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Abstract 

Given a rotation of the circle, we study the complexity of formal languages that are generated 
by the itineraries of interval covers. These languages are regular iff the rotation is rational. In 
the case of irrational rotations, our study reduces to that of the language complexity of the 
corresponding Sturmian sequences. We show that for a large class of irrationals, including e, 
all quadratic numbers and more generally all Hurwitz numbers, the corresponding languages can 
be recognized by a nondeterministic Turing machine in linear time (in other words, belongs 
to NLIN). @ 1998-Elsevier Science B.V. All rights reserved 

1. Introduction 

Suppose we are given a topological dynamical system, which means a continuous 

self-map T of a compact metric space X; let {Co, Cl,. . . C,_,} be a finite cover of X 

by closed sets, indexed by the finite alphabet (0, 1, . . . , p - 1). An itinerary is the 

sequence of sets of such a cover visited by the trajectory of a point under T - or 

rather the sequence of their indices. The set of all infinite itineraries for a given cover 

is a one-sided subshift, and the set of all finite itineraries is the associated language. 

Itineraries thus establish a link between dynamics and languages. 

To obtain a reasonable theory, one must restrict oneself to the simplest possible 

closed covers; otherwise the complexity of the obtained languages would be a property 

of the covers rather than of the dynamics. When X is a symbolic space of the form A” 

endowed with the product of discrete topologies on each coordinate, clopen partitions, 

i.e., partitions into closed-open or clopen sets, seem appropriate [ 10,111. When the 

space is the unit interval or the unit circle, the suitable covers consist of closed intervals 

* Corresponding author. Tel.: 33 91 82 70 08; fax: 33 91 82 70 15; e-mail: blanchar@lmd.univ-mrs.fr. 

0304-3975/98/$19.00 @ 1998-Elsevier Science B.V. All rights reserved 

PII s0304-3975(97)00105-9 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82051289?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


180 F: Blanchad, P. KGrka I Theoretical Computer Science 209 (1998) 179-193 

overlapping at most in their endpoints, as in the case of irrational rotations of the circle 

and the associated Sturmian sequences [2], or unimodal maps of the unit interval [13]. 

Given a class of languages 2, we say that a dynamical system is of class 9 if there 

exists a separating sequence of open covers, all of them with associated languages 

in S; the rather technical definition of a separating sequence of covers is given in 

Section 2. A complexity class of languages is usually defined as the set of languages 

accepted by some type of abstract machine. Here we consider only nondeterministic 

machines: one could of course use deterministic ones, but then the computation times 

would be much greater; in the best case the results would be less striking, and in the 

worst one we should not be able to prove anything. The basic classes are REG (regular 

languages), CF (context-free languages), NLIN (languages recognized by a nondeter- 

ministic multitape Turing machine in linear time), and REC (recursive languages). 

A stronger way for a dynamical system to be related to a language class is the 

following: suppose that for (X, 7’) there exists a finite closed cover (C,), i E A such 

that for any infinite sequence (in) of symbols of A, f-J,“=, T-“Cin contains at most one 

element, so that there is a map from the set of infinite itineraries to X. In this case 

the set of itineraries is called a symbolic representation or extension of (X, T), and if 

it is of class L! we say that (X, T) admits a symbolic extension of class 2. 

An elementary example is that of expansions to the base 2: let X be the unit circle, 

T be the multiplication by 2 mod 1; then obviously the closed cover { [0, i], [i, 0]} has 

the right property, and the set (0, 1)’ of binary expansions of numbers on the circle, 

endowed with the shift, forms a symbolic representation of (X, T). 
Dynamists are usually trying to construct nice symbolic extensions of dynamical 

systems [ 1,2, 131, but there are situations where they are not appropriate tools. 

In this article we consider rotations of the circle by a, and we study the computational 

complexity of languages generated by their itineraries from the point of view of Turing 

machines, according to arithmetical properties of u. 

The first result is a rather natural one: a rotation of the circle is of class REG if 

and only if it is rational (Proposition 2). This does not mean it has a regular symbolic 

representation: actually what looks to us the simplest symbolic representation of the 

circle endowed with the identity map, the Grand Sturmian subshift, that is the set of 

all Sturmian sequences, is of class NLIN but not of class REG (Proposition 8)! 

For the irrational rotation by the angle CI the interval cover ([0, 1 - a], [l - a, 01) that 

generates the associated Sturmian sequence is canonical in some sense (Proposition 4). 

The language complexity of an irrational rotation can therefore be defined as that of 

the corresponding Sturmian subshift. 

Language classes of rotations present a gap: no irrational Sturmian subshift is of 

class CF (Proposition 3). A large family of irrational Sturmian subshifts is of class 

NLIN: this includes all those defined by Hurwitz numbers, which are irrationals whose 

continued fraction expansions are polynomial sequences (Proposition 6). The Hurwitz 

numbers in turn include all quadratics and the number e. All transcendental numbers 

of the form C,“==, qe2’, with q 32 an integer, also generate Sturmian subshifts of 

class NLIN. There are also recursive Sturmian subshifts that are not of class NLIN, 
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and Sturmian subshifts that are not of class REC. Everything we know about the 

complexity of Sturmian subshifts associated with irrationals is based on the properties 

of their continued fraction expansions. 

