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Abstract

Let G×H denote the cartesian product of the graphs G and H , and Cn the cycle of order n.
We prove the conjecture of Konig et al. that for n¿ 2, the minimum diameter of any orientation
of the graph C3 × C2n+1 is n+ 3. c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Let G be a graph with vertex set V (G) and edge set E(G). For v ∈ V (G), the
eccentricity e(v) of v is de9ned as e(v)=max{d(v; x) | x ∈ V (G)}, where d(v; x) de-
notes the distance from v to x. The diameter of G, denoted by d(G), is de9ned as
d(G)=max{e(v) | v ∈ V (G)}. Let D be a digraph with vertex set V (D) and edge
set E(D). For v ∈ V (D), the notions e(v) and d(D) are similarly de9ned. An ori-
entation of a graph G is a digraph obtained from G by assigning to each edge in
G a direction. An orientation D of G is strong if every two vertices in D are mu-
tually reachable in D. Let D(G) be the family of strong orientations of G. De9ne
*
d (G)=min{d(D) |D ∈ D(G)}.
By evaluating

*
d (G), we more than re9ne the one-way problem of Robbins [10].

Indeed, the parameter
*
d (G) also provides an upper bound for the half-duplex version

of the gossip problem (see for e.g., [1–3]).
Let G×H denote the cartesian product of two graphs G and H , and Pn, Cn and Kn

the path, cycle and complete graph, respectively, of order n. Roberts and Xu [11–14],
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and independently Koh and Tan [5], evaluated the quantity
*
d (Pm×Pn). Recently, Koh

and Lee [4] evaluated
*
d (Pm × C2n+1), Koh and Tay [6–8] determined the quantities

*
d (Pm × C2n);

*
d (C2m × C2n) and

*
d (Km × C2n+1), where m¿ 4, and Konig et al. [9]

independently enumerated
*
d (Cm × Cn) for almost all m, n but not including the case

m=3 and n¿ 5, where n is odd. While Koh and Tay [7] remarked that the value of
*
d (C3 × C2n+1), where n¿ 2, was diIcult to ascertain, Konig et al. [9] proposed the
following.

Conjecture:
*
d (C3 × C2n+1)= n+ 3 for n¿ 2:

In this note, we shall prove that this conjecture is true.

2. Notation and terminology

Given two graphs G1 and G2, their cartesian product G=G1 × G2 has V (G)=
V (G1)× V (G2) and two vertices (u1; u2) and (v1; v2) of G are adjacent if and only if
either u1 = v1 and u2v2 ∈ E(G2) or u2 = v2 and u1v1 ∈ E(G1).

We write V (Cn)= {i | 16 i6 n} and V (C3 × C2n+1)= {(i; j) | 16 i6 3; 16 j6
2n + 1}. Thus, two distinct vertices (i; j) and (i′; j′) are adjacent in C3 × C2n+1 iJ
either j= j′ or ‘j − j′≡ ± 1(mod 2n+ 1) and i= i′’.
Let G be a graph, F ∈ D(G) and A a subdigraph of F . The eccentricity and outdegree

of a vertex v in A are denoted, respectively, by eA(v) and sA(v): The subscript A is
omitted if A=F:
Let D be a digraph. For X ⊆V (D) or X ⊆E(D), the subdigraph of D induced by X

is denoted by D[X ]. Given F ∈ D(C3 × C2n+1), where 16 i6 3 and 16 j6 2n+ 1,
let Fi=F[{i} × V (C2n+1)] and Fj =F[V (C3)× {j}].
For x; y ∈ V (D), we write ‘x → y’ or ‘y ← x’ if xy ∈ E(D). Also, for A; B⊆V (D),

we write ‘A → B’ or ‘B ← A’ if x → y in D for all x ∈ A and for all y ∈ B. When
A= {x}, we shall write ‘x → B’ or ‘B← x’ for A→ B.

