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Abstract

Structural properties of isometric subgraphs of Hamming graphs are presented, generalizing
certain results on quasi-median graphs. Consequently, a relation on the edge set of a graph which
is closely related to Winkler–Djokovi6c’s relation � is introduced and used for a characterization
of isometric subgraphs of Hamming graphs. Moreover, some results considering semi-median
graphs and expansions on isometric subgraphs of hypercubes are extended to general non-bipartite
case. c© 2001 Elsevier Science B.V. All rights reserved.

Keywords: Distance; Isometric subgraph; Hamming graph; Partial cube; Expansion; Convexity

1. Introduction

Isometric subgraphs of Hamming graphs (partial Hamming graphs) and related
classes of graphs have been considered by several authors over the last years. In par-
ticular, isometric subgraphs of hypercubes (partial cubes) which are precisely bipartite
partial Hamming graphs have been investigated in the 1970s by Graham and Pollak [4]
where they were used as a model for a communication network. Later, partial cubes
have drawn attention of several other authors who proved their characterizations such
as Djokovi6c [3] and Winkler [12]. Recently, Imrich and Klav#zar proposed a hierarchy
of classes of partial cubes, including semi-median graphs [6]. Semi-median graphs were
introduced as partial cubes for which certain sets Uab are connected for every edge ab
of a graph, and several properties of these graphs were established (see also a more
recent paper [8]).
Usually from a result on partial Hamming graphs we quickly obtain a corollary on

partial cubes. On the other hand, non-bipartite generalizations of results on partial cubes
are often rather diDcult. Partial Hamming graphs have been studied by Chepoi [2] and
Wilkeit [11], and they proved several characterizations of these graphs (see also [5]
where isometric embeddings of graphs are presented in a more general setting, and
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[7] where partial Hamming graphs and related classes of graphs are studied from the
algorithmic point of view). In this paper, we will use several structural properties of
partial Hamming graphs given in [2,11] to prove new characterizations of these graphs
and to shed more light on the expansion procedure in partial Hamming graphs.
We will use the procedure of expansion on the partial Hamming graphs which was

introduced by Chepoi [2]. More precisely, he proved that the partial Hamming graphs
are precisely the graphs that can be obtained by a sequence of expansions from a
one-vertex graph. We also refer to Mulder [10] who introduced quasi-median graphs
along with the procedure of expansion on these and some related classes of graphs.
Characterizations of graphs via an expansion procedure have been studied extensively
in [9], see also references there.
In the sequel of this section, we Jx the notation and state some simple preliminary

results. In Section 2, we use known properties of partial Hamming graphs [2,11] to
prove some new properties of these graphs. Some of the claims in this section may
be viewed as generalizations of results on quasi-median graphs [1,10]. Next, because
of these properties we introduce a certain relation (denoted by �) on the edge-set
of a connected graph. The transitivity of this relation is a basic condition for new
characterizations of partial Hamming graphs. These characterizations can be viewed as
extensions of Winkler’s result [12, Theorem 4] in which transitivity of the well-known
relation � is used. In Section 3 a contraction of edges of a partial Hamming graph is
introduced using the relation �. This contraction is basically the opposite operation to
expansion deJned by Chepoi [2]. Then, a connected and an isometric expansion are
deJned as special cases of Chepoi’s expansion in the same way as in [6]. We introduce
semi-quasi-median graphs analogous to the semi-median graphs introduced in [6]. It
is proved that they can be obtained by the connected expansion procedure from a
one-vertex graph. On the other hand, we show that the isometric expansion procedure
always produces semi-quasi-median graphs. These two theorems are generalizations of
results on semi-median graphs [6].
Let G=(V (G); E(G)) be a graph. The distance in G between vertices u; v is denoted

by dG(u; v) (or d(u; v)) and is deJned as the number of edges on a shortest u; v-path.
The distance between a vertex u and a subgraph H of a graph G is denoted by dG(u; H)
and is deJned as minv∈ V (H){dG(u; v)}. A subgraph H of a graph G is called isometric
if dH (u; v) = dG(u; v) for all u; v∈V (H). For a subset U of V (G) we will denote by
〈U 〉 a subgraph induced by vertices of U .
A graph G is a partial Hamming graph if its vertices can be labeled by words (or

labels) of a Jxed length k over some Jnite alphabet �; so that for any two vertices
in G; say u; v; the distance d(u; v) between u and v equals the Hamming distance
H (f(u); f(v)) between their labels f(u) and f(v), which is deJned as the number
of positions on which the two labels diOer. The function f :V (G) → �k is called a
Hamming labeling of G. If in addition, � can be chosen to have only two symbols,
then G is called a partial cube.
The Cartesian product G=G1 G2 · · · Gk of graphs G1; G2; : : : ; Gk has the vertex-

set V (G) = V (G1) × V (G2) × · · · × V (Gk) and two vertices u = (u1; u2; : : : ; uk);
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v= (v1; v2; : : : ; vk) are adjacent in G if there exists an index j (16j6k) such that

ujvj ∈E(Gj)
and

ui = vi for all i∈{1; 2; : : : ; k}\{j}:
If all the factors in a Cartesian product are complete graphs then G is called a Hamming
graph and if all factors are graphs K2 then G is called a hypercube or simply a
k-cube. It is obvious that partial Hamming graphs are precisely isometric subgraphs of
Hamming graphs.
For an edge ab of a graph G we introduce the following sets:

