Note
 On a conjecture concerning optimal orientations of the cartesian product of a triangle and an odd cycle

K.M. Koh *, E.G. Tay
Department of Mathematics, National University of Singapore, 10 Kent Ridge Road,
Singapore 119260, Singapore

Received 21 September 1999; revised 14 June 2000; accepted 26 June 2000

Abstract

Let $G \times H$ denote the cartesian product of the graphs G and H, and C_{n} the cycle of order n. We prove the conjecture of Konig et al. that for $n \geqslant 2$, the minimum diameter of any orientation of the graph $C_{3} \times C_{2 n+1}$ is $n+3$. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: Minimum diameter; Orientation; Triangle; Odd cycle; Gossip problem

1. Introduction

Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. For $v \in V(G)$, the eccentricity $e(v)$ of v is defined as $e(v)=\max \{d(v, x) \mid x \in V(G)\}$, where $d(v, x)$ denotes the distance from v to x. The diameter of G, denoted by $d(G)$, is defined as $d(G)=\max \{e(v) \mid v \in V(G)\}$. Let D be a digraph with vertex set $V(D)$ and edge set $E(D)$. For $v \in V(D)$, the notions $e(v)$ and $d(D)$ are similarly defined. An orientation of a graph G is a digraph obtained from G by assigning to each edge in G a direction. An orientation D of G is strong if every two vertices in D are mutually reachable in D. Let $\mathscr{D}(G)$ be the family of strong orientations of G. Define $\vec{d}(G)=\min \{d(D) \mid D \in \mathscr{D}(G)\}$.
By evaluating $\vec{d}(G)$, we more than refine the one-way problem of Robbins [10]. Indeed, the parameter $\vec{d}(G)$ also provides an upper bound for the half-duplex version of the gossip problem (see for e.g., [1-3]).

Let $G \times H$ denote the cartesian product of two graphs G and H, and P_{n}, C_{n} and K_{n} the path, cycle and complete graph, respectively, of order n. Roberts and Xu [11-14],

[^0]and independently Koh and Tan [5], evaluated the quantity $\vec{d}\left(P_{m} \times P_{n}\right)$. Recently, Koh and Lee [4] evaluated $\vec{d}\left(P_{m} \times C_{2 n+1}\right)$, Koh and Tay [6-8] determined the quantities $\vec{d}\left(P_{m} \times C_{2 n}\right), \vec{d}\left(C_{2 m} \times C_{2 n}\right)$ and $\vec{d}\left(K_{m} \times C_{2 n+1}\right)$, where $m \geqslant 4$, and Konig et al. [9] independently enumerated $\vec{d}\left(C_{m} \times C_{n}\right)$ for almost all m, n but not including the case $m=3$ and $n \geqslant 5$, where n is odd. While Koh and Tay [7] remarked that the value of $\vec{d}\left(C_{3} \times C_{2 n+1}\right)$, where $n \geqslant 2$, was difficult to ascertain, Konig et al. [9] proposed the following.

Conjecture. $\vec{d}\left(C_{3} \times C_{2 n+1}\right)=n+3$ for $n \geqslant 2$.
In this note, we shall prove that this conjecture is true.

2. Notation and terminology

Given two graphs G_{1} and G_{2}, their cartesian product $G=G_{1} \times G_{2}$ has $V(G)=$ $V\left(G_{1}\right) \times V\left(G_{2}\right)$ and two vertices $\left(u_{1}, u_{2}\right)$ and (v_{1}, v_{2}) of G are adjacent if and only if either $u_{1}=v_{1}$ and $u_{2} v_{2} \in E\left(G_{2}\right)$ or $u_{2}=v_{2}$ and $u_{1} v_{1} \in E\left(G_{1}\right)$.

We write $V\left(C_{n}\right)=\{i \mid 1 \leqslant i \leqslant n\}$ and $V\left(C_{3} \times C_{2 n+1}\right)=\{(i, j) \mid 1 \leqslant i \leqslant 3,1 \leqslant j \leqslant$ $2 n+1\}$. Thus, two distinct vertices (i, j) and $\left(i^{\prime}, j^{\prime}\right)$ are adjacent in $C_{3} \times C_{2 n+1}$ iff either $j=j^{\prime}$ or ${ }^{\prime} j-j^{\prime} \equiv \pm 1(\bmod 2 n+1)$ and $i=i^{\prime}$.