It is interesting to compare this set of results with some of the properties of /&shifts 

given in [3]. The b-shift is of class REG when fl belongs to a class of algebraic 

integers containing the Pisot numbers; on the other hand, whenever fi is rational but 

not an integer the /‘&shift is not of class REG. 

We are deeply grateful to Arnoux for some fruitful discussions, to Weiss for pointing 

out Shallit’s article [17], and to the referee for a multitude of useful suggestions. 

2. Dynamical systems, subshifts and languages 

We start with basic concepts from topological dynamics as introduced, e.g., in [6]. 

We denote by i? the closure of a subset E of a topological space; a set that is both 

closed and open is called clopen for short. 

A dynamical system (X, j’) is a nonempty compact metric space X endowed with 

a continuous self-map f :X +X. The nth iteration 1”‘” :X 4X of S is defined induc- 

tively by f’(x) =x, f”+‘(x) = f(f”(x)). A point x E X is periodic, if f”(x) =x for 

some II > 0. The smallest n with this property is called the period of x. A point x E X 

is ultimutely periodic if it is not periodic but f"(x) is periodic for some m > 0. A set 

Y CX is invuriunt if J‘(Y) C: Y. If Y is also closed it is a compact metric space, and 

the dynamical system (Y, f) is called a subsystem of (X, f). (We use the same symbol 

f for the restriction of .f to Y.) The orbit o(x) = {f”(x); n 3 0) of a point x E X is an 

invariant set, and its closure (o(x),f) is a subsystem of (X,f). A dynamical system is 

called minimal if it contains no proper subsystems. If (X,f) and (Y,g) are dynamical 

systems, a homomorphism H : (X, f) + (Y, g) is a continuous map H :X ---f Y such that 

Hf = gH. A bijective homomorphism is called a conjuyucy and a surjective homo- 

morphism is called a factor map. If H : (X, f) + (Y, y) is a factor map, then we say 

that (Y, g) is a factor of (X, f), or that (X, f) is an extension of (Y, g). 

Our main examples of dynamical systems are the rotations of the circle. Parametrize 

the circle by the semiopen interval r, = [0, 1). The distance between two points is the 

length of the shorter arc between them: 

d(x,y)=min{lx - y/, jl fx - J$ 11 + y -xl}. 

Given a real number c1 E ri, the rotation of the circle by g is the map defined on ?“I 

by fi(x) =x + E mod 1 (here z = ymod 1 if z E T, and z - y is an integer). Rotations 

are continuous (in fact, d( f%(x), fa( y)) = d(x, y)), so (ri, fi ) is a dynamical system 

for every CI. If c1= p/q is a rational number with p, q coprime and q > 0, then every 

point x E ri is periodic with period q. If c1 is irrational, then (7’i,fa) has no periodic 

points and it is minimal. Observe that for every pair of real numbers c(, /?, the map 

ffl:(T~,fa)+(T~,f,) is a conjugacy. 
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Other dynamical systems we are concerned with are symbolic systems or sub- 

shifts. They are closely related to languages, and before defining them we must in- 

troduce some language-theoretic definitions and notations. If A is a finite alphabet, 

n E N = {0,1,2,. . .}, denote by A” the set of words over A of length n, A* = IJnEN A” - 
the set of finite words over A, AN the set of simply infinite words, and A* = A* U A”. - 
For u E A*, denote by 1~1 its length (0 < 1~1 <oo), and Iu/, the number of occurrences - 
of a letter a E A in U. Call J. the empty word. The (i + 1)st letter of a word u E A* is - 
denoted by ui, SO U=UOU~ .. .; when i> IuI put ui=II. For SEA*, VEA* write ugu 

if u is a subword of u, i.e., if there exists j>O such that ui = uj+i for all i < 1~1; this is 

what is usually called a factor in language theory, but we are already using this term 

for homomorphic sujective images of dynamical systems. Denote by Uli = us . . . Ui-1 

the initial subword (or prejx) of u of length i. The concatenation of the words u 

and v is written uv; denote the nth concatenation power of u by u”, and the periodic 

sequence generated by its infinite repetition by uoo E A”. We frequently use the binary 

alphabet 2 = (0, 1). 

Define a metric d on the power space AN by 

d(u, U) = 2~” where n = min{i E N; ui # vi} 

(this metric can be extended by the same formula to A*, which becomes then the 

closure of A*; this explains the notation). The space A” is compact and homeomorphic 

to the Cantor middle third set. For u E A* denote by 

[u]={vEA”; (Vi<IuI)(ui=vi)} 

the cylinder of u. It is a clopen set. The space AN is zero-dimensional: this means that if 

U 2 AN is an open set and u E U, then there exists n E N such that [ul,] C_ U. In general, 

a compact metric space is zero-dimensional iff it is homeomorphic to a subspace of AN, 

A zero-dimensional dynamical system is one that is defined on a zero-dimensional 

space. 

The shift map o : AN + AN is defined by o(u)i = U, ‘+ 1; thus O(UOU~UZ.. .) = ~1~2~3. - . . 