Wab = {x∈V (G): d(x; a)¡d(x; b)};
Uab = {x∈Wab: x has a neighbor y in Wba};
Fab = {xy∈E(G): x∈Uab; y∈Uba}:

Djokovi6c’s relation ∼ was originally deJned as follows [3]: two edges xy; ab∈E(G)
are in relation ∼, if

x∈Wab and y∈Wba:

Note that the set of edges in Fab is precisely the set of edges in relation ∼ with
the edge ab. Obviously, a∈Uab; b∈Uba so the relation ∼ is rePexive. If for edges
ab; uv∈E(G) we have u∈Uab and v∈Uba then a∈Uuv and b∈Uvu and the relation
is also symmetric, such that

d(u; a) = d(v; b) = d(v; a)− 1 = d(u; b)− 1: (1)

However, the relation is not transitive in general (consider for instance K2;3). We also
note that in non-bipartite graphs the sets Wab and Wba do not necessarily cover V (G).
We mention that in bipartite graphs Djokovi6c’s relation is equivalent to a relation �
introduced by Winkler [12]: xy�ab, if

d(x; a) + d(y; b) �= d(x; b) + d(y; a):

The relation � plays an important role in the theory of isometric embeddings in Ham-
ming graphs. In the non-bipartite case, ∼ is contained in �, but ab�xy does not imply
ab ∼ xy in general (K3 is an example).

The set I(u; v) of all vertices in G which lie on shortest paths between vertices
u; v∈V (G) is called an interval. A set A in V (G) is called convex if I(u; v)⊆A for
all u; v∈A and a subgraph H in G is convex if its vertex set is convex. A subgraph
H of a graph G is called gated in G if for every x∈V (G) there exists a vertex u in
H such that u∈ I(x; v) for all v∈V (H): If for some x such a vertex u in V (H) exists,
it must be unique. We denote this unique vertex by �H (x) and we call it the gate of
x in the subgraph H: As in [11] we denote for a subgraph H in G,

Wa(H) = {x∈V (G): a is the gate of x in H} (a∈V (H));

W (H) = {x∈V (G): for each a∈H; d(a; x) = d(H; x)}:
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If in a subgraph H of G for every x∈V (G) there exists either a gate �H (x) or x∈W (H)
then H is called pseudo-gated in G. We note that if H is pseudo-gated then V (G) =
⋃
a∈H Wa(H) ∪ W (H). Obviously, every edge of a graph is pseudo-gated and every

gated subgraph of G is pseudo-gated. A maximal complete subgraph of G is called a
clique in G. A complete graph on four vertices with an edge deleted is denoted by
K4− e. We observe that the cliques in K4− e are two triangles and they are not gated,
moreover they are not even pseudo-gated.

2. The structure of partial Hamming graphs

In this section, some new results considering the structure of partial Hamming graphs
are presented in a way similar to the way known for the quasi-median graphs [10].
Then, a new relation � on the edge set of a graph which is in a close relationship
with relation � is introduced. We use this relation to prove new characterizations of
partial Hamming graphs.
First, let us recall some properties of these graphs. They have been established by

Chepoi [2] (assertions (i), (iv) and implicitly some of the rest assertions) and by
Wilkeit [11].

Theorem 1 (Chepoi [2], Wilkeit [11]). If G is a partial Hamming graph then

(i) if ab∈E(G) then the sets Wab and Wab ∪Wba are convex;
(ii) for edges xy; ab∈ (G): ab ∼ xy ⇒ Wab =Wxy;
(iii) K2;3; K4 − e and C2n+1 (n¿2) are not isometric subgraphs in G;
(iv) every clique in G is pseudo-gated;
(v) if xy is an edge of G and if K is a clique of G; maximum with respect to

containing an edge ab; such that ab ∼ xy; then K is gated;
(vi) if a vertex w∈V (G) has the same distance to adjacent vertices x and y of G;

then any two neighbors u∈Wxy and v∈Wyx of w are adjacent.

From the property (ii) of the above theorem we deduce transitivity of the relation
∼ in partial Hamming graphs.

Proposition 2. Let ab be an edge of a partial Hamming graph G. The edges in Fab in-
duce a matching between Uab and Uba. Furthermore; a mapping ’ :Uab→Uba; ’(x)=y;
where xy is an edge in Fab; induces an isomorphism between 〈Uab〉 and 〈Uba〉.

