
Theoretical Computer Science 289 (2002) 1009–1026
www.elsevier.com/locate/tcs

Some results on tries with adaptive branching
Yuriy A. Reznik1

RealNetworks, Inc., 2601 Elliott Avenue, Seattle, WA 98121, USA

Received November 2001

Abstract

We study a modi*cation of digital trees (or tries) with adaptive multi-digit branching. Such
tries can dynamically adjust degrees of their nodes by choosing the number of digits to be
processed per lookup. While we do not specify any particular method for selecting the degrees
of nodes, we assume that such selection can be accomplished by examining the number of
strings remaining in each sub-tree, and=or estimating parameters of the input distribution. We
call this class of digital trees adaptive multi-digit tries (or AMD-tries) and provide a prelim-
inary analysis of their expected behavior in a memoryless model. We establish the following
results: (1) there exist AMD-tries attaining a constant expected time of a successful search; (2)
there exist AMD-tries consuming a linear (in the number of strings inserted) amount of space;
(3) both constant search time and linear space usage can be attained if the (memoryless) source
is symmetric. We accompany our analysis with a brief survey of several known types of adap-
tive trie structures, and show how our analysis extends (and=or complements) previous results.
c© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Digital tree; Trie; Adaptive branching; Distributive partitioning; N -tree; LC-trie; Average case
analysis of algorithms; Asymptotic analysis

1. Introduction

Digital trees (also known as radix search trees, or tries) represent a convenient way
of organizing alphanumeric sequences (strings) of variable lengths that facilitates their
fast retrieving, searching, and sorting (cf. [10,15,25]). If we designate a set of n distinct
strings as S = {s1; : : : ; sn}, and assume that each string is a sequence of symbols from

E-mail address: yreznik@real.com (Y.A. Reznik).
1 On leave from the Institute of Mathematical Machines and Systems of the National Academy of Sciences

of Ukraine.

0304-3975/02/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(01)00415 -7

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82051288?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1010 Y.A. Reznik / Theoretical Computer Science 289 (2002) 1009–1026

(a) regular trie (r=1)

0000

s1 s2 s3 s4 s5

s6 s7

00
01 10

11

0111

 s1 s2

0 1

00 01

 s3 s4 s5

s6 s7
000 011

1110

(b) multidigit trie (r=2)

0000

(d) LC-trie (adaptive multi-digit trie)

...1

s4 s5 s6 s7

s1 s2 s3

0...

0... ...1/71/21

1/7 2/7 3/7 4/7 5/7 6/7

(c) N-tree (adaptive radix trie)

0000

s1 s2

 s3 s4 s5

s6 s7

01 10
11

00

000 011

(e) A faster adaptive multi-digit trie

0000

s1 s2

 s3 s4 s5 s6 s7

111000

Fig. 1. Examples of tries built from 7 binary strings: s1= 0000 : : : ; s2= 0001: : : ; s3= 0010 : : : ;
s4= 0100 : : : ; s5= 0110 : : : ; s6= 100 : : : ; s7= 110 : : : :

a *nite alphabet
= {�1; : : : ; �v}; |
|= v, then a trie T (S) over S can be constructed
recursively as follows. If n=0, the trie is an empty external node. 2 If n=1 (i.e. S has
only one string), the trie is an external node containing a pointer to this single string
in S. If n¿1, the trie is an internal node containing v pointers (or branches) to the
child tries: T (S1); : : : ; T (Sv), where each set Si (16i6v) contains suFxes of all strings
from S that begin with a corresponding *rst symbol. For example, if a string sj = ujwj

(uj is a *rst symbol, and wj is a string containing the remaining symbols of sj), and
uj = �i, then the string wj will go into Si. Thus, after all child tries T (S1); : : : ; T (Sv)
are recursively processed, we arrive at a tree-like data structure, where the original
strings S = {s1; : : : ; sn} can be uniquely identi*ed by the paths from the root node to
non-empty external nodes (see Fig. 1a).

2 In a simpler (and somewhat more conventional) de*nition, the case n=0 corresponds to an empty trie.
While both de*nitions are essentially equivalent (see, e.g. Knuth [14, 2.3.4.5]), we prefer to use the former
as it simpli*es transition into a multi-digit case.

Y.A. Reznik / Theoretical Computer Science 289 (2002) 1009–1026 1011

A simple extension of the above structure is obtained by allowing more than one
symbol of the input alphabet to be used for branching. Thus, if a trie uses some constant
number of symbols r¿1 per lookup, then the eHective branching coeFcient is equal
to vr , and we essentially deal with a trie built over an alphabet
r (see Fig. 1b). To
underscore the fact that branching is implemented using multiple input symbols (digits)
at a time, such tries are sometimes called multi-digit tries [2].
The behavior of regular tries is thoroughly analyzed (cf. [15,5,9,11,23,27]). For

example, it has been shown that the expected number of nodes examined during a suc-
cessful search in a v-ary trie is asymptotically log n=h+O(1), where h is the entropy of
a process used to produce n input strings. The expected size of such trie is asymptot-
ically nv=h+O(1). These estimates are known to be correct for a rather large class of
stochastic processes, including memoryless, Markovian, and -mixed models [23,26].
In many special cases (e.g. when a source is memoryless, or Markovian) the complete
characterizations (expectation, variance, and higher moments) of these parameters have
been obtained, and their precise (up to O(1) term) asymptotic expansions have been
deducted (cf. [13,27,12]).
Much less known are modi*cations of tries that use adaptive branching. That is,

