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Abstract Ultrasonic machining (USM) is a mechanical material removal process used to erode

holes and cavities in hard or brittle workpieces by using shaped tools, high-frequency mechanical

motion and an abrasive slurry. Unlike other non-traditional machining processes, such as laser

beam and electrical discharge machining, USM process does not thermally damage the workpiece

or introduce significant levels of residual stress, which is important for survival of materials in

service. For having enhanced machining performance and better machined job characteristics, it

is often required to determine the optimal control parameter settings of an USM process. The

earlier mathematical approaches for parametric optimization of USM processes have mostly

yielded near optimal or sub-optimal solutions. In this paper, two almost unexplored non-

conventional optimization techniques, i.e. gravitational search algorithm (GSA) and fireworks

algorithm (FWA) are applied for parametric optimization of USM processes. The optimization

performance of these two algorithms is compared with that of other popular population-based

algorithms, and the effects of their algorithm parameters on the derived optimal solutions and

computational speed are also investigated. It is observed that FWA provides the best optimal

results for the considered USM processes.
� 2014 Faculty of Engineering, Ain Shams University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Due to ever increasing use of advanced materials, such as

carbides, ceramics and nimonics in aerospace, nuclear, auto-
mobile industries because of their high strength-to-weight
ratio, hardness and heat resistant properties, it becomes
essential to develop non-traditional machining processes that

can efficiently machine those materials into intricate shapes
along with improved dimensional features. Ultrasonic
machining (USM) is such a non-traditional machining process
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for precision machining of hard and brittle materials, having
many unique characteristics. This process is non-thermal,
non-chemical, non-electrical and creates no change in the met-

allurgical, chemical or physical properties of the workpiece
material. This process is characterized by low material removal
rate (MRR) and almost no surface damage to the work mate-

rial machined. It can be used for machining both electrically
conductive and non-conductive materials preferably with low
ductility and high hardness into complex shapes with good

accuracy and reasonable surface finish. The process is particu-
larly suitable to machine holes with a curved axis of any shape
on the workpiece material.

In USM process, low-frequency electrical energy is first

converted to a high-frequency electrical signal, which is then
fed to a transducer. The transducer transforms the high-
frequency electrical energy into mechanical vibrations, which

are then transmitted through an energy-focusing device
(horn/tool assembly). This causes the tool to vibrate along
its longitudinal axis at high frequency (usually P20 kHz).

For efficient material removal, the tool and tool holder are
so designed considering their mass and shape that resonance
can be achieved within the frequency range capability of the

machine. A controlled static load is applied to the tool and
abrasive slurry (composing of a mixture of abrasive materials,
such as silicon carbide, boron carbide, alumina, etc. suspended
in oil or water) is pumped around the cutting zone. The

vibration of the tool causes the abrasive particles, held in
slurry between the tool and the workpiece, to impact the
workpiece surface causing material removal by micro-

chipping. The schematic diagram of a typical USM setup is
shown in Fig. 1. An excellent overview on the mechanism of
USM process is available in [1–3].

As the USM process is characterized by low MRR, it is
therefore extremely important to adopt proper steps so as to
improve its rate of metal removal without affecting the surface

finish of the workpiece. This can only be achieved through
optimal selection of various machining parameters influencing
MRR and surface roughness (SR) in USM process. A
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Figure 1 Schematic diagram
comprehensive qualitative and quantitative study on the mate-
rial removal mechanism and subsequent development of rele-
vant analytical models for MRR and SR is therefore

necessary to achieve the optimal machining performance of
USM process. Several attempts have already been made to
investigate the influence of different process parameters on

the two most important performance measures of USM pro-
cess, i.e. MRR and SR.

2. Literature review

Singh and Khamba [4] deduced the relationship between MRR
and other controllable machining parameters, i.e. power rat-

ing, tool type, slurry concentration, slurry type, slurry temper-
ature and slurry size by using Taguchi technique for an USM
process. Dvivedi and Kumar [5] studied the effects of work-

piece material, grit size, slurry concentration, power rating
and tool material on SR of an USM process. Taguchi method
was applied to obtain the optimal parametric setting for that
process. Jain et al. [6] optimized an USM process using genetic

algorithm (GA), giving details of formulation of the optimiza-
tion model, solution methodology used and optimization
result. Singh and Khamba [7] selected tool material, power rat-

ing, slurry type, slurry temperature, slurry concentration and
slurry grit size as the input parameters, and SR as the single
response for an USM process. The outcome of a Taguchi

method-based model was adopted for developing a mathemat-
ical formulation of SR using Buckingham’s p-theorem. Jadoun
et al. [8] applied Taguchi method for identifying the optimal
settings for workpiece material, tool material, grit size of the

abrasive, power rating and slurry concentration of an USM
process. The effects of those process parameters on oversize,
out-of-roundness and conicity were also studied.

Kumar and Khamba [9] determined the optimal combina-
tion of various input factors, such as type of abrasive slurry,
their size and concentration, nature of tool material and power

rating of an USM process applying Taguchi’s multi-objective
optimization technique. Kumar and Khamba [10] determined
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the optimal settings of parameters for an USM process using
Taguchi method and developed a micro-model for prediction
of MRR in USM process using dimensional analysis. Rao

et al. [11] applied simulated annealing (SA) technique for opti-
mization of an USM process and observed that it had a better
performance as compared to GA. Rao et al. [12] considered

amplitude of ultrasonic vibration, frequency of ultrasonic
vibration, mean diameter of abrasive particles, volumetric con-
centration of abrasive particles and static feed force of an

USM process as the control parameters, and maximized the
value of MRR subjected to a given SR constraint. The optimi-
zation of USM process was also carried out using artificial bee
colony (ABC), harmony search (HS) and particle swarm opti-

mization (PSO) algorithms, and the results were compared
with that obtained using GA. Gauri et al. [13] optimized the
correlated multiple responses of two USM processes using

weighted principal component, principal component analysis
(PCA)-based technique for order preference by similarity to
ideal solution (TOPSIS) and PCA-based gray relational

analysis (GRA) methods. Rao and Kalyankar [14] applied
teaching-learning-based optimization (TLBO) algorithm for
optimization of an USM process. The optimization perfor-

mance of TLBO algorithm was compared with that of GA,
SA, ABC, PSO, HS and shuffled frog leaping (SFL) algo-
rithms, and it was observed that TLBO algorithm showed
the best optimization performance. Lalchhuanvela et al. [15]

considered abrasive grit size, slurry concentration, power rat-
ing, tool feed rate and slurry flow rate as the predominant
USM process parameters, and determined the optimal combi-

nation of those process parameters for maximum MRR and
minimum SR using a response surface methodology (RSM)-
based multi-objective optimization technique. In a follow-up

paper, using RSM, Lalchhuanvela et al. [16] studied the effects
of the above-mentioned process parameters on profile accu-
racy of machined hexagonal holes. Das et al. [17] also applied

RSM to develop regression models for MRR and SR in USM
of zirconia bio-ceramics. Those models were then optimized
using GA technique. Chakravorty et al. [18] compared the per-
formance of weighted signal-to-noise (WSN) ratio method,

GRA method, multi-response signal-to-noise (MRSN) ratio
method and utility theory (UT) approach for multi-response
optimization of USM processes. It was shown that WSN ratio

and UT methods would provide better overall optimization
results.