Proof. Suppose that u∈Uab is adjacent to both v and w in Uba. From the convexity
of Wba it follows that v and w are adjacent. Using (1) we have

d(b; v) = d(b; w) = d(b; u)− 1

and a clique containing u; v and w would not be pseudo-gated, a contradiction.
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Fig. 1. In this graph Uab �= Uax .

For the second part, we have to prove that if uv∈E(G) for the vertices u; v∈Uab
then xy∈E(G) where x= ’(u); y= ’(v)∈Uba. Suppose on the contrary that x and y
are not adjacent. Since Wba is convex, d(x; y) must be less than 3; i.e. d(x; y)=2, and
let w be a mutual neighbor of x and y in Wba. However, applying Theorem 1(iii) and
using the fact that vertices u; v; x; w; y form a C5, there must be another edge connecting
two of these vertices. Vertices u and v cannot be endvertices of such an edge because
they are already matched to vertices from Uba: The remaining possibility is that x and
y are adjacent and the claim is proved.

From Theorem 1(iv) we get

Proposition 3. For each vertex a in a partial Hamming graph G we have
Wab =Wax =Wa(C); where a; b and x are vertices in a common clique C.

Proposition 3 does not hold if we replace Wab with Uab. However, it has been proved
implicitly in [10] (see also [1]) that for the quasi-median graphs we have Uab = Uax,
where b and x are any vertices forming a triangle with a. Consider, for instance, the
partial Hamming graph from Fig. 1 where u∈Uab though u �∈Uax. On the other hand,
we deduce from Theorem 1(ii) that if ab ∼ xy then Uab = Uxy.
In view of Proposition 3, we denote the set Wab as Wa (which is also Wax; and also

Wuv for uv ∼ ab or by the new notation Wu) when the vertex b in consideration, which
is adjacent to a, is clear from the context. We denote

Ua = {x∈Wa: x is adjacent to a vertex in V (G)\Wa}:
Obviously, Uab⊆Ua; moreover:

Proposition 4. Let ab be an edge in G and let K = {x1; x2; : : : ; xk} be a clique; max-
imum in G with respect to containing an edge x1x2 such that ab ∼ x1x2. Then;

(i) Ua =
⋃

2¡i6k Ux1xi ; Ub =
⋃

16i6k;i �=2 Ux2xi ;
(ii) if uv ∼ xixj and u∈Uxixj ∩Uxixk then v∈Uxjxi ∩Uxjxk and there exists a vertex z

in Wxk such that u; v and z form a triangle;
(iii) if c∈ ⋃k

i=3 Wxi then d(c; a) = d(c; b).
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Proof. The observation preceding this proposition gives us one side of the inclusion,
i.e.

⋃
1¡i6k Ux1xi ⊆Ua. By the deJnition of ∼ we infer: if uv is an edge connecting

vertices in diOerent (convex) subgraphs 〈Wxi〉 and 〈Wxj〉 then uv ∼ xixj. In particular,
if u∈Ua so that u is adjacent to v∈Wxj , then uv ∼ x1xj. In other words we have
u∈Ux1xj , thus (ii) is proved.
For the proof of (ii) we use assertion (i) of Theorem 1 that 〈Wxi ∪Wxj〉 is convex in

G for any i; j. Now, if v would not be adjacent to a neighbor z of x in Wxk , then the
path of length two from y to z would be one of the shortest y; z-paths which would
not lie entirely in 〈Wxj ∪Wxk 〉.
Claim (iii) follows from the fact that c �∈Wab ∪Wba.

We are ready to introduce the relation � on the edge set of a connected graph G.
We say that edges uv; ab∈E(G) are in relation � if either uv ∼ ab or there exists a
clique with edges e; f∈E(G), such that uv ∼ e and ab ∼ f. Obviously, the relation
� is rePexive and symmetric and the relation ∼ is included in �. However, � is not
transitive in general, as an example of K4 − e shows.

We have already mentioned that in partial Hamming graphs the relation ∼ is an
equivalence relation. The corresponding equivalence classes are the sets Fuv, where uv
is an arbitrary edge of this class.

Proposition 5. In a partial Hamming graph the relation � is transitive and therefore
an equivalence. More precisely; each �-class is a union of some ∼-classes; so that
for edges ab; cd∈E(G) the classes Fab and Fcd are in the same �-class if and only
if there is a clique containing edges a′b′; c′d′ such that a′b′ ∈Fab; c′d′ ∈Fcd:

Proof. By Theorem 1(v) there exists a gated clique K in G containing an edge from
Fcd. We have to prove that if there exists a clique containing the edges a′b′ ∈Fab and
c′d′ ∈Fcd, then there is an edge a′′b′′ ∈Fab which is contained in K . Obviously, at
least one of the vertices a′; b′ is not the same as one of the vertices c′ or d′, say
b′ �= c′; d′. Then, if c′ should lie on a shortest path from b′ to K , we would have
d(b′; K) = d(b′; �K (c′)) = d(b′; �K (d′)), which is impossible since K is gated. Also, b′

cannot lie on some shortest path from c′ to K because c′ and d′ lie in diOerent convex
subsets induced by gated clique K . Therefore, d(b′; K)=d(c′; K) and by considering two
diOerent possibilities for a′, we deduce the same for a′, i.e. d(a′; K)=d(b′; K)=d(c′; K).
By the transitivity of ∼ there is an edge in K which belongs to the class Fab and the
proof is complete.