Then d(a(u),a(v))62d(u,u), so o is continuous, and (A”,a) is a dynamical system; 

it is called a fill shif. 
A subsystem of a full shift is called a subshij’t. For instance, the set X = {x E (0, 1)‘; 

~iEN,x~x;+i#ll}C{O,1} N is a subshift, because it is closed and shift-invariant. Here 

X is defined by a condition on words: x belongs to X if and only if the word 11 never 

occurs as a block of two consecutive coordinates. Actually this is a general feature of 

subshifts. Given a subshift S CAN, define its associated language as 

P’(S) = {u E A*; (Iv E S)(u C v)}. 

The language 9(S) is right central, i.e., closed under subwords (if u E 9(S) and v 5 u 

then u E Z(S)) and extendable to the right (if u E Y(S), then there exists a E A such 

that the concatenation ua is in Z(S)). The converse is true: any right central language 

is the associated language of a unique subshifi (cf. [4]). Subshifts are examples of 

zero-dimensional dynamical systems. 
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Finite closed covers are a major tool in this article, because they allow one to 

construct zero-dimensional extensions of dynamical systems. If X is a compact metric 

space, a jinite closed cover of X is a family Vfl = {IL; a E A} of closed subsets of X 

indexed on the finite alphabet A, such that the union of all V, is the full space X; these 

subsets are not necessarily disjoint. The diameter of y’ is diam(V) =max{diam( V,); 

a EA}; the diameter of a set Y GX is diam(Y) = sup{d(y,z); y,z E Y}. A cover V is 

said to be finer than a cover $V if any element of V is contained in some element 

of ^II’. We say that a sequence of finite closed covers (Vi), i E N is separating if Vy+i 

is finer than $7 and limi,, diam(K) = 0. 

A clopen partition of a zero-dimensional space is a finite closed cover consist- 

ing of disjoint clopen sets. The product space AN has a natural clopen partition 

$5 = {[a]; a E A}; one often considers the separating sequence of clopen partitions 

f;={[U]; UEA”}. 

An interval cover of the circle is a finite cover consisting of at least two closed 

nondegenerate intervals intersecting at most in their endpoints. Among closed intervals 

we also include [a, b] = [a, 1) U [0, b] when 0 <b < a < 1. One can write an interval 

coveras V={V,;aEA}, whereA={O,l,. ..,n-1}, n32, Vu=[c,,ca+l] fora<n-I, 

and Vn_i=[cn_i,cs] for some sequence Odcs<ci <...<c,_l ~1. 

Let (X, f) be a dynamical system and V = { V,; a E ‘4) be a finite closed cover of X. - 
For u E A* put 

v, = {.x E x; (Vi < 1~1 )(f’(~) E v,< )} = n f-‘( v,I ). 
i< JuI 

Clearly, every V, is a closed set. The inclusion x E V, means that u is an itinerary of x 

obtained from the sequence of iterates f’(x) by noting for each i a set of the cover to 

which y(x) belongs. In general, a given point has several itineraries because the sets 

of the cover overlap. When V is a clopen partition every point has a unique itinerary. 

Put 

c%W,f)={u~A*;V,#0}, S,-(AJ-)={UEA~; K#0}. 

Then &(X,f) is a subshift and _!&(X,f) is its language. We say that a finite closed 

cover Y = { I$; a E A} is a generator for (X, f) if for all u E AN, V, contains at most 

one point. Then the map H : (&-(X, f), a) --f (X,f) defined by H(u) E Y, is a factor 

map, and (&-(X, f), 0) is called a symbolic extension of (X, f). In the introduction we 

introduced the example of binary expansions. Another, more complex classical instance 

is any irrational rotation of the circle, for which any interval cover is a generator; in 

this case the set of itineraries is a proper subshift. 

In particular, when S is a subshift the canonical clopen partition % = {[a]; a E A} is 

a generator and _I&-(S, a) = 2(S) is just the language of words occurring in elements 

of s. 

Here is an example taken from [lo]. A (one-sided) cellular automaton is a dynamical 

system (AN, f) defined by (f(u))i = fo(ui,. . .y Ui+r), where r E N and fo : A’+’ -+ A is 

a given local rule. Then .&(X,f) consists of all words f’(x), p+‘(x),. . . ,f’+k(~) 
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(x EX) that occur as sequences of consecutive values of the coordinate 0 under the 

action of f. For example when A = 2 and f is given by f(~)~ = ui . ui+l (multiplica- 

tion), then 9%(X, f) = { l”Om; n, m > 0). If f is given by f(u)i = ui + ui+l mod 2, then 

Z<(X,f) = 2* is the full shift. 

3. Language classes 

A language over an alphabet A is any subset L CA*. We distinguish several classes 

of languages defined by different kinds of computational devices (see [8, 18 or 151). 

A language is regular (REG) if it can be recognized by a (deterministic or non- 

deterministic) finite automaton. A very close equivalent definition, slightly handier in 

symbolic dynamics, uses finite graphs. A finite labeled graph over an alphabet A is 

a quintuple G = (V,E,s, t, I), where V is a finite set of vertices, E is a finite set of 

edges, s, t : E + V are the source and target maps and 1: E + A is the labeling func- - 
tion (cf. [12, p. 641). A finite or infinite path in G is any sequence e E E* such that - - 
s(ei)=t(e;_i) for any 0 <i < (el. The label of a path eE E* is l(eo)Z(ei).. . EA*. A 

right central language L is regular iff it is the set of finite path labels for some finite 

labeled graph G; then we say that G recognizes L. 