Let G be a graph, $F \in \mathscr{D}(G)$ and A a subdigraph of F. The eccentricity and outdegree of a vertex v in A are denoted, respectively, by $e_{A}(v)$ and $s_{A}(v)$. The subscript A is omitted if $A=F$.

Let D be a digraph. For $X \subseteq V(D)$ or $X \subseteq E(D)$, the subdigraph of D induced by X is denoted by $D[X]$. Given $F \in \mathscr{D}\left(C_{3} \times C_{2 n+1}\right)$, where $1 \leqslant i \leqslant 3$ and $1 \leqslant j \leqslant 2 n+1$, let $F^{i}=F\left[\{i\} \times V\left(C_{2 n+1}\right)\right]$ and $F_{j}=F\left[V\left(C_{3}\right) \times\{j\}\right]$.

For $x, y \in V(D)$, we write ' $x \rightarrow y$ ' or ' $y \leftarrow x$ ' if $x y \in E(D)$. Also, for $A, B \subseteq V(D)$, we write ' $A \rightarrow B$ ' or ' $B \leftarrow A$ ' if $x \rightarrow y$ in D for all $x \in A$ and for all $y \in B$. When $A=\{x\}$, we shall write ' $x \rightarrow B$ ' or ' $B \leftarrow x$ ' for $A \rightarrow B$.

The converse of D, denoted by \tilde{D}, is the digraph obtained from D by reversing each arc in D.

3. The main result

First we state the following bounds obtained by Konig et al. [9].
Lemma 1. $n+2 \leqslant \vec{d}\left(C_{3} \times C_{2 n+1}\right) \leqslant n+3$.
For ease of presentation, we shall consider the case when $n=2$ separately from when $n \geqslant 3$.

Fig. 1.

We shall first consider the general case when $n \geqslant 3$. By assuming that $\vec{d}\left(C_{3} \times\right.$ $\left.C_{2 n+1}\right)=n+2$, we try to get some information about the outdegree of each vertex in $C_{3} \times C_{2 n+1}$.

Lemma 2. Let $F \in \mathscr{D}\left(C_{3} \times C_{2 n+1}\right)$, where $n \geqslant 3$, be such that $d(F)=n+2$. Then $s(v)=2$ for all $v \in V(F)$.

Proof. Since F is strong, $1 \leqslant s(v) \leqslant 3$ for all $v \in V(F)$. Suppose that the statement is false. As $d(\tilde{F})=d(F)$, we assume that $s(v)=3$ for some $v \in V(F)$. We shall split our consideration into two cases according to where the 'in' edge is.

Case 1: There exists $(i, j) \in V(F)$ such that $s((i, j))=3$ and either $(i, j+1) \rightarrow(i, j)$ or $(i, j-1) \rightarrow(i, j)$, where $j+1$ and $j-1$ are taken modulo $2 n+1$.

We may assume that $(1,2) \rightarrow(1,1) \rightarrow\{(1,2 n+1),(2,1),(3,1)\}$. (As an illustration, see Fig. 1.) We now have:

$$
\begin{aligned}
& d((2, n+3),(1,1)) \leqslant n+2 \text { implies that }(2, n+3) \rightarrow(2, n+4) \rightarrow \cdots \rightarrow(2,2) \rightarrow(1,2) ; \\
& d((3, n+3),(1,1)) \leqslant n+2 \text { implies that }(3, n+3) \rightarrow(3, n+4) \rightarrow \cdots \rightarrow(3,2) \rightarrow(1,2) ; \\
& d((1, n+3),(1,1)) \leqslant n+2 \text { implies that }(1, n+3) \rightarrow(1, n+) \rightarrow \cdots \rightarrow(1,2) ; \\
& d((1,2),(2, n+1)) \leqslant n+2 \text { implies that }(2,2) \rightarrow(2,3) \rightarrow \cdots \rightarrow(2, n+1) ; \\
& d((1,2),(3, n+1)) \leqslant n+2 \text { implies that }(3,2) \rightarrow(3,3) \rightarrow \cdots \rightarrow(3, n+1) ; \\
& d((2,1),(1, n+3)) \leqslant n+2 \text { implies that }(1,2 n+1) \rightarrow(1,2 n) \rightarrow \cdots \rightarrow(1, n+3) ; \\
& d((2,1),(1, n+2)) \leqslant n+2 \text { implies that }(2, n+1) \rightarrow(2, n+2) \rightarrow(1, n+2) ; \\
& d((3,1),(1, n+2)) \leqslant n+2 \text { implies that }(3, n+1) \rightarrow(3, n+2) \rightarrow(1, n+2) ; \\
& d((1,2),(2, n+2)) \leqslant n+2 \text { implies that }(1, n+3) \rightarrow(2, n+3) \rightarrow(2, n+2) ; \\
& d((1,2),(3, n+2)) \leqslant n+2 \text { implies that }(1, n+3) \rightarrow(3, n+3) \rightarrow(3, n+2) .
\end{aligned}
$$

It follows from the above sequence of arguments that $d((2,4),(1, n+3)) \geqslant n+3$, a contradiction.