The converse of D, denoted by D̃, is the digraph obtained from D by reversing each
arc in D.

3. The main result

First we state the following bounds obtained by Konig et al. [9].

Lemma 1. n+ 26
*
d (C3 × C2n+1)6 n+ 3:

For ease of presentation, we shall consider the case when n=2 separately from
when n¿ 3.
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Fig. 1.

We shall 9rst consider the general case when n¿ 3. By assuming that
*
d (C3 ×

C2n+1)= n+ 2, we try to get some information about the outdegree of each vertex in
C3 × C2n+1.

Lemma 2. Let F ∈ D(C3 × C2n+1); where n¿ 3; be such that d(F)= n + 2. Then
s(v)= 2 for all v ∈ V (F):

Proof: Since F is strong, 16 s(v)6 3 for all v ∈ V (F). Suppose that the statement
is false. As d(F̃)=d(F), we assume that s(v)= 3 for some v ∈ V (F). We shall split
our consideration into two cases according to where the ‘in’ edge is.
Case 1: There exists (i; j) ∈ V (F) such that s((i; j))= 3 and either (i; j+1)→ (i; j)

or (i; j − 1)→ (i; j), where j + 1 and j − 1 are taken modulo 2n+ 1:
We may assume that (1; 2)→ (1; 1)→ {(1; 2n+1); (2; 1); (3; 1)}. (As an illustration,

see Fig. 1.) We now have:

d((2; n+3); (1; 1))6 n+2 implies that (2; n+3)→ (2; n+4)→ · · · → (2; 2)→ (1; 2);
d((3; n+3); (1; 1))6 n+2 implies that (3; n+3)→ (3; n+4)→ · · · → (3; 2)→ (1; 2);
d((1; n+ 3); (1; 1))6 n+ 2 implies that (1; n+ 3)→ (1; n+)→ · · · → (1; 2);
d((1; 2); (2; n+ 1))6 n+ 2 implies that (2; 2)→ (2; 3)→ · · · → (2; n+ 1);
d((1; 2); (3; n+ 1))6 n+ 2 implies that (3; 2)→ (3; 3)→ · · · → (3; n+ 1);
d((2; 1); (1; n+ 3))6 n+ 2 implies that (1; 2n+ 1)→ (1; 2n)→ · · · → (1; n+ 3);
d((2; 1); (1; n+ 2))6 n+ 2 implies that (2; n+ 1)→ (2; n+ 2)→ (1; n+ 2);
d((3; 1); (1; n+ 2))6 n+ 2 implies that (3; n+ 1)→ (3; n+ 2)→ (1; n+ 2);
d((1; 2); (2; n+ 2))6 n+ 2 implies that (1; n+ 3)→ (2; n+ 3)→ (2; n+ 2);
d((1; 2); (3; n+ 2))6 n+ 2 implies that (1; n+ 3)→ (3; n+ 3)→ (3; n+ 2):

It follows from the above sequence of arguments that d((2; 4); (1; n+3))¿ n+3, a
contradiction.
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Remark 1. The argument above works for n=2 as well. Thus if F ∈ D(C3 × C5) be
such that d(F)= 4; then there does not exist (i; j) ∈ V (F) such that s((i; j))= 1 or 3
and either (i; j + 1) → (i; j) or (i; j − 1) → (i; j), where j + 1 and j − 1 are taken
modulo 5.

Case 2: There exists (i; j) ∈ V (F) such that s((i; j))= 3 and either (i+1; j)→ (i; j)
or (i − 1; j)→ (i; j), where i + 1 and i − 1 are taken modulo 3.
We may assume that (2; 1) → (1; 1) → {(1; 2n + 1); (1; 2); (3; 1)}. The fact that

d((2; n+1); (1; 1))6 n+2 implies that (2; n+1)→ (2; n)→ · · · → (2; 1) or (2; n+2)→
(2; n + 3) → · · · → (2; 1). By symmetry, we may assume the former. The fact that
d((1; n+ 2); (1; 1))6 n+ 2 implies that (2; 2n+ 1)→ (2; 1).