The past researchers have also adopted various evolution-

ary algorithms and hybrid techniques for solving diverse
machining and manufacturing related optimization problems.
Yıldız [19] developed a hybrid optimization approach based
on immune algorithm and hill climbing local search algorithm

for solving design and manufacturing optimization problems.
Its results were also compared with those of GA, feasible direc-
tion method and handbook recommendation. Sayadi et al. [20]

applied a discrete firefly metaheuristic to minimize the make-
span in permutation flow shop scheduling problems. The per-
mutation flow shop problem was formulated as a mixed

integer programming problem and the adopted method was
observed to outperform the existing ant colony optimization
(ACO)-based solutions. Yıldız [21] applied an optimization

approach based on ABC algorithm for optimal selection of
cutting parameters in multi-pass turning operation and com-
pared its performance with that of other evolutionary-based
optimization techniques. Mukherjee et al. [22] also applied
ABC algorithm to optimize two Nd:YAG laser beam machin-
ing processes of practical importance. A comparison of results
with GA, PSO and ACO using two sample paired t-test dem-

onstrated the superiority of ABC algorithm over the others.
Yıldız [23] developed a novel hybrid optimization algorithm
called hybrid robust differential evolution for minimizing pro-

duction cost associated with multi-pass turning operation and
applied it to two case studies to illustrate its effectiveness and
robustness. Its performance was also validated against other

evolutionary algorithms. Goswami and Chakraborty [24]
employed differential search algorithm (DSA) to select the
optimal process parameters for electrochemical micromachin-
ing processes. Two unique characteristics of DSA were identi-

fied to make it a successful search tool for solving multi-modal
functions. Firstly, DSA may simultaneously use more than one
individual; and secondly, it has no inclination to go toward the

so-called best possible solution of the problem. Branke et al.
[25] applied the state-of-the-art covariance matrix adaptation
evolution strategy to find out the best dispatching rules in a

complex job shop scheduling problem. The robustness of the
evolved dispatching rules against variations in the underlying
job shop scenario was also analyzed. Yıldız [26] applied

cuckoo search (CS) algorithm for solving a milling optimiza-
tion problem, and demonstrated its superiority as an effective
and robust approach over the other popular evolutionary algo-
rithms. The CS algorithm was also implemented by Goswami

and Chakraborty [27] to predict trends of multi-dependent
responses in laser transmission welding processes. Subse-
quently, a parametric optimization was also performed to

establish that CS algorithm had a fast convergence rate and
an exceptionally low variability.

Although the past researchers have attempted to solve sin-

gle- and multi-response optimization problems for various
machining operations, especially USM processes, employing
different non-conventional optimization techniques, in most

of the cases, it is observed that sub-optimal or near optimal
results have been arrived at. In this paper, a maiden venture
is taken to optimize the machining parameters of USM pro-
cesses using two almost new non-conventional optimization

techniques, i.e. gravitational search algorithm and fireworks
algorithm which have immense potential to deal with complex
multi-dimensional optimization problems.

3. Gravitational search algorithm

The gravitational search algorithm (GSA) is a newly developed

stochastic optimization technique based on the law of gravity
and mass interactions [28]. The mindset of engineers is such
that they observe and learn from various natural phenomena.

In this algorithm, agents are considered as objects and their
performance is measured by their masses. A collection of
masses, acting as search agents, interacts with each other based
on the Newtonian laws of gravitation and motion. Evidently,

this approach is completely different from other well-known
population-based optimization methods inspired by swarm
behaviors.

All of the objects attract each other by the gravity force,
while this force causes a global movement of all objects toward
the objects with larger masses. This concept is illustrated in

Fig. 2. The large masses correspond to good solutions of the
problem. In other words, each mass represents a solution,
and the algorithm is navigated by properly adjusting the



Figure 2 Gravity force causes a global movement of all objects

toward the largest mass.
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gravitational and inertial masses. With lapse of time, it is
expected that the masses will be attracted by the largest mass,

which represents the optimal solution in the search space [29].
Every agent in GSA is specified by four parameters, i.e.

position of the mass in dth dimension, inertia mass, active

gravitational mass and passive gravitational mass. The posi-
tions of the mass of an agent at specified dimensions represent
a solution of the problem and the inertial mass of an agent
reflects its resistance to make its movement slow. Both the

gravitational mass and the inertial mass, which control the
velocity of an agent in specified dimension, are computed by
fitness evaluation of the problem. The positions of the agents

in specified dimensions (solutions) are updated with every iter-
ation and the best fitness along with its corresponding agent is
recorded. The termination condition of the algorithm is

defined by a fixed amount of iterations, reaching which the
algorithm automatically stops. After termination of the algo-
rithm, the recorded best fitness at final iteration becomes the

global fitness for a particular problem and the position of
the mass at a specified dimension of the corresponding agent
becomes the global solution of that problem.

The algorithm can be summarized as follows [28,30–32]:

Step 1: Initialize the agents.

Initialize the positions of N agents randomly within the

given search interval as follows:

Xi ¼ x1
i ; . . . ; xd

i ; . . . ; xn
i

� �
for i ¼ 1; 2; . . . ;N

where xd
i represents the position of ith agent in dth dimension

and n is the space dimension.
Step 2: Evaluate the fitness values and compute the best fit-

ness for each agent.