For dynamical purposes, two subclasses of the class of regular languages seem to 

be useful. We say that a (right central) regular language L is periodic (PER) if the 

corresponding subshift is countable. L is bounded periodic (BPER) (if there is a graph 

G recognizing L) if the corresponding subshift is finite (consists of a finite collection 

of periodic points). The corresponding purely language-theoretic definitions are not 

very complicated; finding them is a good exercise for the interested reader. A typical 

periodic right central language that is not bounded periodic is L = {a*b*}. 

A language is context-free (CF) if it can be recognized by a nondeterministic push- 

down automaton. Higher complexity classes are defined as sets of languages accepted 

by nondeterministic Turing machines with possible constraints on the time or space. 

A nondeterministic Turing machine with IZ tapes is given by an input alphabet Ao, 

work alphabets Al , . . . , A,, a finite set of states Q, an initial state qo E Q, a set of final 

states Qi 2 Q, a set of accepting states Qs C Qi, and a transition function 

6: Q x (Ao u {A}) x . . . x (A, u {A}) 

-9’(Q x A, x ... x A,, x {O,l} x {-l,O,l}“); 

here 9(X) = {Y; Y CX} is the power set of X. 

In this definition, final states do not play the same role as in the classical definition 

of regular languages by way of automata: here they just mean that if the input tape is 

empty the computation is finished. Let us explain this in more details. A configuration 

of a Turing machine is a (2n + 2)-tuple (q, u(O), U(I), o(l), . . . ,u@), u@)) where q E Q, 

u(O) E A,*, and ~(~1, U(~) E A:. This means that the (zeroth) input tape contains the word 

u(O) with the head pointing to its first letter Us’ and the ith work tape contains the 
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concatenation u(%(‘) with the head pointing to the first letter of ~(~1. A configuration is 

initial if its state is qo and all work tapes are empty; it is final if its state belongs to Q, ; 

it is accepting if its state is in Qs and its input tape is empty (u(O) = A). A computation 

is a sequence of configurations starting at an initial configuration and that is compatible 

with the transition function 6. This means that the state q of the configuration and all 

the letters read on the tapes by the heads determine via 6 one of the elements in the 

power set and the configuration is updated accordingly. The state is changed, the fields 

under heads on the work tapes are rewritten, the input head rests (0) or moves to the 

right (1) and the ith head moves to the left( - I ), rests (1) or moves to the right (1). 

A computation is either infinite when it contains no final configuration, or finite 

when its last (and only its last) configuration is final. A word U(O) EAT is accepted 

(rejected) by the Turing machine if there exists a finite computation starting in the 

initial configuration with U(O) on the input tape, whose last configuration is accepting 

(not accepting). 

A language is said to be recursive (REC) if it is the set of words accepted by some 

Turing machine that makes a finite computation on every input word. A language L 

is nondeterministic linear time (NLIN) if it is recursive for a Turing machine with 

the following property: there is a constant c3 1 such that for every u EL there exists 

an accepting computation with length at most c]ul starting at an initial configuration 

with u on the input tape. Book and Greibach [5] proved that every nondeterminis- 

tic linear time language is nondeterministic real time, which means linear time with 

constant c = 1. More generally, to any proper complexity function f(n) one associates 

the class NTIME(f(n)) of languages accepted by nondeterministic multitape Turing 

machines in time _f(lui) [15]. One has the following inclusions for right central lan- 

guages: 

BPER c PER c REG c CF c NLIN c REC. 

Definition 1. A family L! of languages is closed under factors if for any factor map 

H : (Sl, a) + (Sz, a) between subshifts, if -44(S, ) belongs to 2, then 2Z’(&) belongs 

to 2. A family of languages f? is closed under concatenations if for every language 

L GA* of class 2, and every n > 0, the language 

is in 2. 

All classes of languages considered above are closed both under factors and concate- 

nations; in the sequel, any abstract class of languages considered is supposed to have 

these properties. 

Definition 2. Let 2 be a class of languages. Define a zero-dimensional system (X,f) 

to be of class 2 if there exists a separating sequence of clopen partitions “y; of X such 

that for every i, YS,{X,.f) is in 2. A dynamical system (T,,S) is of class 2 if there 
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exists a separating sequence of interval covers fi of X such that for every i, 3%(X, f) 
is in L?. 

Proposition 1. Every dynamical system (TI, f) of class !i? is a factor of a zero- 
dimensional system of class 2. 