Suppose (2; 1)→ (3; 1). To avoid Case 1, we must have (3; 2)← (3; 1)→ (3; 2n+1).
The fact that d((2; 2); (2; n+2))6 n+2 implies that (2; 2)→ (1; 2)→ (1; 3)→ · · · →
(1; n+ 1) or (2; 2)→ (3; 2)→ (3; 3)→ · · · → (3; n+ 1). If (2; 2)→ (1; 2)→ (1; 3)→
· · · → (1; n + 1), then d((1; 2); (2; n + 4))¿ n + 3, a contradiction. If (2; 2) → (3; 2)
→ (3; 3)→ · · · → (3; n+ 1), then d((3; 2); (2; n+ 4))¿ n+ 3, a contradiction.

Thus, (3; 1)→ (2; 1). The fact that d((2; 1); (2; n+1))6 n+2 implies that (1; 2)→
(1; 3)→ · · · → (1; n+ 1)→ (2; n+ 1).

(∗) The fact that d((2; 2); (2; n + 2))6 n + 2 implies that (2; 2) → (1; 2) or (2; 2) →
(3; 2)→ (3; 3)→ · · · → (3; n+ 1).
Suppose (2; 2)→ (1; 2). We have:

d((1; 2); (2; n+ 4))6 n+ 2 implies that (1; 2)→ (3; 2)→ (3; 1)→ (3; 2n+ 1);
d((3; 2n+ 1); (3; n))6 n+ 2 implies that (3; 2n+ 1)→ (3; 2n)→ · · · → (3; n);
d((3; n + 2); (1; 1))6 n + 2 implies that (3; n + 2) → (2; n + 2) → (2; n + 3)
→ · · · → (2; 2n+ 1);
d((3; 2n+ 1); (2; n− 1))6 n+ 2 implies that (3; 2n+ 1)→ (2; 2n+ 1).

To avoid Case 1, we have (2; 2n + 1) → (1; 2n + 1) and hence d((1; 2n + 1);
(2; n − 1))¿ n + 3, a contradiction. Thus, we have (1; 2) → (2; 2) and (2; 2) →
(3; 2)→ (3; 3)→ · · · → (3; n+ 1).

As d((3; n+ 1); (1; 1))6 n+ 2; (3; n+ 1)→ (2; n+ 1).
To avoid Case 1, we have (2; n+ 1)→ (2; n+ 2).
As d((2; n+ 2); (1; 1))6 n+ 2; (2; n+ 2)→ (2; n+ 3)→ · · · → (2; 2n+ 1).
As d((2; 1); (2; n+2))6 n+2; (1; 2n+1)→ (1; 2n)→ · · · → (1; n+2)→ (2; n+2).

The fact that d((2; 2n+ 1); (2; n+ 1))6 n+ 2 implies that (2; 2n+ 1)→ (1; 2n+ 1)
or (2; 2n+ 1)→ (3; 2n+ 1)→ (3; 2n)→ · · · → (3; n+ 2). By symmetry, the argument
starting from (∗) above can be analogously used to show that (1; 2n+1)→ (2; 2n+1)
and (2; 2n+1)→ (3; 2n+1)→ (3; 2n)→ · · · → (3; n+2). To avoid Case 1, we have
(2; n+ 2)→ (3; n+ 2). Then d((3; n+ 2); (1; 1))¿ n+ 3, a contradiction.

Proposition 1.
*
d (C3 × C2n+1)= n+ 3 for n¿ 3:
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Proof: Suppose there exists F ∈ D(C3×C2n+1) such that d(F)= n+2. By Lemma 2,
s(v)= 2 for all v ∈ V (F).
Suppose there exists (i; j) ∈ V (F) such that sFj ((i; j))= 2. We may assume that

(i; j)= (2; 1). Thus (2; 1) → {(1; 1); (3; 1)} and we may assume that (3; 1) → (1; 1).
By Lemma 2, (1; 1) → {(1; 2); (1; 2n + 1)} and {(2; 2); (2; 2n + 1)} → (2; 1). By
symmetry and by Lemma 2, we may assume that (3; 2n+ 1)→ (3; 1)→ (3; 2).