Perform the fitness evaluation for all agents at each iter-
ation, and also compute the best and worst fitness at

each iteration as defined below:

bestðtÞ ¼
min

j2 1;...;Nf g
fitjðtÞ; for minimization problems

max
j2 1;...;Nf g

fitjðtÞ; for maximization problems

8<
: ð1Þ

worstðtÞ¼
max

j2 1;...;Nf g
fitjðtÞ; for minimization problems

min
j2 1;...;Nf g

fitjðtÞ; for maximization problems

8<
: ð2Þ
where fitj(t) represents the fitness of jth agent at iteration t, and

best(t) and worst(t) denote the best and the worst fitness at gen-
eration t.

Step 3: Compute the gravitational constant, G.

GðtÞ ¼ G0e
�at=T ð3Þ

where G0 represents the initial value of G, a is a constant and T
is the maximum number of iterations.

Step 4: Calculate the mass of the agents.

Mai ¼Mpi ¼Mii ¼Mi; i ¼ 1; 2; . . . ;N ð4Þ

miðtÞ ¼
fitiðtÞ � worstðtÞ
bestðtÞ � worstðtÞ ð5Þ

MiðtÞ ¼
miðtÞPN
j¼1mjðtÞ

ð6Þ

where Mai, Mpi and Mii are respectively the active, passive and
inertial gravitational masses of ith agent.

Step 5: Calculate accelerations of the agents.
Compute the acceleration of ith agent at iteration t as
follows:

adi ðtÞ ¼
Fd
i ðtÞ

MiiðtÞ
ð7Þ

where Fd
i ðtÞ is the total force acting on ith agent, calculated as

follows:

Fd
i ðtÞ ¼

X
j2Kbest;j–i

randjF
d
ijðtÞ ð8Þ

Kbest is the set of first K agents with the best fitness value and

biggest mass. Kbest is computed in such a manner that it
decreases linearly with time. Fd

ijðtÞ is the force acting on agent
i from agent j at dth dimension and tth iteration, and is com-

puted as follows:

Fd
ijðtÞ ¼ GðtÞMpiðtÞ �MajðtÞ

RijðtÞ þ e
xd
j ðtÞ � xd

i ðtÞ
� �

ð9Þ

where Rij(t) is the Euclidian distance between the two agents i

and j at iteration t, and e is a small positive constant (used to
avoid division by zero).

Step 6: Update velocity and position of the agents.
Compute the velocity and position of the agents at next
iteration (t + 1) using the following relations:

mdi ðtþ 1Þ ¼ randi � mdi ðtÞ þ adi ðtÞ ð10Þ

xd
i ðtþ 1Þ ¼ xd

i ðtÞ þ mdi ðtþ 1Þ ð11Þ

Step 7: Repeat step (2) to step (6) until the iteration process
reaches its set maximum limit.
Return the best fitness computed at final iteration as the

global fitness, and positions of the corresponding agents
at specified dimensions as the global solution of the
problem.

For a simpler and more qualitative perspective of the above
procedure, a flowchart for GSA is presented in Fig. 3.
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Figure 4 Flowchart for fireworks algorithm.
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4. Fireworks algorithm

In recent years, algorithms inspired from swarm intelligence
have become quite popular as a powerful global optimization

tool for solving multi-dimensional problems. These algorithms
evolve from mathematical modeling of biological or social
phenomena, or other laws of nature. Inspired by observing

explosion of fireworks in the night sky, a novel swarm intelli-
gence algorithm called fireworks algorithm (FWA) has
recently been proposed for global optimization of complex
functions [33,34].

When a firework is set off, a shower of sparks fills the local
space around the firework. The explosion process of a firework
can be viewed as a search in the local space around a specific

point where the firework is set off through the sparks gener-
ated in the explosion. When asked to find a point xj satisfying
f(xj) = y, ‘fireworks’ in potential space can be continually set

off until one ‘spark’ targets or is fairly near the point xj.
Simulating the process of setting off fireworks, a basic
framework of FWA is depicted in Fig. 4.

The effectiveness of FWA lies in the good design of the
explosion phenomenon and a proper method for selection of
locations. By carefully observing fireworks displays, two
distinct behaviors of fireworks can be observed. In a good

explosion, numerous sparks are generated and these sparks
centralize the explosion center. In a bad firework, however,
few sparks are generated which are scattered in space. These

two behaviors are illustrated in Fig. 5.
Keeping this in mind, FWA is designed for the general

optimization problems as follows:

Minimize f(x) 2 R, xmin 6 x 6 xmax, where x = x1,x2,
. . .,xd denotes a location in the potential space, f(x) is an
(a) (b)

Figure 5 Two types of fireworks explosion: (a) Good explosion

and (b) bad explosion.

Yes
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Figure 3 Flowchart for gravitational search algorithm.
objective function, and xmin and xmax denote the bounds of
the potential space.

The framework for FWA is given as below:
1. Randomly select n locations for fireworks

2. while stop criteria = false do

3. Set off n fireworks respectively at n locations
4. for each firework xi do

5. Calculate the number of sparks that the firework yields,

ŝi according to Snippet 1
6. Obtain locations of ŝi sparks of the firework xi using

pseudo-code 1
7. end for

8. for k = 1: m̂ do

9. Randomly select a firework xj
10. Generate a specific spark for the firework using pseudo-

code 2
11. end for

12. Select the best location and keep it for the next explosion

generation
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13. Randomly select (n � 1) locations from the two types of

sparks and the current fireworks according to the prob-
ability given in Snippet 2.

14. end while

Snippet 1

ŝi ¼
roundða � mÞ if si < am
roundðb � mÞ if si > bm; a < b < 1
roundðsiÞ otherwise

8<
:

where si ¼ m � ymax�f ðxiÞþnPn

i¼1
ðymax�f ðxiÞÞþn

;

m is a parameter controlling the total number of sparks

generated by n fireworks,
ymax = max(f(xi)), n is a small positive constant used to
avoid division by zero, and a and b are two constant

parameters.

Snippet 2

Selection probability of a location xi is defined as follows:

pðxiÞ ¼ RðxiÞP
j2K

RðxjÞ
;

where RðxiÞ ¼
P

j2Kkxi � xjk, and K is the set of all current
locations of both fireworks and sparks.

Pseudo-code 1: Obtain the location of a spark.