Remark 1. The argument above works for $n=2$ as well. Thus if $F \in \mathscr{D}\left(C_{3} \times C_{5}\right)$ be such that $d(F)=4$, then there does not exist $(i, j) \in V(F)$ such that $s((i, j))=1$ or 3 and either $(i, j+1) \rightarrow(i, j)$ or $(i, j-1) \rightarrow(i, j)$, where $j+1$ and $j-1$ are taken modulo 5.

Case 2: There exists $(i, j) \in V(F)$ such that $s((i, j))=3$ and either $(i+1, j) \rightarrow(i, j)$ or $(i-1, j) \rightarrow(i, j)$, where $i+1$ and $i-1$ are taken modulo 3 .

We may assume that $(2,1) \rightarrow(1,1) \rightarrow\{(1,2 n+1),(1,2),(3,1)\}$. The fact that $d((2, n+1),(1,1)) \leqslant n+2$ implies that $(2, n+1) \rightarrow(2, n) \rightarrow \cdots \rightarrow(2,1)$ or $(2, n+2) \rightarrow$ $(2, n+3) \rightarrow \cdots \rightarrow(2,1)$. By symmetry, we may assume the former. The fact that $d((1, n+2),(1,1)) \leqslant n+2$ implies that $(2,2 n+1) \rightarrow(2,1)$.

Suppose $(2,1) \rightarrow(3,1)$. To avoid Case 1 , we must have $(3,2) \leftarrow(3,1) \rightarrow(3,2 n+1)$. The fact that $d((2,2),(2, n+2)) \leqslant n+2$ implies that $(2,2) \rightarrow(1,2) \rightarrow(1,3) \rightarrow \cdots \rightarrow$ $(1, n+1)$ or $(2,2) \rightarrow(3,2) \rightarrow(3,3) \rightarrow \cdots \rightarrow(3, n+1)$. If $(2,2) \rightarrow(1,2) \rightarrow(1,3) \rightarrow$ $\cdots \rightarrow(1, n+1)$, then $d((1,2),(2, n+4)) \geqslant n+3$, a contradiction. If $(2,2) \rightarrow(3,2)$ $\rightarrow(3,3) \rightarrow \cdots \rightarrow(3, n+1)$, then $d((3,2),(2, n+4)) \geqslant n+3$, a contradiction.
Thus, $(3,1) \rightarrow(2,1)$. The fact that $d((2,1),(2, n+1)) \leqslant n+2$ implies that $(1,2) \rightarrow$ $(1,3) \rightarrow \cdots \rightarrow(1, n+1) \rightarrow(2, n+1)$.
$(*)$ The fact that $d((2,2),(2, n+2)) \leqslant n+2$ implies that $(2,2) \rightarrow(1,2)$ or $(2,2) \rightarrow$ $(3,2) \rightarrow(3,3) \rightarrow \cdots \rightarrow(3, n+1)$.
Suppose $(2,2) \rightarrow(1,2)$. We have:

$$
\begin{aligned}
& d((1,2),(2, n+4)) \leqslant n+2 \text { implies that }(1,2) \rightarrow(3,2) \rightarrow(3,1) \rightarrow(3,2 n+1) ; \\
& d((3,2 n+1),(3, n)) \leqslant n+2 \text { implies that }(3,2 n+1) \rightarrow(3,2 n) \rightarrow \cdots \rightarrow(3, n) ; \\
& d((3, n+2),(1,1)) \leqslant n+2 \text { implies that }(3, n+2) \rightarrow(2, n+2) \rightarrow(2, n+3) \\
& \rightarrow \cdots \rightarrow(2,2 n+1) ; \\
& d((3,2 n+1),(2, n-1)) \leqslant n+2 \text { implies that }(3,2 n+1) \rightarrow(2,2 n+1) .
\end{aligned}
$$

To avoid Case 1 , we have $(2,2 n+1) \rightarrow(1,2 n+1)$ and hence $d((1,2 n+1)$, $(2, n-1)) \geqslant n+3$, a contradiction. Thus, we have $(1,2) \rightarrow(2,2)$ and $(2,2) \rightarrow$ $(3,2) \rightarrow(3,3) \rightarrow \cdots \rightarrow(3, n+1)$.