instead of using nodes of some *xed degree (e.g., matching the cardinality of an
input alphabet), adaptive tries select branching factor dynamically, from one node
to another. Perhaps the best-known example of this idea is sorting by distributive
partitioning, due to Dobosiewitz [6]. This algorithm (also known as an N -tree [8])
selects the degrees of nodes to be equal exactly the number of strings inserted in the
sub-tries they originate. For example, an N-tree displayed on Fig. 1c, contains seven
strings overall, and therefore its root node has seven branches. In turn, its *rst branch
receives three strings to be inserted, and thus the N-tree creates a node with three
additional branches, and so on.
While N-trees have extremely appealing theoretical properties (thus, according to

Tamminen [28], and most recently, Mahmoud et al. [19], N-trees attain a constant
(O(1)) expected search time, and use a linear (O(n)) amount of memory), there are
several important factors that limit their practical usage. The main problem is that
the N-tree is not a dynamic data structure. It is more or less suitable for a multi-
pass construction when all n strings are given, but an addition or removal of a string
in an existing structure is rather problematic. In the worst case, such an operation
may involve the reconstruction of the entire tree, making the cost of its mainte-
nance extremely high. Somewhat more Jexible is a B − b parameterized version of
the distributive partitioning proposed in [7]. This algorithm selects the branching fac-
tors to be equal n=b (b¿1), and split child nodes only when the number of strings
there becomes larger than B. When both B and b equal one, we have a normal N-
tree, however, when they are large, the complexity of updates can be substantially
reduced.
Unfortunately, this does not help with another problem in adaptive tries. Since the

degrees of nodes are being selected dynamically, N-trees cannot use simple per-symbol
lookups. Instead, they must implement dynamic conversions from one size alphabet to
another, or even treat the input strings as real numbers in [0; 1) [6,8]. In either scenario,
the transition between levels in N-trees (and their B− b variants) is much slower than

1012 Y.A. Reznik / Theoretical Computer Science 289 (2002) 1009–1026

one in regular tries, and combined with the complexity of the maintenance, it creates
serious constrains for the usage of N-trees in practice.
In this paper, we focus on another implementation of adaptive branching that

promises to be (at least partially) free from the above mentioned shortcomings. We
are trying to create an adaptive version of multi-digit tries by allowing the number
of digits processed by their nodes (parameter r) to be selected dynamically. Due to
the lack of an established term, we will call these structures adaptive multi-digit tries
(or AMD-tries). To cover a wide range of possible implementations of such tries, we
(at least initially) do not specify any particular algorithm for selecting the degrees of
their nodes. Instead, we assume that such selection can be accomplished by examining
the number of strings remaining in each sub-tree, and estimating parameters of the
input distribution, and attempt to study the resulting class of data structures. The goal
of this research is to *nd performance bounds (in both search time and space domains)
attainable by AMD-tries, and deduce several particular implementations that can be of
interest in practice.
Somewhat surprisingly, there were only few attempts to explore the potential of

adaptive multi-digit branching in the past. Perhaps the only studied implementation in
this class is a level-compressed trie (or LC-trie) of Andersson and Nilsson [2]. The
heuristic for selecting the degrees of multi-digit nodes in a LC-trie is very simple:
it combines the (v-ary) levels of the corresponding regular trie until it reaches the
*rst external node (see Fig. 1d). It has been shown (cf. [20,22]) that in a memory-
less model such algorithm produces nodes with the expected number of digits equal
Er= log(k)=�−∞+O(log log k), where k is the number of strings inserted in a sub-trie
originated by the node, and �−∞ =− logpmin ; pmin = min{Pr(�i)}. When the mem-
oryless source is symmetric, the expected search time in a LC-trie is only O(log∗ n),
however, it grows as O(log log n) in the asymmetric case [20].
Note, that in a general case, the degrees of nodes in AMD-tries do not have to

be constrained by the last complete (i.e. without empty external nodes) levels in the
corresponding regular tries. Moreover, in order to support a dynamic construction, the
nodes in AMD-tries must include some additional “sparse” levels (i.e. levels containing
empty external nodes). This way the resize of a multi-digit node (e.g. due to insertion
of new strings) can be eHectively delayed until all its empty leaves are replaced by
new (non-empty) child tries [21]. Observe that such a strategy (inclusion of “sparse”
levels) also reduces the number of levels remaining to be processed, thus making the
resulting AMD-trie faster (see Fig. 1e). However, an overly aggressive inclusion of
“sparse” levels will also lead to an increased memory usage, which brings us back to
the questions of what are the performance bounds that can be attained by AMD-tries
in both time- and space-domains, and whether (or when) they can be competitive with
other search structures.
In our analysis, we show that in a memoryless model there exist implementations

of AMD-tries attaining the constant (O(1)) complexity of a successful search regard-
less of the symmetry of the source. Moreover, if the source is symmetric, such tries
can be implemented in linear (O(n)) amount of space. Compared to an N-tree, an
equally fast AMD-trie appears to have a larger memory usage, however, it is a much
more suitable scheme for dynamic implementation, and combined with the bene*ts of

Y.A. Reznik / Theoretical Computer Science 289 (2002) 1009–1026 1013

fast multi-digit processing, it promises to be a structure of choice for many practical
situations.
This paper is organized as follows. In Section 2, we will provide some basic de*-

nitions and present our main results. In Section 3, we will introduce a set of recurrent
expressions necessary for the analysis of AMD-tries, and sketch the proofs of our the-
orems. In Section 4, we will demonstrate how to use our theoretical results to analyze
and design new practical algorithms for construction of AMD-tries, and present various
experimental results. Finally, in our concluding remarks, we emphasize the limitations
of our present study and show several possible directions for future research.