1. Initialize the location of the spark: ~xj ¼ xi
2. z = round(d.rand(0,1))

3. Randomly select z dimensions of ~xj
4. Calculate the displacement: h = Ai. rand(-1,1), where Ai is the

amplitude of explosion of each firework

5. for each dimension ~xjk 2 pre� selectedz dimensions of ~xj
� �

do

6. ~xjk ¼ ~xjk þ h

7. if ~xjk < xmin
k or ~xjk > xmax

k then

8. map x̂jk to the potential space: ~xjk ¼ xmin
k þ k~xjkk% xmax

k � xmin
k

� �
9. end if

10. end for
Table 1 USM process parameters with their levels.

Process parameter Level
Pseudo-code 2: Obtain the location of a specific spark.

11. Initialize the location of the spark: x̂j ¼ xi
12. z = round(d.rand(0,1));

13. Randomly select z dimensions of x̂j
14. Calculate the coefficient of the Gaussian explosion: g =

Gaussian(1,1)

15. for each dimension x̂jk 2 pre� selectedz dimensions of x̂j
� �

do

16. x̂jk ¼ x̂jk � g
17. if x̂jk < xmin

k or x̂jk > xmax
k then

18. map x̂jk to the potential space: x̂jk ¼ xmin
k þ jx̂jkj% xmax

k � xmin
k

� �
19. end if

20. end for
�2 �1 0 1 2
Grit size (lm) (x1) 16 24 34 44 63

Slurry concentration (g/l) (x2) 30 35 40 45 50

Power rating (W) (x3) 300 350 400 450 500

Feed rate (mm/min) (x4) 0.84 0.96 1.08 1.20 1.32
5. Optimization of USM processes

In order to validate the applicability and effectiveness of GSA
and FWA algorithms, the machining performances of two
USM processes are optimized here. The first example is taken
from Das et al. [17], whereas, the second example is cited from
Jain et al. [6]. For arriving at a suitable compromise between

computation speed (CPU time) and solution accuracy, in this
paper, the following parameter settings are used (unless specif-
ically otherwise mentioned) for the two adopted algorithms.

For GSA: N = 20, G0 = 100, maximum number of
iterations = 500 and a = 5.

For FWA: n= 5, m= 75, maximum number of
iterations = 150, a = 0.01 and b= 0.40.

A detailed justification for this choice of parameter settings

is provided later in Section 6.

5.1. Example 1

Das et al. [17] performed USM operation on zirconia bio-
ceramic materials using a Sonic-Mill, 1000 W ultrasonic
machine (having a frequency of vibration of 20 kHz). A flat

plate of 58.5 mm · 58.5 mm · 5.1 mm of zirconia bio-ceramic
was used as the workpiece. Boron carbide powder of different
grain sizes mixed with water at room temperature was used as

the abrasive slurry. Tubular stainless steel (S304) tools, 20 mm
long with 8.2 mm hole diameter, of hexagonal shape were fab-
ricated and used for the machining operation. Das et al. [17]
considered abrasive grit size, slurry concentration, power rat-

ing and tool feed rate as the predominant control parameters.
The values of those USM process parameters along with their
corresponding levels are provided in Table 1. The effects of

those USM process parameters on MRR and SR (in terms
of Ra value) were studied by carrying out a set of planned
experiments using central composite design with 31 experimen-

tal runs. Based on the observed experimental data of Das et al.
[17], two second order regression equations for MRR and SR
are developed using RSM technique. The corresponding

response surface plots for MRR and SR with respect to the
USM process parameters are respectively shown in Figs. 6
and 7.

YMRR ¼ 0:136843þ 0:0170333x1 � 4:91667E� 04x2

þ 0:000458333x3 � 1:41667E� 04x4

þ 0:00471429x2
1 � 7:32143E� 05x2

2 � 8:10714E

� 04x2
3 þ 0:000126786x2

4 þ 0:000150000x1x2

� 1:37500E� 04x1x3 � 0:00210000x1x4

þ 0:000437500x2x3 � 4:50000E� 04x2x4

� 1:87500E� 04x3x4 ð12Þ



Figure 6 Response surfaces for MRR (coded parameter values).

Figure 7 Response surfaces for SR (coded parameter values).
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YSR ¼ 0:652857þ 0:210000x1 þ 0:0250000x2

þ 0:000833333x3 þ 0:00583333x4 þ 0:0976190x2
1

� 0:00488095x2
2 þ 0:00386905x2

3 þ 0:00886905x2
4

þ 0:0300000x1x2 � 0:00250000x1x3

� 0:00250000x1x4 � 0:00250000x2x3

þ 0:0100000x2x4 � 0:00500000x3x4 ð13Þ

Employing Derringer’s desirability function approach for
multi-response optimization, the optimal parametric settings
of grit diameter = 45.91 lm, slurry concentration = 30 g/l,

power rating = 384.85 W and tool feed rate = 1.03 mm/min
were obtained [17]. The maximum value of gravimetric
MRR was observed as 0.1483 g/min and the minimum SR

value was 0.69 lm. Das et al. [17] did not consider single
response optimization of the two responses (MRR and SR).

Based on the respective pseudo-codes, the computer codes

for both GSA and FWA algorithms are developed in MAT-
LAB 7.10.0 (R2010a) in an Intel� Core� i5-2450 M CPU @
2.50 GHz, 4.00 GB RAM operating platform. At first, the
two second order RSM-based equations are separately opti-

mized using both the algorithms and the corresponding single
response optimization results are shown in Table 2. The con-
straints for these two optimization problems are set as

16 6 x1 6 63 (lm), 30 6 x2 6 50 (g/l), 300 6 x3 6 500 (W)
and 0.84 6 x4 6 1.32 (mm/min). From Table 2, it is observed
that using GSA algorithm, the maximum value of MRR is

achieved as 0.1904 g/min and the minimum value of SR is
obtained as 0.4826 lm. On the other hand, the single response
optimization of this USM process using FWA technique pro-
vides a maximumMRR of 0.2007 g/min and a minimum SR of

0.4678 lm. It is found that while applying both GSA and
FWA techniques, the value of MRR is increased and the value
of SR is trimmed down as compared to those obtained by the

desirability function approach. A comparative study revealing
the average CPU times taken by GSA, FWA and other popu-
lar population-based optimization algorithms while solving

this single response optimization problem shows that except
for FWA algorithm, the remaining algorithms are quite similar
to each other with respect to their average CPU times: for

GSA, CPU time = 1.25 s; for ABC, CPU time = 2.93 s; for
ACO, CPU time = 3.35 s; for PSO, CPU time = 4.53 s; and
for GA, CPU time = 3.05 s. For FWA algorithm, the average
CPU time is slightly higher as 7.79 s. In Table 2, the optimal

values of two responses (MRR and SR) and settings of differ-
ent USM process parameters as achieved by GA, ACO, PSO
and ABC algorithms are also provided. Fig. 8 shows the con-

vergence diagram for all the considered optimization algo-
rithms with respect to SR response. It proves the faster
convergence of GSA and FWA algorithms toward the mini-

mum SR value against the other optimization algorithms. In
order to compare the relative optimization performance of
GSA and FWA algorithms, two sample paired t-tests are also
performed in Table 3 for both the responses to study the exis-

tence of significant differences between these two algorithms.
Table 3 reveals that these two algorithms are statistically dif-
ferent at 5% significance level with respect to their optimiza-

tion performance. It is also observed that the optimization
performance of FWA is relatively more consistent than that
of GSA.