As $d((3, n+1),(1,1)) \leqslant n+2,(3, n+1) \rightarrow(2, n+1)$.
To avoid Case 1 , we have $(2, n+1) \rightarrow(2, n+2)$.
As $d((2, n+2),(1,1)) \leqslant n+2,(2, n+2) \rightarrow(2, n+3) \rightarrow \cdots \rightarrow(2,2 n+1)$.
As $d((2,1),(2, n+2)) \leqslant n+2,(1,2 n+1) \rightarrow(1,2 n) \rightarrow \cdots \rightarrow(1, n+2) \rightarrow(2, n+2)$.
The fact that $d((2,2 n+1),(2, n+1)) \leqslant n+2$ implies that $(2,2 n+1) \rightarrow(1,2 n+1)$ or $(2,2 n+1) \rightarrow(3,2 n+1) \rightarrow(3,2 n) \rightarrow \cdots \rightarrow(3, n+2)$. By symmetry, the argument starting from ($*$) above can be analogously used to show that $(1,2 n+1) \rightarrow(2,2 n+1)$ and $(2,2 n+1) \rightarrow(3,2 n+1) \rightarrow(3,2 n) \rightarrow \cdots \rightarrow(3, n+2)$. To avoid Case 1 , we have $(2, n+2) \rightarrow(3, n+2)$. Then $d((3, n+2),(1,1)) \geqslant n+3$, a contradiction.

Proposition 1. $\vec{d}\left(C_{3} \times C_{2 n+1}\right)=n+3$ for $n \geqslant 3$.

Proof. Suppose there exists $F \in \mathscr{D}\left(C_{3} \times C_{2 n+1}\right)$ such that $d(F)=n+2$. By Lemma 2, $s(v)=2$ for all $v \in V(F)$.

Suppose there exists $(i, j) \in V(F)$ such that $s_{F_{j}}((i, j))=2$. We may assume that $(i, j)=(2,1)$. Thus $(2,1) \rightarrow\{(1,1),(3,1)\}$ and we may assume that $(3,1) \rightarrow(1,1)$. By Lemma 2, $(1,1) \rightarrow\{(1,2),(1,2 n+1)\}$ and $\{(2,2),(2,2 n+1)\} \rightarrow(2,1)$. By symmetry and by Lemma 2 , we may assume that $(3,2 n+1) \rightarrow(3,1) \rightarrow(3,2)$.

The fact that $d((1,2),(2, n+4)) \leqslant n+2$ implies that $(1,2) \rightarrow(2,2)$ and the fact that $d((3,2),(2, n+4)) \leqslant n+2$ implies that $(3,2) \rightarrow(2,2)$.