The analogoue of the following proposition holds for the relation � in every
graph. We shall use it below as a condition in the characterization of partial Hamming
graphs:

Proposition 6. Let G be a partial Hamming graph; and P a path connecting the
endpoints of an edge xy. Then P contains an edge f with xy�f.
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Proof. Every edge with one end-vertex in Ux and the other in V (G)−Wx is in relation
� with xy. Obviously, there is such an edge on P.

Now, our aim is to Jnd some sort of converse of Proposition 5 which would extend
the following Winkler’s result to general partial Hamming graphs.

Theorem 7 (Winkler [12]). A connected graph G is an isometric subgraph of a
Cartesian power of K3 if and only if the relation � is transitive. G is an isometric
subgraph of a hypercube if and only if; in addition; G is bipartite.

A straightforward extension of this result is not possible since the relation � is
transitive in odd cycles C2n+1 which are not partial Hamming graphs for n¿2. In order
to avoid such cases we will use either the property (vi) of Theorem 1, or the condition
of Proposition 6, or we shall forbid such isometric cycles. Also, we must require the
transitivity of relation ∼ which is presumed in the deJnition of �. In fact, we will
use a stronger condition from Theorem 1(ii) to prove the following characterizations
of partial Hamming graphs.

Theorem 8. Let G be a connected graph. Then the following assertions are equivalent:

(A) G is a partial Hamming graph;
(B) (i) The relation � is transitive;

(ii) for edges ab; xy∈E(G): if ab ∼ xy then Wab =Wxy; and
(iii) if P is a path connecting the endpoints of an edge xy; then P contains an

edge f with xy�f;
(C) (i) The relation � is transitive;

(ii) for edges ab; xy∈E(G): if ab ∼ xy then Wab =Wxy; and
(iii′) if a vertex w∈V (G) has the same distance to adjacent vertices x and y

of G; then any two neighbors u∈Wxy and v∈Wyx of w are adjacent;
(D) (i) The relation � is transitive;

(ii) for edges ab; xy∈E(G): if ab ∼ xy then Wab =Wxy; and
(iii′′) there are no isometric cycles C2n+1 for n¿2.

Proof. We already know that (A) implies all other conditions (recall Proposition 5,
properties (ii), (iii) and (vi) of Theorem 1, and Proposition 6).
(D) ⇒ (B): For the proof of (iii) let xy be an edge of G and P a path between x

and y. Note that if P has length 2 or 3 then (iii) is trivial. Now let P : x → z1 → z2 →
· · · → zk → y be a path with the smallest number of edges in G which contradicts the
claim. If the cycle C : x → P → y → x is isometric, then by (iii′′) it is even, hence
we have an edge on it which is in relation ∼ with xy.
Suppose that C is not isometric and let zi = t1 → · · · → tm = zj be a shortest path

between zi and zj which is shorter than a path in C between these two vertices. Let
us call C′ : x → z1 → · · · → zi= t1 → t2 → · · · → tm−1 → tm= zj → · · · → zk → y → x
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and C′′ : zi → zi+1 → · · · → zj = tm → tm−1 → · · · → t2 → t1 = zi, the two cycles into
which C is splitted. Note that C′; C′′ both have less vertices than C. Thus xy is in
relation � with an edge e on C′. We are done if e is also on C, so let us suppose
that e = tltl+1 for 16l6m− 1. Since C′′ is smaller than C, we infer that tltl+1 is in
relation � with an edge f on C′′. If f is also on C, the proof is complete, so we
may suppose that f = tsts+1 where 16t ¡ s 6m − 1. Clearly e � f since the two
edges lie on a shortest path between t1 and tm. Suppose that there is clique with edges
e′ and f′ such that e ∼ e′ and f ∼ f′. Obviously, tl; tl+1 ∈Wtsts+1 but at least one of
tl; tl+1 is at equal distance to both endpoints of f′. That is in contradiction with (ii).
(B) ⇒ (C): For the proof of (iii′) let w be a vertex at the same distance from