Table 2 Results of single response optimization.

Optimization method Response Optimal value Parameter

x1 x2 x3 x4

GSA MRR (g/min) 0.1904 60.4666 49.9385 440.5590 0.8815

SR (lm) 0.4826 22.4998 48.9586 388.1507 0.9190

FWA MRR (g/min) 0.2007 63.0000 50.0000 444.1997 0.8400

SR (lm) 0.4678 22.7672 50.0000 339.3737 0.8401

GA MRR (g/min) 0.1535 52.7098 44.8183 300.0000 1.2483

SR (lm) 0.6977 44.7634 30.0008 369.5321 0.9307

ACO MRR (g/min) 0.1730 54.6579 50.0000 455.1514 0.8790

SR (lm) 0.5253 32.8093 30.0000 403.1287 1.1735

PSO MRR (g/min) 0.1698 53.2673 50.0000 496.9831 0.8400

SR (lm) 0.5647 22.6487 33.7365 319.6699 1.0291

ABC MRR (g/min) 0.1795 57.8587 32.6227 438.4538 0.8818

SR (lm) 0.5125 22.5449 45.6502 341.6648 0.9681
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Figure 8 Convergence diagram with respect to SR response.
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Now, for multi-response optimization of the above-consid-
ered USM process, the following objective function is

developed.

MinðZÞ ¼ w1YSR

SRmin

� w2YMRR

MRRmax

ð14Þ

where w1 and w2 are the weights (relative importance) assigned
to SR and MRR respectively, and SRmin is the minimum value

of SR, and MRRmax is the maximum value of MRR. These
minimum and maximum values of the responses are obtained
from the single response optimization results. The weight val-

ues allotted to the responses are so chosen that w1 + w2 = 1.
The choice for these weights entirely depends on the preference
Table 3 Two sample paired t-tests between GSA and FWA algorit

Optimization method Response Sample size Optim

GSA MRR (g/min) 20 0.1904

SR (lm) 20 0.4826

FWA MRR (g/min) 20 0.2007

SR (lm) 20 0.4678

MRR: Estimate for average difference = 0.01934, 95% CI for mean differ

t-value = 5.14, p-value = 0.000.

SR: Estimate for average difference = 0.0801, 95% CI for mean differen

value = 4.33, p-value = 0.000.
of the process engineers or they can be determined using ana-

lytic hierarchy process. Table 4 shows the results of multi-
response optimization while employing both GSA and FWA
techniques for three different situations, i.e. case 1:

w1 = w2 = 0.5; case 2: w1 = 0.1, w2 = 0.9; and case 3:
w1 = 0.9, w2 = 0.1. For all these three cases, FWA provides
better solutions as compared to GSA, and it is also revealed

that the most acceptable and compromised optimization
results are obtained when equal importance is allotted to both
the responses (for case 1).

The scatter plots in Figs. 9 and 10 respectively exhibit the

variations of MRR and SR with respect to four USM process
parameters, based on the results as derived using FWA tech-
nique. The dots in these scatter plots represent the locations

in the search space that are navigated by the algorithm in
one simulation run. Together with the developed response sur-
faces of Figs. 6 and 7, these figures can be used to understand

the trends in both responses within the selected range of pro-
cess parameters.

For USM operation of zirconia bio-ceramics, the following

conclusions regarding the parametric influences on MRR and
SR can be drawn from Figs. 6, 7, 9 and 10.

(a) Grit size is the most influential factor for both MRR and

SR. As grit size increases, causing an increase in the
average diameter of abrasive particles, more material
can be chipped away from the workpiece in the same

time, thus leading to an increase in MRR. Larger abra-
sive particles also signify that the surface finish will grad-
ually deteriorate, thus causing an increase in SR with

increasing grit size.
hms.

al value Mean Standard deviation Standard error

0.1753 0.0123 0.00275

0.5987 0.0634 0.0142

0.1946 0.0083 0.00186

0.5186 0.0292 0.0065

ence = (0.01146, 0.02721), t-test of mean difference = 0 (vs not = 0),

ce = (0.0414, 0.1189), t-test of mean difference = 0 (vs not = 0), t-
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Figure 9 Effects of USM process parameters on MRR.

Table 4 Multi-response optimization results using GSA and FWA.

Condition Method Response Value Z Parameter

x1 x2 x3 x4

Case 1: w1 = w2 = 0.5 GSA MRR 0.1079 0.2353 16.0000 50.0000 311.5241 0.8400

SR 0.5006

FWA MRR 0.1182 0.2101 24.1460 50.0000 389.0573 0.8971

SR 0.4722

Case 2: w1 = 0.1, w2 = 0.9 GSA MRR 0.1755 �0.5069 61.3941 47.2714 314.0399 1.2248

SR 1.5569

FWA MRR 0.1972 �0.5972 63.0000 30.0000 379.0712 0.8400

SR 1.3438

Case 3: w1 = 0.9, w2 = 0.1 GSA MRR 0.1072 0.8556 17.4949 50.0000 300.0000 0.8400

SR 0.4890

FWA MRR 0.1144 0.8432 22.9322 50.0000 347.9497 0.8490

SR 0.4679
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(b) Both the response surfaces and scatter plots indicate that

MRR and SR are least sensitive to slurry concentration.
A slight increase in MRR is although observed with
increase in slurry concentration. At lower values of

MRR (as governed by the other process parameters),
this increasing effect is more pronounced. Although neg-
ligible for all practical purposes, SR varies non-linearly

with slurry concentration. Maximum SR is observed at
values near the central level (�40 g/l) of slurry concen-
tration while SR values are lower at both the extreme

levels.
(c) MRR varies non-linearly with power rating. Highest

values of MRR are obtained when power rating is main-
tained around its central level (�400 W). At either end

of the investigated power rating range, MRR values
tend to decrease. The SR response shows quite an inter-
esting behavior for changing values of power rating. The

overall trend in Fig. 10 indicates a steady increase in SR
with increasing power ratings. However, when grit size

and slurry concentration are held at their central levels,
it is observed from Fig. 7 that for low values of feed rate,
SR increases with increasing power rating, while for high

values of feed rate, SR is found to decrease with increas-
ing power rating.