By Lemma 2, $(2,2) \rightarrow(2,3)$.
As $d((2, n+1),(1,1)) \leqslant n+2,(2, n+1) \rightarrow(2, n+2) \rightarrow \cdots \rightarrow(2,2 n+1)$.
As $d((2,1),(2, n+2)) \leqslant n+2,(1,2 n+1) \rightarrow(1,2 n) \rightarrow \cdots \rightarrow(1, n+3) \rightarrow$ $(1, n+2) \rightarrow(2, n+2)$.
As $d((1, n+1),(1,1)) \leqslant n+2,(1, n+1) \rightarrow(1, n) \rightarrow \cdots \rightarrow(1,2)$.
By Lemma 2, $(1,2) \rightarrow(3,2)$.
By Lemma 2, $(3,2) \rightarrow(3,3)$.
As $d((3, n+1),(1,1)) \leqslant n+2,(3, n+1) \rightarrow(3, n+2) \rightarrow \cdots \rightarrow(3,2 n+1)$.
Then $d((2, n+2),(2,2)) \geqslant n+3$, a contradiction.
Hence $F_{j} \in \mathscr{D}\left(C_{3}\right)$ for $1 \leqslant j \leqslant 2 n+1$. For $(i, j) \in V(F)$, let i be taken modulo 3 and j be taken modulo $2 n+1$. By Lemma $2, F^{i} \in \mathscr{D}\left(C_{2 n+1}\right)$ for $1 \leqslant i \leqslant 3$. Suppose $(i, j) \rightarrow(i, j+1)$ for all $1 \leqslant i \leqslant 3$ and $1 \leqslant j \leqslant 2 n+1$. Then $d((1,1),(2, n+3)) \geqslant n+3$, a contradiction. The argument is similar if $(i, j) \rightarrow(i, j-1)$ for all $1 \leqslant i \leqslant 3$ and $1 \leqslant j \leqslant 2 n+1$. So we may assume that $(i, j) \rightarrow(i, j+1)$ for $1 \leqslant j \leqslant 2 n+1$ if and only if $i=1,3$. Call F_{j} clockwise if $(i, j) \rightarrow(i+1, j)$ for all $1 \leqslant i \leqslant 3$ and anti-clockwise otherwise. Without loss of generality, let F_{1} be clockwise. If F_{n+3} is also clockwise, then $d((3,1),(1, n+3)) \geqslant n+3$, a contradiction. Thus F_{n+3} must be anti-clockwise. Using the argument repeatedly, we conclude that $F_{1+2 p(n+2)}$ is clockwise and $F_{1+(2 p-1)(n+2)}$ is anti-clockwise, where $p \geqslant 1$. Suppose $n+2$ and $2 n+1$ have a common factor q. Since $2(n+2)=(2 n+1)+3, q$ divides 3 as well and so $q=3$. We shall write $n=3 k+1$ and so $n+2=3 k+3$ and $2 n+1=6 k+3$. Now, $(2 n+1) /(n+$ $2)=(6 k+3) /(3 k+3)=(2 k+1) /(k+1)$ which is in lowest terms since the fact that $2(k+1)=(2 k+1)+1$ implies that $2 k+1$ and $k+1$ are coprime. Hence after $2 k+1$ applications of the argument, we would return to F_{1} for the first time and orient it anti-clockwise since $2 k+1$ is odd. But this is a contradiction. Thus $n+2$ and $2 n+1$ are coprime. Then after $2 n+1$ applications of the argument, we would return to F_{1} for the first time and orient it anti-clockwise since $2 n+1$ is odd, a contradiction again.

Hence $\vec{d}\left(C_{3} C_{2 n+1}\right) \geqslant n+3$ for $n \geqslant 3$ and the result follows from Lemma 1.

The single case when $n=2$ is surprisingly difficult and laborious. We present the proof here for completeness.

Proposition 2. $\vec{d}\left(C_{3} \times C_{5}\right)=5$.

Proof. Suppose there exists an $F \in \mathscr{D}\left(C_{3} \times C_{5}\right)$ such that $d(F)=4$. Let $L_{j}=$ $\{i \mid(i, j-1) \rightarrow(i, j)$ in $F\}$ where j and $j-1$ are taken modulo 5 .

Claim 1. $1 \leqslant\left|L_{j}\right| \leqslant 2$.
Proof. If $\left|L_{j}\right|=0$, then $d((1, j-1),(2, j)) \geqslant 5$. If $\left|L_{j}\right|=3$, then $d((2, j),(1, j-1)) \geqslant 5$.
Claim 2. If $\left|L_{j}\right|=1$, then $\left|L_{j-1}\right|=1$.
Proof. Suppose to the contrary that $\left|L_{j}\right|=1$ and $\left|L_{j-1}\right|=2$ and assume for simplicity that $j=2$. By symmetry, we may assume $L_{1}=\{1,2\}$ and $(2,1) \rightarrow(1,1)$. There are three cases to consider.

Case 1: $L_{2}=\{1\}$.
Then $d((1,1),(2,5)) \leqslant 4$ implies that $(1,1) \rightarrow(3,1)$ and $d((3,1),(2,2)) \leqslant 4$ implies that $(3,1) \rightarrow(2,1)$. Thus $d((2,1),(2,4)) \geqslant 5$, a contradiction.

Case 2: $L_{2}=\{2\}$.
Then $d((1,1),(1,3)) \geqslant 5$, a contradiction.
Case: $3 L_{2}=\{3\}$.
Since F is strong, we must have $(1,1) \rightarrow(3,1)$. The fact that $d((2,1),(2,4)) \leqslant 4$ implies that $(2,1) \rightarrow(3,1)$.