adjacent vertices x and y of G, and let u∈Wxy, v∈Wyx be the neighbors of w. Let
Q1 be a shortest path from u to x, and Q2 a shortest path from y to v. We note
that Q1 ⊂Wxy because u∈Wxy, and likewise Q2 ⊂Wyx. Therefore, we have a path
from y to x of the form: Q2 → vw → wu → Q1. Using (iii) it follows that xy is
in relation � with an edge e of this path. If this edge would be in Q1 we deduce
using (ii) that one of its endvertices would lie in Wyx or V (G) − Wxy ∪ Wxy which
is impossible. For the same reason e cannot be in Q2, hence one of the endpoints of
e must be w, and assume that e = wu. Obviously, wu � xy, therefore there exists a
clique with edges e′; e′′ such that wu ∼ e′; xy ∼ e′′. Using condition (ii) for edges
e′′ and xy we deduce that e′ and e′′ must have a vertex in common (u∈Wxy, so
it must be closer to one endpoint of e′′). Let us denote the vertices of the clique
by a; b and c, so that ab ∼ xy and ac ∼ uw. Since v∈Wyx, we deduce from (ii)
that v∈Wba. Now, there are two possibilities: v∈Wbc or d(v; b) = d(v; c). If v∈Wbc

then v is indeed adjacent to u (because using (ii) we deduce Wca = Wwu hence we
must have d(v; u) = d(v; w)). It remains to prove that the second possibility leads to a
contradiction.
Assume that d(v; b) = d(v; c), and let v′ be the nearest vertex to b on a shortest

path from v to b such that d(v′; b) = d(v′; c). Thus, the rest of the path from v′ to
b is in Wbc and the rest of the path from v′ to c is in Wcb. Observe that vertices
v′; b and c are in the same situation as vertices w; x and y. We deduce in a way
same as above that there is a triangle a′; b′ and c′ such that c′ b′ ∼ cb; v′v′′ ∼ a′b′

(where v′′ is a neighbor of v′ in Wb′c′) and d(a′; c)=d(a′; b)=d(b′; b)+1. Since � is
transitive, it follows that ab�a′b′. Obviously, ab and a′b′ are not in relation ∼ (because
that would imply that v′ ∈Wab), so there must exist a clique with edges f′ and f′′

such that ab ∼ f′; a′b′ ∼ f′′. Since b∈Wb′a′ it follows by property (ii) that f′ and
f′′ must have a common vertex, so that there is a triangle with vertices a′′; b′′; c′′

such that ab ∼ a′′b′′ and a′b′ ∼ c′′b′′. We infer that d(a; b′′) = d(a; c′′) thus by (ii)
also d(a; b′) = d(a; a′). Hence, d(a; v′) = d(a; v′′) which implies d(v′; a)¡d(v′; b), a
contradiction to v∈Wyx =Wba.
(C) ⇒ (A): Let G be a graph having properties (i)–(iii′), xy be an arbitrary edge

in G and let K be one of the largest cliques containing an edge from Fxy. We denote
this edge by x1x2 and other eventual vertices by x3; x4; : : : ; xk . Our Jrst step is to prove
that K is gated.
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Suppose that there exists a vertex z in G and indices i; j (16i¡ j6k) such that
d(z; xi)=d(z; xj) and let z be one of the nearest vertices to K among all such vertices.
Let z → a1 → a2 → · · · → at = xi be a shortest path between z and xi, and z →
b1 → b2 → · · · → bt = xj be a shortest path between z and xj. Using property (iii′),
we deduce that a1b1 ∈E(G). We also infer that K must have at least three vertices,
and let xs be the third vertex. Now, we note that a1b1 ∼ xixj; so a1z� xixj. Obviously,
xixs � xixj, and by the transitivity of � it follows xixs �a1z. If xixs∼ a1z then K
is gated and the claim is proved. Otherwise, there exists a clique with edges e′ ∈
Fxixs and e′′ ∈ Fa1z. Since xi ∈Wa1z, edges e

′; e′′ have a common vertex a′, so that
e′ = a′b′; e′′ = a′c′ and a′b′ ∼ xixs; a′c′ ∼ a1z. Now d(xs; a′) = d(xs; c′) (because
if d(xs; c′)¡d(xs; a′) we would again have xixs ∼ a1z) therefore by (ii) we have
d(xs; a1)=d(xs; z). Then since xi ∈ I(a1; xs) we derive d(z; xs)=d(z; xi)=d(z; xj) (K is
pseudo-gated). Let z → c1 → · · · → ct → xs be a shortest path between z and xs. By
(iii′), vertices z; a1; b1 and c1 form a clique. By repeating this argument for all vertices
of K we obtain a clique of size k + 1 which is in relation ∼ with xy, a contradiction
to maximality of K .
By Wxi(K) we denote the set of vertices whose gate in K is xi. Since xy ∼ x1x2,

using (ii) we have Wxy=Wx1x2 . It is obvious that Wx1x2 =Wx1 (K) thus Wxy=Wx1 (K). So
far we have proved that by choosing an arbitrary edge xy in G we obtain a partition
V (G)=Wx1 (K)∪Wx2 (K)∪· · ·∪Wxk (K) where K is a largest clique containing an edge
from Fxy. It is also clear that the edges connecting vertices in diOerent sets Wxi(K) are
precisely all the edges which are in relation � with xy.
To complete the proof we deJne a Hamming labeling f on the vertex-set of G. Let

u∈V (G) and let s be the number of all equivalence classes induced by the relation �.
The ith coordinate of f(u) corresponds to the ith �-class (16i6s), so that the largest
clique K={x1; x2; : : : ; xk} in the corresponding �-class provides the following labeling:

fi(u) = j − 1 if u∈Wxj (K):