(d) A gradual increase in tool feed rate leads to decreasing

values for MRR. For SR response, the effect of feed rate
is rather more complex. For low power ratings, surface
finish deteriorates (i.e. SR increases) as tool feed rate is

increased, while for high power ratings, the best surface
finish (i.e. minimum SR) can be achieved at intermediate
values of feed rate. This behavior indicates that there
exists a high degree of interaction between these two pro-

cess parameters, i.e. power rating and feed rate.

The most challenging aspect in optimizing any machining

process is that MRR and SR are the two conflicting objectives.
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Figure 10 Effects of USM process parameters on SR.

324 D. Goswami, S. Chakraborty
It can be reconfirmed in Fig. 11 which clearly shows that when
higher values of MRR are desired, the resulting surface quality
must worsen, leading to higher SR values. Thus, during multi-

response optimization of a machining process, there must be
some trade-off between these two conflicting objectives.

5.2. Example 2

Jain et al. [6] considered a constrained optimization problem
for USM process having five machining parameters as ampli-

tude of vibration (Av) (mm), frequency of vibration (fv) (Hz
or cycles/s), mean diameter of abrasive grains (dm) (mm), vol-
umetric concentration of abrasive particles in slurry (Cav) and
static feed force (Fs) (N). A mathematical model for maximiz-

ing the volumetric MRR (mm3/s) was also developed as given
in Eq. (15).
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Figure 11 Overall variation of SR with respect to MRR.
MRR ¼ 4:963A0:25
t K0:75

usm

½rfwð1þ kÞ�0:75
F0:75
s A0:75

v C0:25
av dmfv ð15Þ

Here At is the cross-sectional area of cutting tool (mm2), Kusm

is a constant of proportionality (mm�1) relating mean diame-
ter of abrasive grains and diameter of projections on an abra-
sive grain, rfw is the flow strength of the workpiece material

(MPa or N/mm2), k is the indentation ratio, and Fs is the sphe-
ricity factor of the abrasive particles. The developed model for
MRR is subjected to a constraint for SR, as given by Eq.

(16).SR constraint:

1� 1154:7

½Atrfwð1þ kÞ�0:5ðRaÞmax

FsAvdm
Cav

� 	0:5
� 0:0 ð16Þ

The bounds used by Jain et al. [6] for the considered process

variables are given as below:

0:005 6 Av 6 0:1 ðmmÞ; 10; 000 6 fv 6 40; 000 ðHzÞ; 0:007
6 dm 6 0:15 ðmmÞ; 0:05 6 Cav 6 0:5; 4:5 6 Fs 6 45 ðNÞ

Using GA, Jain et al. [6] solved this constrained optimiza-

tion problem to achieve the maximum MRR value of
3.553 mm3/s with a constrained value of SR (in terms of Ra)
as 0.0214 lm. Subsequently, Rao et al. [12] applied ABC, HS

and PSO algorithms to solve the same model, and then
adopted SA algorithm for parametric optimization of the same
USM process [11]. In a recent work, Rao and Kalyankar [14]

applied TLBO algorithm for solving the same constrained
optimization problem and obtained a maximum value of
MRR as 4.004 mm3/s with a constrained Ra value of
0.0003 lm. The optimal settings for the considered process

parameters were obtained as amplitude of vibra-
tion = 0.0611 mm, frequency of vibration = 40,000 Hz, mean
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Figure 12 Convergence diagram with respect to MRR.
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diameter of abrasive grains = 0.15 mm, volumetric concentra-
tion of abrasive particles in slurry = 0.5, and static feed
force = 4.5 N. The execution time for TLBO algorithm was

observed around 0.35 s.
Now, using GSA and FWA techniques, this constrained

optimization problem for maximizing MRR is solved, and

the corresponding results are shown in Table 5, along with
those obtained from the other popular optimization tech-
niques. Here, the values for all the constants involved in the

optimization model are kept same as those considered by Jain
et al. [6]. For dealing with the complicated inequality
constraint, the death penalty method is employed here. From
the results of Table 5, it is observed that for GSA, the maxi-

mum value of MRR is 3.9600 mm3/s which is better than that
obtained by GA (3.553 mm3/s) [6], SA (3.660 mm3/s) [11],
ABC (3.941 mm3/s) [12], HS (3.870 mm3/s) [12], PSO

(3.950 mm3/s) [12], ACO (3.8781 mm3/s) and SFL
(3.894 mm3/s) [14] algorithms, but is worse than the MRR
value as resulted from applying TBLO algorithm

(4.004 mm3/s) [14]. It indicates that GSA is not so efficient
for constrained optimization problems, as it is mainly devel-
oped for unconstrained problems. However, it is an excellent

algorithm for optimization problems with respect to very fast
convergence and low computational time.

On the other hand, using FWA technique, the maximum
MRR value is derived as 4.0061 mm3/s which is better than

that obtained by Rao and Kalyankar [14] employing TLBO
algorithm. The convergence diagram for the considered
algorithms with respect to MRR is exhibited in Fig. 12.