Suppose $(1,5) \rightarrow(3,5)$. We now have:
$d((1,2),(1,5)) \leqslant 4$ implies that $(1,2) \rightarrow(1,3) \rightarrow(1,4) \rightarrow(1,5)$;
by Remark $1,(2,5) \rightarrow(1,5)$;
$d((1,5),(1,2)) \leqslant 4$ implies that $(3,2) \rightarrow(1,2)$;
$d((3,5),(1,2)) \leqslant 4$ implies that $(3,5) \rightarrow(3,4) \rightarrow(3,3) \rightarrow(3,2)$;
$d((3,2),(2,5)) \leqslant 4$ implies that $(3,2) \rightarrow(2,2) \rightarrow(2,3) \rightarrow(2,4) \rightarrow(2,5)$;
by Remark $1,(3,5) \rightarrow(2,5)$;
$d((1,4),(2,2)) \leqslant 4$ implies that $(1,4) \rightarrow(3,4)$;
by Remark $1,(3,4) \rightarrow(2,4) \rightarrow(1,4)$.
Thus $d((2,4),(2,2)) \geqslant 5$, a contradiction.
Hence $(3,5) \rightarrow(1,5)$. Suppose $(2,5) \rightarrow(3,5)$. We now have:
$d((1,1),(2,1)) \leqslant 4$ implies that $(3,2) \rightarrow(2,2)$;
$d((2,2),(2,5)) \leqslant 4$ implies that $(2,2) \rightarrow(2,3) \rightarrow(2,4) \rightarrow(2,5)$;
by Remark $1,(1,5) \rightarrow(2,5)$;
$d((3,5),(2,2)) \leqslant 4$ implies that $(3,5) \rightarrow(3,4) \rightarrow(3,3) \rightarrow(3,2)$;
$d((3,3),(3,5)) \leqslant 4$ implies that $(3,3) \rightarrow(2,3)$;
by Remark $1,(2,3) \rightarrow(1,3) \rightarrow(3,3)$;
$d((1,1),(1,3)) \leqslant 4$ implies that $(3,2) \rightarrow(1,2) \rightarrow(1,3)$;
$d((1,1),(2,4)) \leqslant 4$ implies that $(3,4) \rightarrow(2,4)$;
by Remark $1,(2,4) \rightarrow(1,4) \rightarrow(3,4)$;
$d((1,1),(1,4)) \leqslant 4$ implies that $(1,5) \rightarrow(1,4)$.

Thus $d((1,4),(1,5)) \geqslant 5$, a contradiction.
Hence $(3,5) \rightarrow(2,5)$. We now have:
by Remark $1,(3,4) \rightarrow(3,5)$;
$d((1,1),(3,4)) \leqslant 4$ implies that $(3,2) \rightarrow(3,3) \rightarrow(3,4)$;
$d((1,1),(2,4)) \leqslant 4$ implies that $(2,5) \rightarrow(2,4)$;
$d((1,1),(1,4)) \leqslant 4$ implies that $(1,5) \rightarrow(1,4)$;
Suppose $(2,2) \rightarrow(3,2)$. We now have:
by Remark $1,(3,2) \rightarrow(1,2)$;
$d((2,5),(2,2)) \leqslant 4$ implies that $(2,4) \rightarrow(2,3) \rightarrow(2,2)$;
by Remark $1,(1,2) \rightarrow(2,2)$;
$d((1,1),(2,3)) \leqslant 4$ implies that $(3,3) \rightarrow(2,3)$;
by Remark $1,(2,3) \rightarrow(1,3) \rightarrow(3,3)$;
$d((1,1),(1,3)) \leqslant 4$ implies that $(1,2) \rightarrow(1,3)$.
Thus $d((1,3),(3,1)) \geqslant 5$, a contradiction.
Hence $(3,2) \rightarrow(2,2)$. We now have:
by Remark $1,(1,2) \rightarrow(3,2)$;
$d((1,1),(1,2)) \leqslant 4$ implies that $(2,2) \rightarrow(1,2)$;
$d((1,1),(1,3)) \leqslant 4$ implies that $(3,3) \rightarrow(1,3)$;
by Remark $1,(2,3) \rightarrow(3,3)$;
$d((1,3),(1,5)) \leqslant 4$ implies that $(1,3) \rightarrow(1,4) \rightarrow(3,4)$;
by Remark $1,(3,4) \rightarrow(2,4)$;
$d((2,4),(1,5)) \leqslant 4$ implies that $(2,4) \rightarrow(1,4)$.
Thus $d((1,4),(1,2)) \geqslant 5$, a contradiction and Claim 2 is proved.
Remark 2. If $\left|L_{j}\right|=1$ for some $j, 1 \leqslant j \leqslant 5$, then by induction $\left|L_{k}\right|=1$ for all $1 \leqslant k$ $\leqslant 5$. As $d(\tilde{F})=d(F)$, we may assume $\left|L_{j}\right|=1$ for $1 \leqslant j \leqslant 5$.