This labeling is well deJned, since Wx1 (K); Wx2 (K); : : : ; Wxk (K) form a partition of
the vertex set. We need to prove that this is a Hamming labeling, i.e., for u; v∈V (G):
H (f(u); f(v)) = dG(u; v). First, we notice that all the edges lying on a shortest path
between the two vertices belong to diOerent �-classes. The proof is similar to the
part of the proof that K is gated which we described in detail above, so we shall
omit it here. It follows that the labelings of u and v diOer in at least dG(u; v) co-
ordinates, so H (f(u); f(v))¿dG(u; v): On the other hand, if fi(u) �= fi(v) then on
every path between u and v there must clearly be an edge from the ith �-class hence
dG(u; v)¿H (f(u); f(v)). The proof is complete.

Let us now consider Theorem 8 in comparison with Winkler’s Theorem 7. As we
noted in the Jrst section, if G is bipartite then ∼ =� and also ∼ =�. Wilkeit proved
[11, Corollary 7:3] that in bipartite graphs, the condition (ii) of Theorem 8 is equivalent
to the transitivity of ∼. Since in bipartite graphs the condition (iii) of the above theorem
is fulJlled we deduce
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Corollary 9 (Winkler [12]). A connected graph G is an isometric subgraph of a
hypercube if and only if the relation � (=�) is transitive and G is bipartite.

For the Jrst part of Winkler’s theorem the situation is more complex. We can directly
deduce only one direction of that part. But Jrst we need an additional result which
can be of independent interest. It easily follows from Proposition 4 and deJnitions of
relations � and �.

Lemma 10. Let G be a partial Hamming graph and ab; cd∈E(G). If ab�cd then
ab�cd. The converse holds precisely when any clique which contains an edge from
Fab (or Fcd) has at most three vertices.

The Jrst part of the following corollary follows directly from Theorem 8 while the
second part (that �= �) is derived from Lemma 10.

Corollary 11. If G is an isometric subgraph of a power of K3 then the relation � is
transitive. Furthermore; �= �.

Combining this and Theorem 8(iv) we get a sort of converse of Corollary 11:

Corollary 12. Let G be a connected graph such that

(i) relation � is transitive;
(ii) for edges ab; xy∈E(G): if ab ∼ x then Wab =Wxy;
(iii) there are no isometric cycles C2n+1 for n¿2; and the largest clique in G has at

most three vertices.

Then G is an isometric subgraph of a power of K3. Furthermore, �= �.

The situation is more complicated in this case since the deJnition of relation � is
rather complex and relies on the deJnition of ∼. However, it seems that Theorem
8 presents a natural extension of Winkler’s theorem to the class of partial Hamming
graphs.

3. Expansions on partial Hamming graphs

Motivated by the structure of partial Hamming graphs we will deJne a contraction
of edges of such a graph. This operation has been already performed by Chepoi [2]
in the proof of his expansion theorem though he used a slightly diOerent approach by
taking a largest clique of a graph.
A partial Hamming graph G is transformed to a graph G′ by a contraction with

respect to the edge ab if G′ has the structure as follows. For the chosen edge ab,
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we contract each edge which is in relation � with ab to a single vertex so that
the edges which are in the same clique are contracted to the same vertex. Let us
call W ′

i the set of vertices in G′ which corresponds to Wxi in G. We note that the
subgraph 〈W ′

i 〉 is isomorphic to the subgraph 〈Wxi〉 for all i = 1; : : : ; k. The sets W ′
i

are not pairwisely disjoint since the edges between vertices in diOerent Wxi and Wxj

are transformed to vertices in the intersection W ′
i ∩W ′

j . More precisely, the subgraph
〈Uxixj ∪Uxjxi〉 in G is contracted to the subgraph 〈W ′

i ∩W ′
j 〉 in G′ which is isomorphic

to 〈Uxixj〉. Since the subgraphs 〈Wxi〉 and 〈Wxi ∪Wxj〉 are convex in G, it is clear that
the subgraphs 〈W ′

i 〉 and 〈W ′
i ∪W ′

j 〉 are isometric in G′. Also it is obvious that there
are no edges between W ′

i − W ′
j and W ′

j − W ′
i for diOerent i; j = 1; 2; : : : ; k. We can

obtain the following deJnition of an expansion by observing the contraction from the
opposite side.