Table 6 compares the performance of GSA and FWA algo-
rithms while solving this single response optimization problem
for the considered USM process. The average CPU times for

these two algorithms are observed as 3.96 and 6.97 s respec-
tively. From Table 6, it is quite clear that FWA technique out-
performs GSA algorithm with respect to consistency of the

optimal solutions although it takes almost twice of the average
CPU time as compared to that of GSA algorithm. The result
of paired t-test, as given in Table 6, highlights that the optimi-
zation performance of FWA algorithm is statistically different

(at 5% significance level) from that of GSA algorithm.
Fig. 13 displays the effects of amplitude of vibration,

frequency of vibration, mean diameter of abrasive grains, vol-

umetric concentration of abrasive particles in slurry and static
feed force on MRR for the considered USM process. Since
FWA provides the best optimal results, it is used to generate

the data for the scatter plots. Maximum MRR can be achieved
at lower values of amplitude of vibration and static feed force.
Table 5 Parametric optimization of USM process using different m

Optimization method MRRmax Constraint Av

GSA 3.9600 8.0410E�4 0.01

FWA 4.0061 7.1248E�5 0.02

ABC [12] 3.941 0.0124 0.01

ACO 3.8781 0.0199 0.05

PSO [12] 3.95 0.0095 0.06

GA [6] 3.553 0.0214 0.02

SA [11] 3.660 0.0185 0.07

SFL [14] 3.894 0.0079 0.02

HS [12] 3.870 0.0244 0.05

TLBO [14] 4.004 0.0003 0.06
On the other hand, MRR goes on increasing with the increased
values of frequency of vibration, mean diameter of abrasive
grains and volumetric concentration of abrasive particles in

slurry. Hence, the desired value of maximum MRR can be
achieved at higher values frequency of vibration, mean diame-
ter of abrasive grains and volumetric concentration of abrasive

particles in slurry, and lower values of amplitude of vibration
and static feed force. These phenomena can be confirmed from
the optimization results as already given in Table 5.

6. Effects of algorithm parameters on optimization performance

It is quite obvious that the optimal solutions as derived using
GSA and FWA algorithms will be affected by the varying val-

ues of their algorithm specific parameters. To investigate their
effects on the optimal solution quality and average CPU time
for both the algorithms, sample experiments are performed on

the MRR objective function (which is a maximization prob-
lem) of the USM process considered in Example 1. The results
obtained are shown in Tables 7-15 and graphically exhibited in

Figs. 14-22. In these figures, the vertical error bars denote the
standard deviation values obtained during the simulation runs.
Generalized trends in performance with respect to different

algorithm parameters are expected to be similar if other objec-
tive functions are deployed. Results are of course subject to
statistical variability. If a minimization objective function is
used (say SR) for this purpose, then the increasing MRR

trends in these figures will become decreasing SR trends. The
ethods.

fv dm Cav Fs

76 39,876 0.1441 0.5 16.2511

57 39956.28 0.1500 0.5 10.7071

67 40,000 0.15 0.5 16.4

91 40,000 0.15 0.5 4.5

40,000 0.15 0.5 4.5

63 39333.9 0.1336 0.479 10.8

7 40,000 0.114 0.5 4.53

271 40,000 0.14 0.5 12.78

82 40,000 0.15 0.5 4.5

11 40,000 0.15 0.5 4.5



Table 6 Result of two sample paired t-test between GSA and FWA algorithms.

Optimization method Response N Optimal value Mean Standard deviation Standard error

GSA MRR (mm3/s) 20 3.9600 3.9395 0.0118 0.0026

FWA MRR (mm3/s) 20 4.0061 4.0045 0.0015 0.0003

Estimate for average difference = 0.0650, 95% CI for mean difference = (0.0594, 0.0705), t-test of mean difference = 0 (vs not = 0), t-

value = 24.49, p-value = 0.000.
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Figure 13 Effects of different USM process parameters on MRR.
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CPU time trends will however remain almost the same. The
effects of algorithm parameters for these two algorithms were

not addressed by the past researchers [28,33]. They simply sug-
gested a combination of those parameters without any scien-
tific justification.
6.1. GSA algorithm

From the pseudo-code of GSA, as given in Section 3, it is clear
that its optimization performance will be influenced by popu-
lation size (N), maximum number of iterations (T), initial value



Table 7 Effects of population size on MRR and CPU time at varying values of a.a

N a = 5 a = 20

Mean MRRmax (g/min) St. dev. Mean CPU time (s) St. dev. Mean MRRmax (g/min) St. dev. Mean CPU time (s) St. dev.

10 0.1807 0.00425 0.7878 0.00719 0.17612 0.00548 0.7722 0.00239

20 0.1824 0.00406 1.2556 0.00518 0.17516 0.00668 1.2328 0.00804

30 0.1868 0.00282 1.9066 0.00537 0.17888 0.00707 1.9234 0.02858

40 0.1865 0.00129 2.8136 0.01873 0.17410 0.00373 2.8068 0.00691

50 0.1873 6.02E�04 3.9350 0.02215 0.17922 0.00576 3.9394 0.00658

a Hold values: G0 = 100 and maximum number of iterations = 500.

Table 8 Effects of number of iterations on MRR and CPU time at different values of N.a

Max.

iterations

N= 10 N= 20

Mean MRRmax

(g/min)

St.

dev.

Mean CPU

time (s)

St.

dev.

Mean MRRmax

(g/min)

St.

dev.

Mean CPU

time (s)

St.

dev.

200 0.17132 0.00803 0.5876 0.00288 0.17204 0.00676 0.7690 0.00596

400 0.17546 0.00873 0.7082 0.00445 0.18408 0.00334 1.0812 0.00476

600 0.17656 0.00273 0.8314 0.00577 0.18552 0.00325 1.3920 0.01086

a Hold values: G0 = 25 and a = 5.

Table 13 Effects of number of iterations on MRR and CPU

time.a

Max.

iterations

Mean MRRmax

(g/min)

St. dev. Mean CPU

time (s)

St. dev.

50 0.16244 0.00520 0.5204 0.00688

100 0.17882 0.00246 1.0398 0.00904

150 0.18676 0.00521 1.5874 0.08099

300 0.19266 0.00667 3.1102 0.03408

500 0.18802 8.81E�04 5.1388 0.0154

700 0.18778 8.58E�04 7.1686 0.02948

a Hold values: a = 0.04, b= 0.8, n= 5, m= 25.

Table 10 Effects of the value of a on MRR and CPU time.a

a Mean MRRmax (g/min) St. dev. Mean CPU time (s) St. dev.

5 0.18958 0.00105 1.2338 0.00311

10 0.18310 0.00428 1.2374 0.00744

15 0.17818 0.01022 1.2452 0.01223

20 0.17965 0.00617 1.2425 0.00453

25 0.16590 0.01162 1.2352 0.00715

a Hold values: N= 20, maximum number of iterations = 500

and G0 = 25.

Table 12 Impacts of total number of generated sparks on

MRR and CPU time.a

m Mean MRRmax (g/min) St. dev. Mean CPU time (s) St. dev.

25 0.18676 0.00521 1.5874 0.08099

50 0.18460 0.00193 4.4338 0.02284

75 0.19370 0.00491 8.8194 0.00811

100 0.20001 0.00317 14.6522 0.10938

a Hold values: Maximum number of iterations = 150, a= 0.04,

b= 0.8, n= 5.