Claim 3. $L_{j}=L_{j-1}$ for $1 \leqslant j \leqslant 5$.
Proof. Assume the contrary and by symmetry let $L_{2}=\{1\}$ and $L_{1}=\{3\}$.
The fact that $d((2,5),(2,2)) \leqslant 4$ implies that $(2,5) \rightarrow(2,4) \rightarrow(2,3) \rightarrow(2,2)$ and $d((1,4),(1,1)) \leqslant 4$ implies that $(3,1) \rightarrow(1,1)$.

Suppose $(1,1) \rightarrow(2,1)$. We now have:
by Remark $1,(2,1) \rightarrow(3,1)$;
$d((3,1),(2,3)) \leqslant 4$ implies that $(1,2) \rightarrow(1,3) \rightarrow(2,3)$;
by Remark $1,(2,3) \rightarrow(3,3)$;
$d((1,3),(1,1)) \leqslant 4$ implies that $(1,3) \rightarrow(3,3) \rightarrow(3,2)$;
by Remark $1,(3,3) \rightarrow(3,4)$ and $(1,4) \rightarrow(1,3)$;
$d((3,4),(1,1)) \leqslant 4$ implies that $(3,4) \rightarrow(3,5)$;
by Remark $2,(1,5) \rightarrow(1,4)$;
$d((1,4),(1,1)) \leqslant 4$ implies that $(1,4) \rightarrow(3,4)$;
by Remark $1,(3,4) \rightarrow(2,4) \rightarrow(1,4)$.
Thus $d((2,4),(1,1)) \geqslant 5$, a contradiction.
Hence $(2,1) \rightarrow(1,1)$. By Remark $1,(3,1) \rightarrow(2,1)$. Suppose $(1,2) \rightarrow(3,2)$. We now have:
$d((3,2),(3,4)) \leqslant 4$ implies that $(3,2) \rightarrow(3,3)$;
by Remark $2,(1,3) \rightarrow(1,2)$;
$d((2,5),(3,2)) \leqslant 4$ implies that $(2,2) \rightarrow(3,2)$;
by Remark $1,(1,2) \rightarrow(2,2)$;
$d((3,1),(1,3)) \leqslant 4$ implies that $(1,5) \rightarrow(1,4) \rightarrow(1,3)$;
by Remark $2,(3,3) \rightarrow(3,4) \rightarrow(3,5)$;
$d((1,4),(1,1)) \leqslant 4$ implies that $(1,4) \rightarrow(3,4)$;
by Remark $1,(3,4) \rightarrow(2,4) \rightarrow(1,4)$;
$d((1,3),(1,5)) \leqslant 4$ implies that $(1,3) \rightarrow(3,3)$ and $(3,5) \rightarrow(1,5)$;
by Remark $1,(3,3) \rightarrow(2,3) \rightarrow(1,3)$ and $(1,5) \rightarrow(2,5) \rightarrow(3,5)$.
Thus $d((1,3),(2,5)) \geqslant 5$, a contradiction.
Hence $(3,2) \rightarrow(1,2)$. The fact that $d((1,2),(1,5)) \leqslant 4$ implies that $(1,2) \rightarrow(1,3)$ $\rightarrow(1,4) \rightarrow(1,5)$ or $(1,2) \rightarrow(2,2)$.
Suppose $(1,2) \rightarrow(1,3) \rightarrow(1,4) \rightarrow(1,5)$. We now have:
by Remark $2,(3,5) \rightarrow(3,4) \rightarrow(3,3) \rightarrow(3,2)$;
$d((1,5),(1,2)) \leqslant 4$ implies that $(1,5) \rightarrow(3,5)$;
$d((1,5),(2,2)) \leqslant 4$ implies that $(1,5) \rightarrow(2,5)$;
by Remark $1,(2,5) \rightarrow(3,5)$;
$d((3,2),(3,4)) \leqslant 4$ implies that $(1,4) \rightarrow(3,4)$;
by Remark $1,(1,2) \rightarrow(2,2) \rightarrow(3,2)$ and $(3,4) \rightarrow(2,4) \rightarrow(1,4)$;
$d((3,3),(3,5)) \leqslant 4$ implies that $(3,3) \rightarrow(1,3)$.
Thus $d((2,2),(3,3)) \geqslant 5$, a contradiction.
Hence $(1,2) \rightarrow(2,2)$. We now have:
by Remark $1,(2,2) \rightarrow(3,2)$;
$d((3,1),(3,3)) \leqslant 4$ implies that $(1,2) \rightarrow(1,3) \rightarrow(3,3)$;
by Remark $2,(3,3) \rightarrow(3,2)$;
$d((1,5),(1,2)) \leqslant 4$ implies that $(1,5) \rightarrow(3,5)$;
$d((2,5),(1,2)) \leqslant 4$ implies that $(2,5) \rightarrow(3,5)$;
by Remark $1,(1,5) \rightarrow(2,5),(1,4) \rightarrow(1,5)$ and $(3,5) \rightarrow(3,4)$;
$d((3,3),(3,5)) \leqslant 4$ implies that $(3,3) \rightarrow(3,4) \rightarrow(1,4)$;
by Remark $2,(1,4) \rightarrow(1,3)$.
Thus $d((3,2),(1,4)) \geqslant 5$, a contradiction and Claim 3 is proved.