Proof. This works for a general dynamical system (X,f) possessing a separating se- 
quence of closed covers 7$ = { &; a E Ai}. Since -kr ,+I is finer than y;, there exists a map 

hi : Ai+l -+ Ai with V, 5 V$,(a) for every a E Ai+t. We have factor maps II? : (Yi+l, cr) --f 
(Yi,O), where K=sdX,f), and h”(u)i=h(ui). Let Y={y~n~ yi; h”(yi+t)= yi} be 
their inverse limit, define g : Y -+ Y by g(y)i = (T( yi), and H : Y -+X by H(y) = ni V,,. 
(Here yi E E is the ith component of y E Y and yio E Ai is the zeroth component of yi.) 
Then (Y, g) is a zero-dimensional system of class f!, and II : (Y, g} + (X, f) is a factor 
map. Cl 

4. Sturmian sequences and subshifts 

Sturmian sequences were in~odu~ed by Morse and Hedlund [14]. Here are some facts 
about them that are relevant to our purpose. A sequence u E 2” is called Sturmian if 
in any two subwords v, w of u of the same length the numbers of occurrences of 0 
differ at most by one: j]u]s - lulk,] 6 1. Sturmian sequences can be described with the 
help of continued fractions. Let N+ = {I, 2,. . .} be the set of positive integers, denote 
by Nrf: the set of finite sequences, NT the set of in~nite sequences and q = NT U NT 

the set of finite or infinite sequences of positive integers. For a= (ai)OGjen E@ let 
(a) be the real number with continued fraction expansion 

(ao, al,...) = 
1 

1 
a0 + 1 

al + ___ 
a2 + . . . 

For the empty sequence AE~ one has (A) =O; also (1) = 1, (1,l) = (2) = $, (lo”) = 
$(fi - 1). It is well known that a E NY is periodic or ultimately periodic iff (a) 

is a zero of a quadratic polynomial with integer coefhcients. With every a f @ we 
associate a sequence of words wn E 2* by 

w-1 = 1, &I = 0, w, =0=0-l 1, w, = FU’ w,, . . .) we+1 = @p we_, . 

For )a( = 00, put 

W(a)= lim W,, 
n+OO 

S, = {ai( W(a)); i 2 0}, 

where D is the shift defined in Section 2, and overlined symbols denote the closures 
of the corresponding sets. For (a\ = n, put 

w(a)=(K)“, &=(ai(W$W,_t(Wn)M); k20, iaoj. 
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Thus, B’(n)=O-, SA={OklOOO; k>O}u{O”}, W(l)=l”, S1={lkOl”; kaO}u 

{l”}, W(2)=(01)m, W(l,l)=(lO)O” and 

W(Ico)=I 0 1 10 101 10110 10110101 1011010110110 .‘. 

If a is finite, then S, consists of periodic and ultimately periodic sequences. If Ial = n, 

a,_~ = 1, and b=(aa,..., un_-3,un_2 + l), then S, and Sh contain the same periodic 

sequences but different preperiodic sequences. With this exception, S, n Sb = 0 for a # b. 

Note also that if i < (u) < 1, then as = 1, and 1 - (u) = (al + ],a~,. . .). It follows that 

H : (x2,0) 4 (qz,+l,a2,...), (r) defined by H(u)i = 1 - ui is a conjugacy. 

A sequence is Sturmian iff it belongs to some S, [2]. Every Sturmian sequence 

u has a well-defined frequency ,u(u) = lim,,, card{i <n; Ui = 1)/n, and for every 
* a E N,, p(S,) = (a). If a is infinite, and so (a) is irrational, then S, is exactly the set 

of Sturmian sequences with frequency tl= (u) and 

W(U)i = 

i 

0 iff@EN)(O<(i+l)(u)-n<l-(u)), 

1 iff (3n E N)(l - (u) <(i + l)(u) - n < 1). 

This just means that for a = (a), W(u) is the itinerary of the point 0 for the rotation 

(T,, fa) and its canonical interval cover Y’, = { [0, 1 - x], [ 1 - a, 01). It follows that 

S$,(TI,fa) = S,. This geometric interpretation of Sturmian sequences is one of the 

main motivations for their study. 

We call the set of all Sturmian sequences S, = IJ {S,; a E NT} the Grand Sturmiun 
subshift. One easily checks that S, c 2’ is a closed o-invariant set. The frequency 

map ~1 is continuous on S,, indeed it is a factor map from (S,,o) to ([0, l],ld). 

5. Rotations of the circle 

A rotation of the circle is a dynamical system (ri, jig) where fi(x) =x + tl mod 1 

(see Section 2). Now we investigate the language complexity of rotations as defined in 

Section 3. Call a rotation rational if c( is rational. The next Proposition shows that for 

rational rotations there exists a separating sequence of interval covers K such that for 

every i, 9% (Tl, _&) is regular, but there exists none such that 99, (T, , fa) is a periodic 

language; this proves the converse of Proposition 1 is not true. 

Proposition 2. Every rational rotation is of class REG but never of cluss PER. 
However, it is u factor of a zero-dimensional system of class BPER. 

Proof. Let c1= p/q, and m be a multiple of q. Put Yr = {[i/m, (i + 1)/m]; 0 d i < m}. 

Then _YY (Si, fa) can be obtained as the language of a labeled graph G = (V, E, s, t, l), 
where V = (0, . . . , m-l}, E=Vx{O,l},s(i,j)=i, t(i,j)=i+lmodm, I(r,s)=s+ 

rpm/q mod m; there must be two edges from each vertex because of the endpoints of 

the intervals (see Fig. 1 for the case p = 1, m = q). Thus, (rl, fm) is of class REG. 
To show that it is not of class PER, consider any finite closed cover %‘” = { I$; a E A}. 
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Fig. I. 