The fact that d((1; 2); (2; n + 4))6 n + 2 implies that (1; 2) → (2; 2) and the fact
that d((3; 2); (2; n+ 4))6 n+ 2 implies that (3; 2)→ (2; 2):

By Lemma 2, (2; 2)→ (2; 3).
As d((2; n+ 1); (1; 1))6 n+ 2; (2; n+ 1)→ (2; n+ 2)→ · · · → (2; 2n+ 1).
As d((2; 1); (2; n + 2))6 n + 2; (1; 2n + 1) → (1; 2n) → · · · → (1; n + 3) →
(1; n+ 2)→ (2; n+ 2):
As d((1; n+ 1); (1; 1))6 n+ 2; (1; n+ 1)→ (1; n)→ · · · → (1; 2).
By Lemma 2, (1; 2)→ (3; 2).
By Lemma 2, (3; 2)→ (3; 3).
As d((3; n+ 1); (1; 1))6 n+ 2; (3; n+ 1)→ (3; n+ 2)→ · · · → (3; 2n+ 1).

Then d((2; n+ 2); (2; 2))¿ n+ 3, a contradiction.
Hence Fj ∈ D(C3) for 16 j6 2n + 1. For (i; j) ∈ V (F); let i be taken modulo 3

and j be taken modulo 2n + 1. By Lemma 2, Fi ∈ D(C2n+1) for 16 i6 3. Suppose
(i; j)→ (i; j+1) for all 16 i6 3 and 16 j6 2n+1. Then d((1; 1); (2; n+3))¿ n+3,
a contradiction. The argument is similar if (i; j) → (i; j − 1) for all 16 i6 3 and
16 j6 2n + 1. So we may assume that (i; j) → (i; j + 1) for 16 j6 2n + 1 if
and only if i=1; 3. Call Fj clockwise if (i; j) → (i + 1; j) for all 16 i6 3 and
anti-clockwise otherwise. Without loss of generality, let F1 be clockwise. If Fn+3 is
also clockwise, then d((3; 1); (1; n + 3))¿ n + 3, a contradiction. Thus Fn+3 must be
anti-clockwise. Using the argument repeatedly, we conclude that F1+2p(n+2) is clockwise
and F1+(2p−1)(n+2) is anti-clockwise, where p¿ 1. Suppose n + 2 and 2n + 1 have a
common factor q. Since 2(n+2)= (2n+1)+3; q divides 3 as well and so q=3. We
shall write n=3k + 1 and so n+ 2=3k + 3 and 2n+ 1=6k + 3. Now, (2n+ 1)=(n+
2)= (6k + 3)=(3k + 3)= (2k + 1)=(k + 1) which is in lowest terms since the fact that
2(k +1)= (2k +1)+ 1 implies that 2k +1 and k +1 are coprime. Hence after 2k +1
applications of the argument, we would return to F1 for the 9rst time and orient it
anti-clockwise since 2k + 1 is odd. But this is a contradiction. Thus n+ 2 and 2n+ 1
are coprime. Then after 2n+1 applications of the argument, we would return to F1 for
the 9rst time and orient it anti-clockwise since 2n+ 1 is odd, a contradiction again.
Hence

*
d (C3C2n+1)¿ n+ 3 for n¿ 3 and the result follows from Lemma 1.

The single case when n=2 is surprisingly diIcult and laborious. We present the
proof here for completeness.

Proposition 2.
*
d (C3 × C5)= 5.
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Proof: Suppose there exists an F ∈ D(C3 × C5) such that d(F)= 4. Let Lj =
{i | (i; j − 1)→ (i; j) in F} where j and j − 1 are taken modulo 5.