2. De�nitions and main results

In our analysis, we only consider AMD-tries built over strings from a binary alphabet

= {0; 1}, but the extension to any *nite alphabet is straightforward. We also limit
our study to a situation when n strings to be inserted in a trie are generated by a
memoryless (or Bernoulli) source (cf. [3]). In this model, symbols of the alphabet

occur independently of one another, so that if xj is the jth symbol produced by this
source, then for any j: Pr{xj =0}=p, and Pr{xj =1}= q=1− p. If p= q= 1

2 , such
source is called symmetric, otherwise it is asymmetric (or biased). In our analysis, we
will also use the following additional parameters of memoryless sources:

h = −p logp− q log q;

h2 = p log2 p+ q log2 q;

�∞ = − logpmax;

�−∞ = − logpmin; (1)

where: h is the (Shannon’s) entropy of the source (cf. [3]), �∞, and �−∞ are special
cases of the RPenyi’s k-order entropy (cf. [26]): �k =−1=k log(pk+1 + qk+1); pmax

= max{p; q}, and pmin = min{p; q}. Observe that �∞; �−∞, and h have the following
relationship:

�∞ 6 h6 �−∞ (2)

(the equality is attained when the source is symmetric, however, in the asymmetric
case, these bounds are rather weak).
In this paper, we will evaluate two major the performance characteristics of the

AMD-tries: the expected time of a successful search and the expected amount of
memory used by a trie built over n strings. To estimate the search time we can use the
expected depth Dn or the expected external path length (i.e. the combined length of
paths from root to all non-empty external nodes) Cn in a trie: Dn =Cn=n. To estimate
the size of a trie we will use the expected number of its branches Bn. Note that the
last metric is slightly diHerent from one used for the regular tries (cf. [15,9]). In that
case, it was suFcient to *nd the expected number of internal nodes An in a trie.
However, since internal nodes in adaptive tries have diHerent sizes, we need to use
another parameter (Bn) to take into account these diHerences as well.

1014 Y.A. Reznik / Theoretical Computer Science 289 (2002) 1009–1026

As we have mentioned earlier, we allow AMD-tries to use an arbitrary (but not
random) mechanism for selecting the degrees of their nodes. However, in a Bernoulli
model, there are only two parameters that can aHect the expected outcome of such
selection applied to all sub-tries in a trie: (a) the number of strings inserted in a
sub-trie, and (b) the parameters of source distribution. Thus, without signi*cant loss
of generality or precision, we can assume that the node size selection logic can be
presented as a (integer-valued) function:

rn := r(n; p); (3)

where n indicates the number of strings inserted in the corresponding sub-trie, p is the
probability of 0 in the Bernoulli model, and rn is the number of digits assigned to the
resulting (multi-digit) node.
We are now ready to present our main results regarding the expected behavior of

AMD-tries. The following theorem establishes the existence of AMD-tries attaining the
constant expected time of a successful search.

Theorem 1. There exist AMD-tries such that:

1 ¡ !1 6 Cn=n6 !2 ¡ ∞; (4)

where !1; !2 are some positive constants. The numbers of digits rn processed by nodes
in such tries satisfy:

rn ¿
−1
�−∞

log(1− e− log !2=(n−1)) =
1

�−∞
(log n− log log !2) + O

(
1
n

)
(5)

and

rn 6
−1
�∞

log(1− e− log !1=(n−1))=
1
�∞

(log n− log log !1) + O
(
1
n

)
: (6)

Notice that the above conditions are based on parameters �∞ and �−∞, which, in
turn, can be considered as bounds for the entropy h of the source (2). This may suggest
that there should be a more accurate way to estimate the degrees of nodes needed to
attain a certain performance (and vice versa), expressed in terms of the entropy h of
the source. The following theorem answers this conjecture in aFrmative.

Theorem 2. Let

r∗n =
log n
h

(7)

and assume that the actual degrees of nodes in an AMD-trie are selected to be
su7ciently close to r∗n :

|rn − r∗n | = O(
√

r∗n): (8)

Y.A. Reznik / Theoretical Computer Science 289 (2002) 1009–1026 1015

Then the complexity of a successful search in such trie is (with n→∞):

Cn=n = "−1

(
rn − r∗n
#
√
log n

)(
1 + O

(
1√
log n

))
; (9)

where

"(x) =
1√
2$

∫ x

−∞
e−t2=2 dt; (10)

is the distribution function of the standard normal distribution (cf. [1]), and

#2 =
(h2 − h2)

h3
: (11)

Now we will try to evaluate AMD-tries from the memory usage perspective.
Theorem 3 establishes bounds for AMD-tries that attain the linear (with the number
of strings inserted) size.