Thereexista#bandxEV,flI$.Let~EA~ besuchthatxEV,.ThenanyvEA” with 

viq E {a, b} and uj = Uj whenever j is not a multiple of q belongs to &(Ti, fN): so 

&(Ti, fa) is not countable. Finally, (Ti, fpiv) is a factor of a zero-dimensional dynam- 

ical system of class BPER: consider (AN,g), where A = (0,. . . ,q - l}, g(x)o =x0 + 

1 modq, and g(x); =x; for i > 0. As H: {u E A”; ug = 0) --+ [0,1/q] is a continuous 

surjective map it can be extended uniquely to a factor map H : (AN, g) + (T,, fE). 0 

A rational rotation (Ti, fpi4) is obviously a factor of the subshift S, x {a’(?%); 

o<i <q}. 
Let us now deal with the much more interesting irrational case. First, here is a kind 

of “lower bound” for the complexity of irrational rotations. 

Proposition 3. No irrational rotation of the circle is of class CF. 

Proof. We show that every subshift of class CF has a periodic point. Let S&AN 

be a CF subshift. Since its language 9’(S) is infinite, by the Pumping Lemma ([8, 

p. 1251) there exists w = uvxyz E 9(S), such that Iv1 + lyl> 1, and uv”xy”z E Z(S) 

for every n E N. If Iui 3 1, then vo3 ES is a periodic point. If lyl> 1, then yoo ES 

is a periodic point. Suppose that (Ti, fn) is an irrational rotation and %‘” an interval 

cover such that Yv(Ti, fx) is CF. Since every interval cover is a generator, (Ti, fi) is 

a factor of Sy(T,, fa), so it contains a periodic point, which is a contradiction. 0 

Proposition 4. Let 0 < CI < 1 be irrational, and let Y be any interval cover. Then 

S-v,(Tl,fa) is afactor of S4Tl,fE). 

Proof. Since fp:(Tl,f,)-+(T,,f,) IS a conjugacy for any /I, we can suppose that 

V has 0 among its endpoints. Then the closed partition {V, fl fxp’( F$,); a, b E A} is 

finer than $$. Define a factor map H : (ST-(Tl, fU), o) t (S%(T,, fa), a) by H(u)i = 0 

if V,,nf,-‘(I$,,)c[O,l -c1], andH(u if V,,nf,-‘(&+,)c[l -cc,O]. 0 

Theorem 1. Let 2 be a class of languages closed under factors and concatenations. 
Then (T,, fx) is of class 2 tff &;( Tl, fE) is of class 2 

Proof. If (T,, fa) is of class 2, then Sc(Tl, fx) is of class L! by Proposition 4. Con- 

versely, suppose that SY;( TI, fn) is of class 2. For n > 0 put A,, = _Yy-(Tl, fE) n 2”. 

Then Vn = {V,; u E A,} is an interval cover, and _Yc(Tl, fa) = _%‘$,(T~, f*) belongs 
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to I??, since S is closed under concatenations. Since VR is a generator for (T,, fm), 

lim,,, diam(Vn) = 0, so $$, is a separating sequence of interval covers. q 

The notations in the following Lemma are those introduced in Section 4. 

Lemma 1. Let a E NY be an injnite sequence of positive integers and let u E 2’, 
juI>ao. Let n>O be the unique integer with IW,l < lul<~Wn+,I, and let l<p<a, be 

the unique integer with plW,l < Iu( <(p + 1)1&l. Then UE _Y(S,) @either 

p = a, and (u 5 %+I &,+I or u C K+I KK+I 1, 

or 

p < a, and ~IZW~~W,_~W,‘.forsomek,l>O, k+l=p+2. 

Proof. Suppose first p = a,,. Then u is a subword of some v E { W,, Wn+l }* such that 

every occurrence of W, in v is immediately preceded by an occurrence of Wn+l or 

some suffix, and also immediately succeeded by an occurrence of Wn+l or some pre- 

fix. Thus, if u E Y(S,), then either u C W,+I W,+l or u C Wn+l W, Wn+l, since 1~1 d / W,+, /. 

On the other hand, Wn+l K+I C K+3K+l C K+4, and %,+I KK+I L K+~W,+I C K+3, 

so both W,+, Wn+l and W,+l WnWn+l belong to Y(S,). Now if p <a,,, u is a sub- 

word of some v E { Wn-, , Wn}* such that every occurrence of Wn-l is immediately 

preceded by W? or some suffix, and immediately followed by W: or some prefix. 

Thus, if u E 3(S,) then either u & W,” W,_l W,’ for some k, 12 1 with k + I< p + 2, or 

UC K-l&I Pi-’ wn_, c wn_, w, pi2 On the other hand, one has Wnan Wn-, Wnan+’ Wn-, C . 

(yVF_,)a,” Fy+9-, = w,+,w,+, rz f45+3, so for every k,l>O with k+l=p+2 

one has Wnk Wn_l W,’ E _fZ(S,). 0 

Thus, to decide whether u belongs to Y(S,), it suffices to verify whether it oc- 

curs in a test word constructed from the sequence (Wi). Observe that in all cases 

the test word has length at most 51~1: indeed if p < a,, then I W: W,_ I W,‘I d (p + 3) 

IKl<4plKl<4)ul; if p= an then ~W,+IW,W,+II~(~P+~)~W,I~~~~W,I~~~U~. 