Claim 1. 16 |Lj|6 2.

Proof: If |Lj|=0, then d((1; j−1); (2; j))¿ 5. If |Lj|=3, then d((2; j); (1; j−1))¿ 5.

Claim 2. If |Lj|=1, then |Lj−1|=1.

Proof: Suppose to the contrary that |Lj|=1 and |Lj−1|=2 and assume for simplicity
that j=2. By symmetry, we may assume L1 = {1; 2} and (2; 1) → (1; 1): There are
three cases to consider.
Case 1: L2 = {1}:
Then d((1; 1); (2; 5))6 4 implies that (1; 1)→ (3; 1) and d((3; 1); (2; 2))6 4 implies

that (3; 1)→ (2; 1). Thus d((2; 1); (2; 4))¿ 5, a contradiction.
Case 2: L2 = {2}.
Then d((1; 1); (1; 3))¿ 5, a contradiction.
Case: 3 L2 = {3}.
Since F is strong, we must have (1; 1) → (3; 1). The fact that d((2; 1); (2; 4))6 4

implies that (2; 1)→ (3; 1).
Suppose (1; 5)→ (3; 5). We now have:

d((1; 2); (1; 5))6 4 implies that (1; 2)→ (1; 3)→ (1; 4)→ (1; 5);
by Remark 1, (2; 5)→ (1; 5);
d((1; 5); (1; 2))6 4 implies that (3; 2)→ (1; 2);
d((3; 5); (1; 2))6 4 implies that (3; 5)→ (3; 4)→ (3; 3)→ (3; 2);
d((3; 2); (2; 5))6 4 implies that (3; 2)→ (2; 2)→ (2; 3)→ (2; 4)→ (2; 5);
by Remark 1, (3; 5)→ (2; 5);
d((1; 4); (2; 2))6 4 implies that (1; 4)→ (3; 4);
by Remark 1, (3; 4)→ (2; 4)→ (1; 4).

Thus d((2; 4); (2; 2))¿ 5, a contradiction.
Hence (3; 5)→ (1; 5). Suppose (2; 5)→ (3; 5). We now have:

d((1; 1); (2; 1))6 4 implies that (3; 2)→ (2; 2);
d((2; 2); (2; 5))6 4 implies that (2; 2)→ (2; 3)→ (2; 4)→ (2; 5);
by Remark 1, (1; 5)→ (2; 5);
d((3; 5); (2; 2))6 4 implies that (3; 5)→ (3; 4)→ (3; 3)→ (3; 2);
d((3; 3); (3; 5))6 4 implies that (3; 3)→ (2; 3);
by Remark 1, (2; 3)→ (1; 3)→ (3; 3);
d((1; 1); (1; 3))6 4 implies that (3; 2)→ (1; 2)→ (1; 3);
d((1; 1); (2; 4))6 4 implies that (3; 4)→ (2; 4);
by Remark 1, (2; 4)→ (1; 4)→ (3; 4);
d((1; 1); (1; 4))6 4 implies that (1; 5)→ (1; 4).



K.M. Koh, E.G. Tay /Discrete Mathematics 232 (2001) 153–161 159

Thus d((1; 4); (1; 5))¿ 5, a contradiction.
Hence (3; 5)→ (2; 5). We now have:

by Remark 1, (3; 4)→ (3; 5);
d((1; 1); (3; 4))6 4 implies that (3; 2)→ (3; 3)→ (3; 4);
d((1; 1); (2; 4))6 4 implies that (2; 5)→ (2; 4);
d((1; 1); (1; 4))6 4 implies that (1; 5)→ (1; 4);

Suppose (2; 2)→ (3; 2). We now have:

by Remark 1, (3; 2)→ (1; 2);
d((2; 5); (2; 2))6 4 implies that (2; 4)→ (2; 3)→ (2; 2);
by Remark 1, (1; 2)→ (2; 2);
d((1; 1); (2; 3))6 4 implies that (3; 3)→ (2; 3);
by Remark 1, (2; 3)→ (1; 3)→ (3; 3);
d((1; 1); (1; 3))6 4 implies that (1; 2)→ (1; 3).