Theorem 3. There exist AMD-tries such that:

1 ¡ !1 6 Bn=n6 !2 ¡ ∞ (12)

where !1; !2 are some positive constants. The numbers of digits rn processed by nodes
in such tries satisfy:

rn¿ (n; !2; �−∞)

=
1

�−∞
(log n− &(n; '−∞; !2)− log log !2) + O

(
log log n
log n

)
(13)

and

rn6 (n; !1; �∞)

=
1
�∞

(log n− &(n; '∞; !1)− log log !1) + O
(
log log n
log n

)
; (14)

where: (n; !; �) is the exact solution of

!n = 2 (n;!;�)(1− e− (n;!;�)�)1−n; (15)

'∞ = �∞= log 2; '−∞ = �−∞= log 2, and

&(n; '; !) = log
(
1 +

' log n− log(n')
' log !

)
: (16)

Observe that in the symmetric case (p= q= 1
2), we have '∞ = '−∞ =1, and thus,

the term (16) becomes zero: &(n; 1; !)= 0. The resulting bounds for (13) and (14) will
be identical to one we have obtained in the Theorem 1, Eqs. (5), and (6), and thus,
we have the following conclusion.

1016 Y.A. Reznik / Theoretical Computer Science 289 (2002) 1009–1026

Corollary 1. In the symmetric Bernoulli model, an AMD-trie can attain a constant
expected depth Dn =Cn=n=O(1) and have a linear size Bn =O(n) at the same time.

Unfortunately, in the asymmetric case the situation is not the same. Thus, if ' �=1,
the term &(n; '; !) can be as large as O(log log n), and the conditions for the constant
search time (5), (6) may not hold. Actually, from the analysis of LC-tries [20], we
know that the use of nodes with r6 log(n)=�−∞ leads to the expected search time
of O(log log n), and it is not yet clear if this bound can be improved considering the
other linear space implementations of the AMD-tries.
We will continue the discussion of the results of our Theorems in Section 4, where

we will also describe several possible implementations of AMD-tries and present
experimental results.

3. Analysis

In this section, we will introduce a set of recurrent expressions for various parameters
of AMD-tries, derive some necessary asymptotic expansions, and will sketch the proofs
of our main theorems. For the purposes of compact presentation of our intermediate
results, we will introduce the following two variables. Parameter xn will represent
some characteristic (e.g. path length or number of nodes) of an AMD-trie containing
n strings, and parameter yn will represent a corresponding characteristic of the root
node of this trie that contributes to xn. The following mapping to the standard trie
parameters is obvious:

xn
yn

∣∣∣∣ An Bn Cn

1 2rn n
(17)

where: An is the average number of internal nodes, Bn is the average number of
branches, Cn is the external path length in an AMD-trie containing n strings.
Using the above notation, we can now formulate the following recurrent relationship

between these parameters of AMD-tries.

Lemma 1. The properties xn and yn of an AMD-trie in a Bernoulli model satisfy:

xn = yn +
n∑

k=2

(
n
k

)
rn∑
s=0

(
rn
s

)
(psqrn−s)k(1− psqrn−s)n−kxk ;

x0 = x1 = y0 = y1 = 0; (18)

where: n is the total number of strings inserted in an AMD-trie, and the rest of
parameters are as de8ned in (3) and (17).

Proof. Consider a root node of order rn (bits) in an AMD-trie. If n¡2 the result is 0
by de*nition. If n¿2, the property of trie xn should include the property of its root node
yn plus the sum of properties of all the child tries. It remains to enumerate child tries

Y.A. Reznik / Theoretical Computer Science 289 (2002) 1009–1026 1017

and estimate probabilities of them having 26k6n strings inserted. This can be done
using the following technique. Let i be one of the 2rn possible bit-patterns of length
rn, and let $i = Pr{Binrn(sj)= i} (06i¡2rn ;

∑
$i =1 be the probability of having a

single string sj, such that its *rst rn bits (Binrn(sj)) match the pattern i. Let also assume
that the probability $i is the same for all strings sj; 06j¡n. Then, the probability that
any k strings match pattern i is (nk)$

k
i (1 − $i)n−k , and therefore, the contribution of

the pattern i to the property xn can be expressed as
∑

k¿2 (
n
k)$

k
i (1−$i)n−kxk . Now, it

remains to scan all the 2rn possible patterns to obtain the complete expression for xn.
Recall, that the actual strings we are inserting in the trie are produced by a binary mem-
oryless source (with probabilities p; q=1 − p of symbols 0, and 1 correspondingly).
Therefore, the probabilities of the rn-bit sequences produced by this source depend only
on the number of 0’s (s) they contain: $(s)=psqrn−s. Also, given s zeros, the total
number of patterns yielding this probability is (s

rn
). Combining all these formulas, we

arrive at

rn∑
s=0

(
rn
s

)
n∑

k=2

(
n
k

)
(psqrn−s)k(1− psqrn−s)n−kxk ;

which, after the addition of yn yields the claimed expression (18).