We now encode a sequence a, E NT into an infinite sequence U(a) = lao01a’01a20.. . 

E 2’. We say that a is of class L! if the language {U(a),;; i >O} belongs to 2. Put 
also u, = laOO.. la-1 

Proposition 5. Let a E N, N be an injnite sequence of positive integers. If a is of class 

NLIN or REC so is S,. 

Proof. Suppose one already knows an algorithm recognizing the language of 

initial segments of U(a). We describe a 6-tape Turing machine recognizing Y(S,) 

in linear additional time. Let u E (0, l}* be an input word placed on the input tape 

0. Let n, p be the integers associated to IuI in Lemma 1. Using the Turing machine 

recognizing U(a), we construct the initial subword of length 2/u/ of U(a) on Tape 1 

(i.e., we choose a word nondeterministically and verify that it is an initial subword of 
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U(a)). This word has U, = 1’OO. . . lan-l as a subword, and if p = a,, it even contains 

the subword U,,+t. Tapes 2, 3 and 4 are used for the construction of the sequence wk. 

Suppose that at the end of the (k - 1)st step Tape 2 contains wk__2 and Tape 3 contains 

wk_t . In the kth step wk is constructed on Tape 4 using the information on Tapes 1, 

2 and 3. Then in the (k + 1)st step one constructs Wkfr on Tape 2, as wk_2 is no 

longer necessary. The process ends when the length of the word constructed attains the 

length of U. At this moment, the integers n and p have been evaluated and it is also 

known whether p = a, or not. All this information is stored on Tape 5. Then using 

Lemma 1, the appropriate test word is generated on Tape 6. If p < a,, this means that 

integers k, and I with k + I= p + 2 are chosen nondeterministically, and Wnk Wn-, W,[ 

is constructed on Tape 6. If ~=a,,, one of the words Wn+l Wn+l, Wn+l W, Wn+l is con- 

structed. Finally, a pointer j to Tape 6 is chosen nondeterministically, and one checks 

whether the test word contains the given word u from position j onward. The most 

time-consuming task in this algorithm is the construction of W,. The construction of 

wk from w&t and wk__2 takes 21 wk 1 operations (including the return to the beginning 

of the tape), so the construction of W, takes 2( I& ) + . . . + 1 W, 1) operations. Since ( wk I 

grows at least as fast as the Fibonacci sequence, we get 2( 1 W, I + . . . + I W, I) < 6) W, I. 

To construct the test word on Tape 6 takes at most (2p + 3)) W,l operations and 

checking whether u is a subword takes (2p + 3)l W,l additional operations too. The 

algorithm requires at most (4p + 12)l W,l < 161 1 u computational operations. Now if a 

is recognized in linear time the combination of the two algorithms recognizes _Y(S,) 

in linear time; if a is recognized by a Turing machine the combination is a Turing 

machine. 0 

We show now that a large class of irrational rotations (including all quadratic ir- 

rationals) is of class NLIN. An integer sequence a, is called polynomial if there 

exists a polynomial p(x) with integer coefficients and an integer q such that a, = p(n) 

for all n > q. An integer sequence a E N ,” is called a polynomial mixture if there 

exists an integer m such that for every 0 <j < m the sequence bi = aim+j is poly- 

nomial. An irrational M is a Hurwitz number if its continued fraction expansion is 

a polynomial mixture (see [ 16, pp. 1261311). Every root of a quadratic equation 

with integer coefficients is a Hurwitz number. Another remarkable Hurwitz number is 

e=2+(1,2,1,1,4,1,1,6...); in general, if a,b,c,d,n are integers with ad-bc#O and 

n>l, then (ae *in + b)/(ce*‘” + d) is a Hurwitz number [9]. 

Proposition 6. Zf a E NY is a polynomial mixture, then a is of class NLIN. 

Proof. If a is a positive polynomial sequence of degree d, then bi = ai+l - ai is a poly- 

nomial sequence of degree d - 1, and bi > 0 for sufficiently large i. A polynomial 

sequence of degree d can be constructed in d steps. Given an input word u, the al- 

gorithm first constructs for the appropriate bo the word lbOOlboO 1 bo . . . of length /uI 

(degree 0). Then inductively, given a word lcOOlcl Olc2 . . . , where ci is a polynomial 

sequence of degree k - 1 < d, the algorithm constructs for the appropriate bk the 
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word lbkO1 bt+coOlbk+co+c1 . . . of length 1~1. Finally, the algorithm rewrites the initial 

segment of fixed length q of the sequence where the polynomial rule does not yet ap- 

ply. One step in this construction (with the return to the beginning of the tape) takes 

41~1 operations. Thus, to construct a polynomial sequence of degree d up to the coor- 

dinate 1~1 takes (4d +4)(ul operations. To construct a polynomial mixture with degrees 

do,... d,_l takes (4do + . . .4d,_l + 4m f l)lul + q operations. Checking whether the 

constructed word equals u takes 21~ additional operations. 0 

Corollary 1. Let CI be a Hurwitz irrational. Then the corresponding rotation qf the 
circle (2’1, fa > is of class NLIN. 