De)nition 13 (Chepoi [2]). Let G′ be a connected graph and W ′
1 ; : : : ; W

′
k be subsets

in V (G′) such that

• W ′
i ∩W ′

j �= ∅ for all i; j = 1; 2; : : : ; k;

• ⋃k
i=1 W

′
i = V (G′);

• there are no edges between sets W ′
i −W ′

j and W ′
j −W ′

i for all i; j = 1; : : : ; k,
• subgraphs 〈W ′

i 〉; 〈W ′
i ∪W ′

j 〉 are isometric in G′ for all i; j = 1; : : : ; k.

Then to each vertex x∈V (G′) we associate a tuple (ij1 ; ij2 ; : : : ; ijl) of all indexes ij;
where x∈Wij . Graph G is called an expansion of G′ relative to the sets W ′

1 ; W
′
2 ; : : : ; W

′
k

if it is obtained in the following way:

• we replace a vertex x in V (G′) with vertices xi1 ; xi2 ; : : : ; xil so that they form a clique
of size l

• if an index it belongs to both tuples (ij1 ; ij2 ; : : : ; ijl); (i
′
j1 ; i

′
j2 ; : : : ; i

′
jl) corresponding to

adjacent vertices x and y then in the graph G let xiiyit ∈E(G).
We obtain new deJnitions by imposing extra conditions:

• If W ′
i ∩W ′

j induce connected (respectively isometric) subgraphs for all i; j=1; : : : ; k,
then this is called a connected (respectively, isometric) expansion.

Loosely speaking we obtain the expansion G from the graph G′ by pulling all the
subgraphs W ′

i each at its side and the traces of previous intersections remain in the
form of edges. Note that the connected and isometric expansions have been analogously
deJned for bipartite graphs by Imrich and Klav#zar [6].
There exist several results which characterize a certain class of graphs via a certain

type of expansion. The Jrst theorem of that kind was a characterization of median
graphs [10] as graphs obtainable from K1 by a sequence of certain convex expansions,
a result also known as Mulder’s convex expansion theorem. However, for some classes
only one direction can be proved, such as “if a graph belongs to a certain class then
it can be obtained by a sequence of certain types of expansions from K1”. In the case
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of partial Hamming graphs both directions are true as the Chepoi’s expansion theorem
shows:

Theorem 14 (Chepoi [2]). A graph G is a partial Hamming graph if and only it can
be obtained from K1 by a sequence of expansions.

According to DeJnition 13 we denote by Wi the set in G that naturally corresponds
to W ′

i in G′ for all i = 1; : : : ; k. We shall use this notation without further notice.

Lemma 15. Let G′ be a partial Hamming graph and let G be an expansion of G′

relative to the sets W ′
1 ; W

′
2 ; : : : ; W

′
k ; and let u; v∈V (G) be adjacent vertices such that

u∈Wi; v∈Wj. Then; in Fuv there are precisely all the edges connecting vertices from
Wi and Wj.

Proof. It follows from Theorem 14 that G is also a partial Hamming graph. As we
know that the sets Wi and Wi ∪ Wj induce convex subgraphs of G it follows that
the edges between diOerent sets Wi;Wj are in the same ∼-class. We denote this class
by Fuv, where u∈Wi and v∈Wj. We must prove that there are no other edges in
Fuv but those connecting Wi and Wj. Suppose that there is an edge xy∈Fuv which
is contradicting this claim. First, observe that xy has to lie entirely outside Wi (use
convexity of Wi and convexity of Wi ∪ Wk for any k; k �= j), and with the same
argument xy has to lie entirely outside Wj. Suppose that xy lies entirely in some Wk

(k �= i; k �= j). Then, in G′ let u′ be one of the nearest vertices in W ′
i ∩W ′

j to x, thus
the shortest path from u′ to x lies outside W ′

j and the shortest path from u′ to y lies
outside W ′

i . Using Theorem 1(vi), the Jrst vertices on the paths from u′ to x and u′ to
y must be adjacent which is a contradiction since they are in W ′

i −W ′
j and W ′

j −W ′
i .

Then, the remaining possibility is that x∈Wk and y∈Wl where i; j; k; l are pairwisely
diOerent indexes. But this is a contradiction to the convexity of 〈Wi ∪ Wl〉 since the
shortest y; u-path would contain x.

In [6] semi-median graphs were introduced as partial cubes for which the subgraphs
〈Uab〉 are connected for all edges ab in G. We consider the following results in bipartite
graphs:

Theorem 16 (Imrich and Klav#zar [6]). (i) If G is a semi-median graph then it can
be obtained from a one-vertex graph by a sequence of connected expansions.
(ii) If G is obtained from a one-vertex graph by a sequence of isometric expansions

then G is a semi-median graph.

It is not yet known whether the converse of the second part of Theorem 16 is true,
i.e. is there a graph which is semi-median so that it cannot be obtained from K1 by a
sequence of isometric expansions?
We will now consider partial Hamming graphs for which the subgraphs 〈Uab〉 are

connected for all ab∈E(G). Let us call them semi-quasi-median graphs, as they lie
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Fig. 2. Connected expansion of K2 K3.

between partial Hamming graphs and quasi-median graphs. We shall extend Theorem
16 to the class of semi-quasi-median graphs with the following two theorems.