It should be stressed that due to the dependency upon an unknown parameter rn
the rigorous analysis of a recurrent expression (18) appears to be a very diFcult task.
It is not clear for example, if it is possible to convert (18) to a closed form (for
any of the parameters involved). Moreover, the attempts to use some particular for-
mulas (or algorithms) for rn can actually make the situation even more
complicated.
The analysis of (18) that we provide in this paper is based on a very simple approach,

which nevertheless is suFcient to evaluate some special cases in the behavior of these
algorithms. Thus, most of our theorems claim the existence of a solution in linear form,
and we use (18) to *nd bounds for rn such that the original claim holds. We perform
the *rst step in this process using the following lemma.

Lemma 2. Let !1 and !2 be two positive constants (1¡!16!2¡∞), such that

!1n6 xn 6 !2n: (19)

Then, the recurrent expression (18) implies that:

!1 6 yn=f(n; p; rn)6 !2; (20)

where

f(n; p; rn) = n
rn∑
s=0

(
rn
s

)
psqrn−s(1− psqrn−s)n−1: (21)

1018 Y.A. Reznik / Theoretical Computer Science 289 (2002) 1009–1026

Proof. Consider the upper bound in (19) *rst, and substitute xk with k!2 in the right
side of (18). This yields:

xn6 yn +
rn∑
s=0

(
rn
s

)
n∑

k=2

(
n
k

)
(psqrn−s)k(1− psqrn−s)n−k!2k

= yn + !2n
rn∑
s=0

(
rn
s

)
psqrn−s(1− (1− psqrn−s)n−1)

= yn + !2n− !2f(n; p; rn): (22)

Now, according to (19), xn6!2n, and combined with (22), the upper bound holds only
if yn − !2f(n; p; rn)60. Hence !2¿yn=f(n; p; rn), and repeating this procedure for the
lower bound (xn¿!1n), we arrive at formula (20), claimed by the lemma.

The next step in our analysis is to *nd bounds for the sum (21) that would allow
us to separate rn. The following lemma summarizes a few such results.

Lemma 3. Consider a function f(n; p; rn) de8ned in (21). The following hold:

f(n; 1=2; rn) = n(1− 2−rn)n−1; (23)

f(n; p; rn)6 n(1− e−rn�−∞)n−1 6 ne−(n−1)e−rn�−∞ ; (24)

f(n; p; rn)¿ n(1− e−rn�∞)n−1 ¿ ne−(n−1)e−rn�∞ =(1−e−rn�∞): (25)

In addition, if n; rn →∞, and |rn − log n=h|=O(
√
log n=h), then asymptotically:

f(n; p; rn) = n"

(
rn − log n=h

#
√
log n

)(
1 + O

(
1√
log n

))
; (26)

where "(x) and # are as de8ned in Theorem 2 (7)–(10).

Proof. The equality for the symmetric case (23) is obtained by direct substitution. Two
other bounds (24) and (25) can be obtained with the help of the following estimate:

e−rn�−∞ = prn
min 6 psqrn−s 6 prn

max = e−rn�∞ ;

where pmax; pmin ; �∞, and �−∞ are as de*ned in (1). We apply these bounds to the
right factor in the sum (21):

(1− e−rn�∞)n−1 6 (1− psqrn−s)n−1 6 (1− e−rn�−∞)n−1;

so that it can be separated. The remaining part of the sum (21) converges:
∑

(rns)p
sqrn−s

=1. The additional (right-side) inequalities in (24) and (26) are due to [1, Eq. 4.2.29]:

e−x=(1−x) 6 1− x 6 e−x; 06 x ¡ 1:

The derivation of an asymptotic expression (26) is a complicated task, and here we
will rather refer to an Example 8.19 in a book of Szpankowski [26] which discusses it

Y.A. Reznik / Theoretical Computer Science 289 (2002) 1009–1026 1019

in detail. A somewhat diHerent approach to solving it has also been described in
[17,18].

Now using the results of the above lemmas, we can sketch the proofs of our main
theorems. Consider the problem of evaluating the behavior of AMD-tries from the
expected complexity of a successful search perspective *rst.
We can use the recurrent expression (18) where, according to (17), we can substitute

xn with a parameter of the external path length Cn, and yn with n. Observe that the
bounds for Cn (4) claimed by the Theorem 1 and condition (19) in Lemma 2 are
equivalent, and the combination of (20) with inequalities (24), and (25) result in

!2 ¿ n=f(n; p; rn)¿ (1− e−rn�−∞)1−n (27)

and

!16n=f(n; p; rn)6(1− e−rn�∞)1−n: (28)

The solution of (27) with respect to rn yields:

rn¿
−1
�−∞

log(1− e− log !2=(n−1)) =
1

�−∞
(log n− log log !2) + O

(
1
n

)
; (29)

which is exactly the condition (5) claimed by the Theorem 1. The corresponding
solution for (28) leads to condition (6) in Theorem 1.