Table 11 Effects of number of fireworks on MRR and CPU

time.a

n Mean MRRmax (g/min) St. dev. Mean CPU time (s) St. dev.

5 0.18676 0.00193 4.4338 0.02284

10 0.18544 0.00148 6.3664 0.05430

15 0.18778 7.95E�04 8.9032 0.07527

a Hold values: Maximum number of iterations = 150, a= 0.04,

b= 0.8, m = 50.

Table 9 Effects of G0 value on MRR and CPU time.a

G0 Mean MRRmax (g/min) St. dev. Mean CPU time (s) St. dev.

25 0.17965 0.00617 1.2425 0.00453

50 0.17206 0.00857 1.5394 0.27711

75 0.16764 0.01222 1.2400 0.00822

100 0.17516 0.00668 1.2328 0.00804

a Hold values: N= 20, maximum number of iterations = 500

and a = 20.

Table 14 Effects of value of a on MRR and CPU time.a

a Mean MRRmax (g/min) St. dev. Mean CPU time (s) St. dev.

0.01 0.17508 0.00555 0.9730 0.00632

0.04 0.17882 0.00246 1.0398 0.00904

0.10 0.17574 0.00574 1.2410 0.01198

0.50 0.18536 0.00667 4.2762 0.03343

a Hold values: Maximum number of iterations = 100, b= 0.8,

n= 5, m= 25.
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Table 15 Effects of value of b on MRR and CPU time.a

b Mean MRRmax (g/min) St. dev. Mean CPU time (s) St. dev.

0.1 0.17226 0.00572 0.40704 0.00692

0.4 0.19174 0.00887 0.97758 0.01900

0.8 0.17882 0.00246 1.03980 0.00904

1.5 0.18362 0.00795 1.03300 0.00652

2.5 0.19588 0.00690 1.05874 0.00727

a Hold values: Maximum number of iterations = 100, a= 0.04,

n= 5, m= 25.
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Figure 14 Effects of population size on MRR and CPU time at

varying values of a.
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Figure 15 Effects of number of iterations on MRR and CPU

time at changing values of N.
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Figure 16 Effects of G0 value on MRR and CPU time.
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of G (G0) and value of constant a. Table 7 and Fig. 14 first
show the effects of population size on mean achieved MRRmax

and average CPU time for varying values of a (i.e. a = 5 and

a = 20). It is observed that with increasing values of popula-
tion size, mean CPU time also goes on increasing almost line-
arly for both the values of a. On the other hand, with the

increase in population size, higher mean MRRmax values are
achieved for a lower value of a at 5. But, for both the values
of a, population size has almost no effect on the value of mean

MRRmax. In Table 8 and Fig. 15, the influences of number of
iterations on mean MRRmax and mean CPU time at changing
values of population size are investigated. With the increment
in number of iterations, both mean CPU time and mean

MRRmax increase almost linearly, and the increase in their val-
ues is higher for larger value of population size (i.e. N = 20).
The effects of the initial value of G (G0) on mean CPU time

and mean MRRmax are demonstrated in Table 9 and Fig. 16.
It is clear that the initial value of G (G0) has almost no effect
on mean CPU time and mean MRRmax. Lastly, the influences

of the value of a on MRR and CPU time are studied in
Table 10 and Fig. 17. From there, it can be visualized that
the value of mean CPU time remains almost unaffected with

the changing values of a. On the other hand, the MRRmax goes
on decreasing with the increasing values of a. Quite interest-
ingly, this observation can also be re-confirmed from a differ-
ent perspective through Fig. 14.

6.2. FWA algorithm

The optimization performance and computational speed of

FWA algorithm will also be controlled by various parameters
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Figure 18 Effects of number of fireworks on MRR and CPU

time.
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Figure 20 Effects of number of iterations on MRR and CPU

time.
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such as: number of fireworks (n), total number of sparks gen-
erated by n fireworks (m), maximum number of iterations, and
values of two constants, a and b. The effects of number of ini-
tial locations/number of fireworks on mean CPU time and

mean MRRmax are studied in Table 11 and Fig. 18. It can be
shown that mean CPU time goes on increasing linearly with
the increase in the value of number of fireworks. But with
the increasing values of number of fireworks, the mean
MRRmax remains almost unaltered. Table 12 and Fig. 19 exhi-
bit the impacts of the total number of sparks generated by n
fireworks on mean CPU time and mean MRRmax. It is clear

from these analyses that both mean CPU time and mean
MRRmax increase almost linearly with the increment in the
value of total number of generated sparks. Table 13 and
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Figure 22 Effects of value of b on MRR and CPU time.
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Fig. 20 demonstrate the effects of number of iterations of
FWA algorithm on its performance with respect to mean
CPU time and mean MRRmax. These analyses exhibit that,

quite obviously, the mean CPU time goes on increasing line-
arly with the increase in the number of iterations for FWA
algorithm. In case of maximum achieved MRR, it first

increases with the increasing values of number of iterations
and then at higher number of iterations, its value remains
undisturbed. Lastly, the effects of two constants, a and b (see
algorithm Snippet 1, Section 4) on mean CPU time and mean
MRRmax are depicted in Tables 14 and 15 and Figs. 21 and 22.

In both the cases, the mean CPU time increases with the
increase in the values of a and b. On the other hand, there
are marginal increments in achieved maximum MRR, when

the values of both the constants are increased within the given
boundaries.

7. Conclusions

In this paper, two almost unexplored non-conventional opti-
mization techniques, i.e. GSA and FWA algorithms are

applied for optimizing the responses of USM process. It is
observed that the optimization performance of FWA tech-
nique is better than that of GSA and other popularly adopted

population-based algorithms, although on an average, it takes
slightly more computational time. It is also found that the
optimization performances of these two algorithms are statis-
tically different at 5% significance level. The study of investi-

gating the effects of different algorithm-specific parameters
on the achieved optimal solution and CPU time of these two
algorithms will help in exploiting the best compromise perfor-

mance from the considered algorithms. The derived optimal
parametric combinations for USM process will guide the pro-
cess engineers in achieving better machining performance,

exploiting the full potential of those processes. The process
engineers can now select the best combination of USM process
parameters, not solely depending on the manufacturer’s data
or handbook data. The FWA technique can be applied as a

global optimization tool for multi-response optimization of
other non-traditional machining processes too.
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