Theorem 17. If G is a semi-quasi-median graph then G can be obtained from a
one-vertex graph by a sequence of connected expansions.

Proof. Since G is a partial Hamming graph it can be obtained from K1 by a sequence of
expansions (Theorem 14). We claim that each expansion in the sequence is connected
and prove the claim by induction on the number of expansions in the sequence. Let
G be a graph obtained by an expansion (with respect to the sets W ′

1 ; : : : ; W
′
k) from a

semi-quasi-median graph G′. Let Wi be a set in G corresponding to the set W ′
i in G′

for all i = 1; : : : ; k. Using Lemma 15 it follows that the subgraph 〈W ′
i ∩ W ′

j 〉 in G′

is isomorphic to the subgraph 〈Uab〉, where a∈Wi and b∈Wj are adjacent vertices.
Since 〈Uab〉 is connected for every edge ab, the expansion is connected.

The converse of the theorem above is not true. Consider the graph K2 K3 where
for the sets W ′

1 ; W
′
2 we take subgraphs of K2 K3; each of them with a vertex missing

so that the missing vertices are at distance 2 (see Fig. 2). The intersection W ′
1 ∩W ′

2 is
obviously connected, but expanded graph has a set Uab which is not connected.

Theorem 18. If G can be obtained by a sequence of isometric expansions from K1

then G is a semi-quasi-median graph.

Proof. Assume that G can be obtained from K1 by a sequence of isometric expansions.
By Theorem 14 we know that G is a partial Hamming graph. We need to show that
if G is obtained by an isometric expansion (relative to the sets W ′

1 ; W
′
2 ; : : : ; W

′
k) from

a semi-quasi-median graph G′ then the sets 〈Uuv〉 are connected for any edge uv in G.
If uv is a new edge, i.e., is obtained by the expansion from a vertex in the intersection
W ′
i ∩W ′

j , then 〈Uuv〉 is isomorphic to 〈W ′
i ∩W ′

j 〉 which is connected by the deJnition
of expansion (in fact, it is even isometric).
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Let uv be an edge which lies entirely in at least one set Wi. We shall check what
happens to the set of edges Fuv in G′ after we make the expansion. The subgraph of W ′

i

which consists of edges in Fuv and their ending vertices is isomorphic to the subgraph
of Wi consisting of naturally corresponding edges and their end-vertices. Therefore,
〈Uuv〉 in Wi is isomorphic to the subgraph of 〈Uuv〉 in W ′

i consisting of all vertices of
Uuv such that their neighboring vertex in Uvu also lies in W ′

i .
We shall now consider only the sets W ′

i which contain at least one edge of Fuv. Let
xy∈Fuv ∩W ′

i be an edge which lies in a neighborhood of an edge ab∈Fuv such that
both a and b are not in W ′

i . We claim that then exists an index j (16j6k) such that
both x; y∈W ′

i ∩ W ′
j . Indeed, if both vertices a and b are outside W ′

i then they must
both lie in some W ′

j and because there are no edges between W ′
i −W ′

j and W ′
j −W ′

i ,
also x; y∈W ′

j and the claim holds. Let us now assume that a �∈Wi and b∈Wi. With
the same argument as in the previous case, we derive that a; b and x are in some W ′

j .
Since both x and b belong to W ′

i ∩ W ′
j , which is isometric, we must have a path of

length 2 inside W ′
i ∩W ′

j . If y should not belong to W ′
j ; we would have another vertex

t ∈W ′
i ∩W ′

j joining x and b. Hence, either a; b; x; y; t induce a K2;3 of vertices, or we
get an induced K4 − e by adding an edge.
From the above observation, we are now able to describe the structure of Fuv in G.

It is obtained from Fuv in G′ by expanding all the edges which lie in some intersection
W ′
j ∩ W ′

k (j; k = 1; 2; : : : ; n) to the two corresponding edges which are also in Fuv by
the construction. It is easy to prove that there are no other edges in Fuv. The set Uuv
is thus connected.

Analogous to the subclass of partial cubes [6], we note that the partial Hamming
graphs include graphs obtainable by a sequence of connected expansions from K1.
The latter class includes the class of semi-quasi-median graphs, which in turn in-
cludes the class of quasi-median graphs. The inclusions between these classes are
strict. On the left-hand side of Fig. 3 a partial Hamming graph is depicted which
cannot be obtained by a sequence of connected expansions from K1. As we have

Fig. 3. Partial Hamming graphs.
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already noted, the graph in Fig. 2 is obtainable by a sequence of connected expansions
from K1 but is not semi-quasi-median. The second graph in Fig. 3 is an example of
semi-quasi-median graph which is not quasi-median. Finally, the third graph in the
same Jgure is quasi-median.
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