The result of the Theorem 2 follows directly from (20), (21), and asymptotic ex-
pression (26).
To evaluate the expected size an AMD-trie in memory we will use a very similar

technique. Consider a recurrent expression (18) with xn substituted by the expected
number of branches Bn, and yn with 2rn . Following the Theorem 3 and Lemma 2, we
assume that Bn is bounded according to (12), and using (20) combined with (24) and
(25) we obtain:

!2 ¿ 2rn =f(n; p; rn)¿ 2rnn−1(1− e−rn�−∞)1−n (30)

and

!1 6 2rn =f(n; p; rn)6 2rnn−1(1− e−rn�∞)1−n: (31)

Compared to (27) and (28) these appear to be slightly more complicated expressions,
which do not yield simple exact solutions for rn. To *nd an asymptotic (for large n)
solution of (30), we write:

rn¿
−1
�−∞

log(1− e− log(!2n2−rn)=(n−1) =
1

�−∞
(log n− log log(!2n2−rn))

+O
(
1
n

)
;

where after some transformations we arrive at:

rn ¿
1

log 2
(log n+ log !2 + '−1

−∞W−1(−'−∞!−'−∞
2 n1−'−∞)) + O

(
1
n

)
;

1020 Y.A. Reznik / Theoretical Computer Science 289 (2002) 1009–1026

where '−∞ = �−∞= log 2, and W−1(x) is a branch W (x)6−1 of the Lambert W func-
tion: W (x)eW (x) = x [4]. To perform further simpli*cations we can use the following
asymptotic expansion of W−1(x) (cf. [4]):

W−1(x) = log(−x)− log(− log(−x)) + O
(
log(− log(−x))

log(−x)

)
;

− e−1 ¡ x ¡ 0;

which, after some algebra yields the second part of inequality (13) claimed by the
Theorem 3. The expression for the lower bound (14) is obtained in essentially the
same way.

4. Applications and experimental results

In this section, we will show how to use our theorems to analyze and design new
algorithms for construction of AMD-tries. We will complement our analysis with a
number of experiments measuring the actual time- and space-performance characteris-
tics of these algorithms.
First, we would like to show how to use our Theorems 1 and 3 for evaluation of

the performance bounds of some practical implementations of AMD-tries.
As an example, we will consider a modi*cation of LC-trie algorithm recently pro-

posed by Nilsson and Tikkanen [21]. They observed that a j-digit node in an AMD-trie
has several easy to track parameters, such as the numbers of pointers to empty ej, ex-
ternal xj, and internal aj nodes in the trie (see Fig. 2). The total number of pointers
in such a node is ej + xj + aj =2j. Consequently, a density of this node (i.e. a ratio
of pointers to all non-empty nodes to all pointers in a j-digit node) is

-(j) =
xj + aj

2j
= 1− ej

2j
: (32)

000 111
j

n strings

ejx jaj

Fig. 2. Simple parameters of a j-digit node that can be used by an AMD-trie construction algorithm:
ej —the number of empty nodes, xj —the number of external nodes, and aj —the number of the remaining
internal nodes=subtries.

Y.A. Reznik / Theoretical Computer Science 289 (2002) 1009–1026 1021

The algorithm of Nilsson and Tikkanen selects the number of digits rn for its nodes
such that their densities are constrained by some positive constants -1 and -2:

rn ∈ {j : 0 ¡ -1 6 -(j)6 -2 6 1}: (33)

When both -1 = -2 = 1 the resulting trie is an LC-trie. However, when -1¡-2 the
resulting trie can be much faster, and we will be interested to learn if such algorithm
(33) can attain a constant expected search time.
Using the techniques discussed in Section 3, we can show that:

1− -1 ¿ ern =2
rn = 2−rn

rn∑
s=0

(
rn
s

)
(1− psqrn−s)n ¿ (1− e−rn�−∞)n

and consequently,

rn6
−1
�−∞

log(1− elog(1−-1)=n) =
1

�−∞
(log n− log(− log(1− -1)))

+O
(
1
n

)
:

This is clearly the opposite of the condition (5) of Theorem 1, which means that in
the asymmetric case, the density-constrained construction (33) is not suFcient to attain
the constant expected time of a successful search.
Second, we will now try to use the result of Theorem 2 to design a few new

algorithms for construction of AMD-tries with constant expected search time.
According to the formula (9) of Theorem 2, such algorithms must choose nodes

with rn ∼ r∗n = log n=h. The main challenge with using this formula directly is that, in
practice, we do not have any a priori information about the source (so we cannot cal-
culate h). A possible solution here is to estimate parameters of the source dynamically.
Such an algorithm can, for example, count frequencies of symbols as they appear in
input strings, and employ the standard techniques, such as Krichevsky–Tro*mov (KT)
[16] or Laplace [24] probability estimates. An obvious drawback of such a mechanism
is the complexity associated with updating frequency counts and entropy calculations.
Fortunately, using the natural statistics in tries we can estimate the values r∗n in

another, remarkably simple way. From the analysis of regular tries we know that the
depths of the non-empty external nodes are asymptotically normally distributed, with
mean at log n=h+ O(1) and variance #2 log n+ O(1) [11]. Therefore, we immediately
have three simple (mean-, mode-, and median-based) algorithms for selecting rn:

r(1)n =
1
n
∑
i¿1

izi; (34)

r(2)n = min
{
j : zj = max

16i¡∞
{zi}

}
; (35)

r(3)n = min

{
j :

∑
16i6j

zi ¿
n
2

}
; (36)

where zi is the number of external nodes on level i in the original (e.g. binary) trie.

