen after a short calculation).
II. Note that if M invariates the span of {ek; s � k � t} (for some 1 � s � t � d) then J M invariates

the span of {rm,k; s � k � t, |m| = n}—see (28) for notation.
This follows because (dwrm,k)Mw is a (polynomial) multiple of ek:

(dwrm,k)Mw = φm(w)ek. (73)

III. Assume M is in normal Jordan form. This means that there is a partition 1 = t0 < t1 < · · · <

tp = d so that

Me j = λ je j + σ je j−1 (74)

with λ j equal for all j with ti � j < ti+1, and with σti = 0, and all other σ j = 1.

7 Any resonant string of eigenvalues of L(x0) is replaced in P by the lowest eigenvalue in the string with higher multiplicity,
see in [3] the Lemma of Chapter 4, Section 4.
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Using (74) in (73) we obtain the formula for the polynomial φ:

φm(w) = (λ · m)wm +
d−1∑
j=1

σ j+1m jw
m−e j+e j+1 . (75)

IV. The remarks above imply that the matrix of J M in the canonical base (28) is block diagonal.
Moreover, with an appropriate ordering of this base the matrix of J M is upper diagonal.

This ordering is as follows: we have (m′,k′) � (m,k) if k′ < k, or k′ = k and m′ � m in lexico-
graphic order.

As an example, take d = 3. For k = 1, we have in increasing order8: (0,0,n), (0,1,n − 1),

(0,2,n − 2), . . . , (0,n,0), (1,0,n − 1), (1,1,n − 2), . . . , (n,0,0), after which comes the same sequence
with k = 2, etc.

The fact that the matrix of J M is upper diagonal is expressed by the fact that J M rm,k is a linear
combination of rm′,k′ with (m′,k′) � (m,k).

To show this, consider the first block for M: k from 1 to t1.
For k = 1 the first vector of the canonical basis is r(0,...,0,n),1. From (75) we have φ(0,...,0,n)(w) =

(λ · m)wm and from (74) it follows that Mr(0,...,0,n),1 = λ1wme1 hence r(0,...,0,n),1 is an eigenvector
of J M corresponding to the eigenvalue λ · m − λ1. For other values of m it follows from (73)–(75)
that J M rm,1 is a linear combination of the vectors rm,1 (with coefficient λ · m − λ1) and rm−e j+e j+1,1,
j = 1, . . . ,d − 1. We obviously have (m − e j + e j+1,1) � (m,1). (Note that the index m − e j + e j+1 is
not defined if m j = 0, or if m j+1 = n. Since in both cases m j = 0 these indexes do not appear in (75).)

For k = 2, . . . , t1 the discussion is similar, only, due to (74) also earlier terms, with k = 1, appear.
For the other blocks of M the proof is similar.
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