By Claim 3, we may assume that $L_{j}=\{3\}$ for $1 \leqslant j \leqslant 5$. Because 5 is an odd number, there must be a j such that either $(2, j-1) \rightarrow(1, j-1)$ and $(2, j) \rightarrow(1, j)$, or $(1, j-1) \rightarrow(2, j-1)$ and $(1, j) \rightarrow(2, j)$. We may assume $(2,1) \rightarrow(1,1)$ and $(2,2) \rightarrow(1,2)$. We now have:

```
\(d((1,5),(2,1)) \leqslant 4\) implies that \((3,1) \rightarrow(2,1)\);
\(d((1,1),(2,2)) \leqslant 4\) implies that \((1,1) \rightarrow(3,1)\) and \((3,2) \rightarrow(2,2)\);
\(d((2,1),(1,2)) \leqslant 4\) implies that \((3,2) \rightarrow(1,2)\).
```

Thus $d((1,2),(2,3)) \geqslant 5$, a contradiction.
Hence $\vec{d}\left(C_{3} \times C_{5}\right) \geqslant 5$ and the proposition follows from Lemma 1 .
The conjecture is proven true from Propositions 1 and 2.

Acknowledgements

The authors would like to express their sincere thanks to the referees for their helpful comments.

References

[1] J. Bang-Jensen, G. Gutin, Directed Graphs: Theory, Algorithms and Applications, Springer, London, 2000, to be published.
[2] J.-C. Bermond, J. Bond, C. Martin, A. Pekec, F.S. Roberts, Optimal orientations of annular networks, DIMACS Technical Report 99-13, 1999.
[3] P. Fraigniaud, E. Lazard, Methods and problems of communication in usual networks, Discrete Appl. Math. 53 (1994) 79-133.
[4] K.M. Koh, K.T. Lee, Optimal orientations of products of odd cycles and paths, preprint, 1998.
[5] K.M. Koh, B.P. Tan, The diameters of a graph and its orientations, Research report, Department of Mathematics, National University of Singapore, 1992.
[6] K.M. Koh, E.G. Tay, On optimal orientations of cartesian products of even cycles and paths, Networks 30 (1997) 1-7.
[7] K.M. Koh, E.G. Tay, On optimal orientations of cartesian products of graphs (I), Discrete Math. 190 (1998) 115-136.
[8] K.M. Koh, E.G. Tay, On optimal orientations of cartesian products of even cycles, Networks 32 (1998) 299-306.
[9] J.C. Konig, D.W. Krumme, E. Lazard, Diameter-preserving orientations of the torus, Networks 32 (1998) 1-11.
[10] H.E. Robbins, A theorem on graphs with an application to a problem of traffic control, Amer. Math. Monthly 46 (1939) 281-283.
[11] F.S. Roberts, Y. Xu, On the optimal strongly connected orientations of city street graphs I: Large grids, SIAM J. Discrete Math. 1 (1988) 199-222.
[12] F.S. Roberts, Y. Xu, On the optimal strongly connected orientations of city street graphs II: Two east-west avenues or north-south streets, Networks 19 (1989) 221-233.
[13] F.S. Roberts, Y. Xu, On the optimal strongly connected orientations of city street graphs III: Three east-west avenues or north-south streets, Networks 22 (1992) 109-143.
[14] F.S. Roberts, Y. Xu, On the optimal strongly connected orientations of city street graphs IV: Four east-west avenues or north-south streets, Discrete Appl. Math. 49 (1994) 331-356.

[^0]: * Corresponding author.

 E-mail address: matkohkm@nus.edu.sg (K.M. Koh).