1022 Y.A. Reznik / Theoretical Computer Science 289 (2002) 1009–1026

The last formula (36) is of particular interest. Observe, that its sum∑
16i6j

zi = xj;

where xj is the number of external nodes in a combined j-digit node (see Fig. 2). This
quantity also means the total number of strings that have been uniquely identi*ed by
this j-digit node. For this reason we can call a ratio

!(j) =
xj
n

(37)

a selectivity of this node. We can use this parameter !(j) to present (36) in a somewhat
more Jexible form (which we need to minimize the number of updates in the trie):

rn ∈ {j : 0 ¡ !1 6 !(j)6 !2 6 1}; (38)

where !1 and !2 are some positive constants.
To simplify our future notation, we will call a trie constructed according to the above

algorithm (38) a selectivity-constrained AMD trie, and similarly, a trie constructed
according to Nilsson and Tikkanen algorithm (33), a density-constrained AMD-trie.
In addition to the above described algorithms, in our experimental study we will

also evaluate the following two schemes. The *rst algorithm is a logarithmic trie
representing a direct attempt to construct a multi-digit version of an N-tree:

rn = �log2 n�;
which is of some interest since we know that the original N-tree is both O(1)-fast
and O(n)-large. The second algorithm is an oRine implementation of a formula (7)
suggested by our Theorem 2:

rn = �log(n)=h�
(h is known or estimated based on symbols in all n strings before trie construction is
started).
On Figs. 3 and 4 we present the results of experimental evaluation of the expected

successful search time and expected memory usage of several implementations of AMD
tries.
To build our tries we used computer-generated sequences of binary digits for sym-

metric (p=0:5) and asymmetric (p=0:25) cases. To be able to identify even ex-
tremely slowly growing functions (e.g. log∗ n) we allowed the number of strings n in
tries to grow from 2 to 105. At each point (each *xed value for n) we generated 103

diHerent tries (using the same source model), and calculated their average depths and
relative sizes.
Observe that in the symmetric case (see Fig. 3a), LC-trie is the only structure which

depth is clearly increasing with n (and its rate well matches the theoretic estimate
O(log∗ n) [2]). The depths of the other AMD tries are Juctuating in the range (1:5; 2:5)
with no visible drift upward, which suggests that they are likely O(1)-fast.

Y.A. Reznik / Theoretical Computer Science 289 (2002) 1009–1026 1023

1

1.5

2

2.5

3

3.5

4

4.5

1 10 100 1000 10000 100000

LC-trie

50 % dense trie

lg(n) digit trie

log(n)/h digit trie

50% selective trie

1

2

3

4

5

6

7

8

1 10 100 1000 10000 100000

LC-trie

50% dense trie

lg(n) digit trie

log(n)/h digit trie

50% selective trie

(a)

(b)

Fig. 3. Average depths Cn=n of several modi*cations of AMD tries when (a) memoryless source is symmetric
(p=0:5), and (b) when the source is asymmetric (p=0:25). Axis x represents the number of strings n
inserted in tries.

The situation is quite diHerent in the asymmetric case (see Fig. 3b). Here, both
LC- and density-constrained tries are growing rapidly, log2 n-digit tree also has some
tendency to grow, but at much slower rate (likely O(log∗ n)), while both selectivity-
constrained and our Theorem 2-based tries just Juctuate in the range (1:8; 2:8), which
suggests that they are O(1)-fast (which is what we claimed in our Theorem 2).
Analyzing the results for the expected relative size (see Fig. 4a), we can conclude

that all of our modi*cations are likely O(n)—large when the source is symmetric. In the
asymmetric case (see Fig. 4b), however, both of our O(1)—fast implementations tend
to grow very rapidly (at least with Bn =O(nlog2 =h) rate), with a selectivity-constrained
variant being the worst (which is to be expected, since the numbers rn it produces for
various sub-tries only converge (at least in probability) to the needed quantity log(n)=h,
instead of being always less than or equal to it). The log2 n-digit trie seem to grow
much slower (again, likely at Bn=n=O(log∗ n) rate), while the relative sizes of both
LC- and sparsity-constrained tries are Juctuating between constants.
These results can be seen both as illustrations con*rming the main statements of our

theorems, and even more importantly, as a demonstration of the enormous spectrum

1024 Y.A. Reznik / Theoretical Computer Science 289 (2002) 1009–1026

2

2.5

3

3.5

4

4.5

1 10 100 1000 10000 100000

LC-trie

50% dense trie

lg(n) digit trie

log(n)/h digit trie

50% selective trie

2

10

18

26

34

42

50

1 10 100 1000 10000 100000

LC-trie

50% dense trie

lg(n) digit trie

log(n)/h digit trie

50% selective trie

(a)

(b)

Fig. 4. Average relative sizes Bn=n of several modi*cations of AMD tries when (a) memoryless source is
symmetric (p=0:5), and (b) when the source is asymmetric (p=0:25). Axis x represents the number of
strings n inserted in tries.

of possible solutions available to engineers designing data structures with given space–
time-performance tradeoHs.

5. Concluding remarks

We absolutely believe that AMD-tries have great potential that should be explored
in practice. From this perspective, our conclusion that they can attain O(1) expected
search time, while preserving most of the bene*ts of the regular tries, should be a
good starting point.
At the same time, AMD-tries pose several interesting theoretical problems, and

in this area, our results just scratch the surface. The technique that we used in our
analysis was only suFcient to produce (rather coarse) bounds for the expected char-
acteristics of AMD-tries, and the derivation of their exact expressions (including
lower-magnitude terms and oscillating components) remains an open (and diFcult)
problem.