The Hurwitz irrationals by no means exhaust the rotations of class NLIN. For ex- 

ample, if aE{1,2}‘, and if a itself is a Sturmian sequence whose continued frac- 

tion expansion is a polynomial mixture, then S, is of class NLIN too. Another class 

of real numbers with this property has been studied by Shallit [ 171. They are sums 

of the form C&q-2k where q >2 is an integer. When q > 3 their continued frac- 

tion expansions are B(q, W) = lim,,, B(q, r) where B(q, 1) = (q - 1, q + 1) and if 

B(q,r)=ao+-(al,..., a,) thenB(q,r+l)=as+(al,..., a,_~,a,+l,a,-l,a,_l ,..., a,); 
thus, 

B(3,00)=(2,5,3,3,1,3,5,3,1,5,3,1,... ). 

Clearly, the word la’ 0. . . 01an-~01an+1014n-’ lan-IO. . .Ol” can be constructed from 

l”‘O. . Ol”n-lO1an in linear time, so a is of class NLIN whenever a =B(q, co), and 

(Ti, fi) is of class NLIN whenever r = C,“=, q-” for some integer q > 3. When q = 2 

one slight technical difficulty arises but the result is the same. 

However, most irrational rotations are not of class NLIN. An obvious reason is that 

NLIN is a countable set of languages. Here are more specific results in this direction. 

Proposition 7. Zf S, is of class NLIN then a is of class NTIME(n”). 

Proof. By a theorem of [5] a language is nondeterministic linear iff it can be rec- 

ognized by a nondeterministic multitape Turing machine in time equal to the length 

of the input word. If a word u is an initial subword of U(a), then it has the form 

u = l”00. Olan-‘Olq, where the a; are positive integers, and q > 0. Checking that u is 

of this form is the first step of the algorithm. If q = 0, the word W, is constructed on 

auxiliary tapes in linear time as in the proof of Proposition 5. If q > 0, we construct 

Kq instead. Then we verify whether the constructed word belongs to L,: by assump- 

tion, the amount of time is a linear function of the length of the word. If q=O then 

Iw,la(ao+l)...(a,_l+l) dlul”dlull’l. Ifq>O then IW,9Idq(ao+l)...(a,_,+l) 
d I@+ < IuQI. The time needed is linear in IuIIUI in both cases. 0 

Corollary 2. S, is of class REC ifs a is of class REC. 
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Proof. This is a joint consequence of Proposition 5 and of the proof of the last 

result. 0 

As a consequence there exist irrational rotations that are of class REC but not of 

class NLIN, and some that are not of class REC; this fact relies solely on the existence 

of numbers with arbitrary continued fraction expansions, and can hardly be connected 

with arithmetic properties of these numbers. 

In [7] it is proved that, while the Grand Sturmian subshift S, is not of class CF, 
the complement of the associated language is context-free. This shows that for the 

circle endowed with the identity map (S,, o) is far too complex an extension; actually 

looking for symbolic representations of the identity map on the circle does not make 

much sense. Here, we show that S, is of class NLIN; maybe this can be obtained as 

a consequence of the result of [7]. 

Proposition 8. The Grand Sturmian subshift S, is of class NLIN. 

Proof. The recognition algorithm for _Y(S, ) repeats several steps. 

Step 1: One determines whether u is one of the words OklO’, lkO1’, (Ol)k or one of 

their subwords. If so, the algorithm ends with the answer yes, otherwise it continues 

with Step 2. 

Step 2: One determines whether there exists q > 0 such that for every occurrence of 

10k 1 in u either k = q or k = q + 1, and neither the initial nor the final segment of u 

contains more than q zeroes. If the condition is satisfied, the algorithm continues with 

Step 3. If not, the same test is performed with zeroes and ones interchanged. If both 

tests fail, the algorithm ends with the answer no. 

Step 3: Every word 041 is replaced by 0, and the remaining O’s are replaced by 1. 

However, the procedure handles differently the beginning and end of U. If u begins 

with Okl, then this word is replaced by 0, if u ends with Ok then this word is replaced 

nondeterministically either by 0 (if k <q) or by 10 (if k B 2). The algorithm then repeats 

the procedure starting in Step 1 with the word v(u) obtained by these replacements. 

It is clear that Steps l-3 take linear time ~1~1. For the length of the word v(u) 

we have Iu] =(q + l)lv(u)lo + Iv(u)li. Since q > 0, we get Iv(u)1 ~21~1, so the whole 

algorithm works in time clul/( 1 - 2) = 6~424. 0 

Finally, here is a number-theoretic remark. Among the Sturmian subshifts of class 

NLIN some correspond to algebraic numbers (the quadratic numbers) and some to 

transcendental numbers (e, Shallit’s examples). On the other hand, we do not know 

anything about the numbers generating Sturmian subshifts that are not of class NLIN. 
For instance, does this last family contain algebraic numbers? It is possible to prove 

that Sturmian subshifts associated to irrational algebraic numbers are of class 

REC. 
Rather naturally, this open question corresponds to a gap in the theory of continued 

fraction expansions. 
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