Y.A. Reznik / Theoretical Computer Science 289 (2002) 1009–1026 1025

Another interesting problem is to *nd parameters of an AMD-trie that uses the
minimum possible amount of memory. Thus, analyzing the set of expressions in the
proof of the Theorem 3 we can conjecture that such a trie exists, but *nding its actual
parameters requires a more solid analytical framework.

Acknowledgements

The author wishes to express his gratitude to Prof. W. Szpankowski from Purdue
University for many long and fruitful discussions and encouragement in starting this
research. The author is also obliged to one of the referees whose very careful read-
ing and suggestions helped to eliminate many inaccuracies and led to a much better
presentation of the results.

References

[1] M. Abramowitz, I. Stegun, Handbook of Mathematical Functions, Dover, New York, 1972.
[2] A. Andersson, S. Nilsson, Improved behaviour of tries by adaptive branching, Inform. Process. Lett.

46 (1993) 295–300.
[3] T.M. Cover, J.M. Thomas, Elements of Information Theory, Wiley, New York, 1991.
[4] R.M. Corless, G.H. Gonnet, D.E.G. Hare, D.J. JeHrey, D.E. Knuth, On the Lambert W function, Adv.

Comput. Math. 5 (1996) 329–359.
[5] L. Devroye, A note on the average depths in tries, SIAM J. Comput. 28 (1982) 367–371.
[6] W. Dobosiewitz, Sorting by distributive partitioning, Inform. Process. Lett. 7 (1) (1978) 1–6.
[7] W. Dobosiewitz, The practical signi*cance of DP sort revisited, Inform. Process. Lett. 8 (4) (1979)

170–172.
[8] G. Ehrlich, Searching and sorting real numbers, J. Algorithms 2 (1981) 1–14.
[9] P. Flajolet, R. Sedgewick, Digital search trees revisited, SIAM J. Comput. 15 (1986) 748–767.
[10] E. Fredkin, Trie memory, Comm. ACM 3 (1960) 490–500.
[11] P. Jacquet, M. RPegnier, Trie Partitioning Process: Limiting Distributions, Lecture Notes in Computer

Science, Vol. 214, Springer, New York, 1986, pp. 196–210.
[12] P. Jacquet, W. Szpankowski, Analysis of digital trees with Markovian dependency, IEEE Trans. Inform.

Theory 37 (1991) 1470–1475.
[13] P. Kirschenhofer, H. Prodinger, Some Further Results on Digital Search Trees, Lecture Notes in

Computer Science, Vol. 229, Springer, New York, 1986, pp. 177–185.
[14] D. Knuth, The Art of Computer Programming, Fundamental Algorithms, Vol. 1, Addison-Wesley,

Reading, MA, 1968.
[15] D. Knuth, The Art of Computer Programming, Sorting and Searching, Vol. 3, Addison-Wesley, Reading,

MA, 1973.
[16] R.E. Krichevsky, V.K. Tro*mov, The performance of universal encoding, IEEE Trans. Inform. Theory

27 (1981) 199–207.
[17] G. Louchard, The Brownian motion: a neglected tool for the complexity analysis of sorted tables

manipulations, RAIRO Theoret. Inform. 17 (1983) 365–385.
[18] G. Louchard, Digital search trees revisited, Cahiers du CERO 36 (1995) 259–273.
[19] H. Mahmoud, P. Flajolet, P. Jacquet, M. RPegnier, Analytic variations on bucket selection and sorting,

Acta Inform. 36 (9=10) (2000) 735–760.
[20] S. Nilsson, Radix sorting and searching, Ph.D. Thesis, Department of Computer Science, Lund

University, 1996.
[21] S. Nilsson, M. Tikkanen, Implementing a Dynamic Compressed Trie, Proc. Second Workshop on

Algorithm Engineering (WAE’98), Saarbruecken, Germany, 1998, pp. 25–36.

1026 Y.A. Reznik / Theoretical Computer Science 289 (2002) 1009–1026

[22] B. Pittel, Asymptotic growth of a class of random trees, Ann. Probab. 18 (1985) 414–427.
[23] B. Pittel, Paths in a random digital tree: limiting distributions, Adv. Appl. Probab. 18 (1986) 139–155.
[24] J. Rissanen, Complexity of strings in the class of Markov sources, IEEE Trans. Inform. Theory 32

(1986) 526–532.
[25] R. Sedgewick, P. Flajolet, An Introduction to the Analysis of Algorithms, Addison-Wesley, Reading,

MA, 1996.
[26] W. Szpankowski, Average Case Analysis of Algorithms on Sequences, Wiley, New York, 2001.
[27] W. Szpankowski, Some results on V-ary asymmetric tries, J. Algorithms 9 (1988) 224–244.
[28] M. Tamminen, Analysis of N-trees, Inform. Process. Lett. 16 (3) (1983) 131–137.

	Some results on tries with adaptive branching
	Introduction
	Definitions and main results
	Analysis
	Applications and experimental results
	Concluding remarks
	Acknowledgements
	References