Thus d((1; 3); (3; 1))¿ 5, a contradiction.
Hence (3; 2)→ (2; 2). We now have:

by Remark 1, (1; 2)→ (3; 2);
d((1; 1); (1; 2))6 4 implies that (2; 2)→ (1; 2);
d((1; 1); (1; 3))6 4 implies that (3; 3)→ (1; 3);
by Remark 1, (2; 3)→ (3; 3);
d((1; 3); (1; 5))6 4 implies that (1; 3)→ (1; 4)→ (3; 4);
by Remark 1, (3; 4)→ (2; 4);
d((2; 4); (1; 5))6 4 implies that (2; 4)→ (1; 4).

Thus d((1; 4); (1; 2))¿ 5, a contradiction and Claim 2 is proved.

Remark 2. If |Lj|=1 for some j; 16 j6 5, then by induction |Lk |=1 for all 16 k
6 5. As d(F̃)=d(F), we may assume |Lj|=1 for 16 j6 5.

Claim 3. Lj =Lj−1 for 16 j6 5.

Proof: Assume the contrary and by symmetry let L2 = {1} and L1 = {3}.

The fact that d((2; 5); (2; 2))6 4 implies that (2; 5) → (2; 4) → (2; 3) → (2; 2) and
d((1; 4); (1; 1))6 4 implies that (3; 1)→ (1; 1).

Suppose (1; 1)→ (2; 1). We now have:

by Remark 1, (2; 1)→ (3; 1);
d((3; 1); (2; 3))6 4 implies that (1; 2)→ (1; 3)→ (2; 3);
by Remark 1, (2; 3)→ (3; 3);
d((1; 3); (1; 1))6 4 implies that (1; 3)→ (3; 3)→ (3; 2);
by Remark 1, (3; 3)→ (3; 4) and (1; 4)→ (1; 3);
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d((3; 4); (1; 1))6 4 implies that (3; 4)→ (3; 5);
by Remark 2, (1; 5)→ (1; 4);
d((1; 4); (1; 1))6 4 implies that (1; 4)→ (3; 4);
by Remark 1, (3; 4)→ (2; 4)→ (1; 4).

Thus d((2; 4); (1; 1))¿ 5, a contradiction.
Hence (2; 1) → (1; 1). By Remark 1, (3; 1) → (2; 1). Suppose (1; 2) → (3; 2). We

now have:

d((3; 2); (3; 4))6 4 implies that (3; 2)→ (3; 3);
by Remark 2, (1; 3)→ (1; 2);
d((2; 5); (3; 2))6 4 implies that (2; 2)→ (3; 2);
by Remark 1, (1; 2)→ (2; 2);
d((3; 1); (1; 3))6 4 implies that (1; 5)→ (1; 4)→ (1; 3);
by Remark 2, (3; 3)→ (3; 4)→ (3; 5);
d((1; 4); (1; 1))6 4 implies that (1; 4)→ (3; 4);
by Remark 1, (3; 4)→ (2; 4)→ (1; 4);
d((1; 3); (1; 5))6 4 implies that (1; 3)→ (3; 3) and (3; 5)→ (1; 5);
by Remark 1, (3; 3)→ (2; 3)→ (1; 3) and (1; 5)→ (2; 5)→ (3; 5).

Thus d((1; 3); (2; 5))¿ 5, a contradiction.
Hence (3; 2) → (1; 2). The fact that d((1; 2); (1; 5))6 4 implies that (1; 2) → (1; 3)
→ (1; 4)→ (1; 5) or (1; 2)→ (2; 2).

Suppose (1; 2)→ (1; 3)→ (1; 4)→ (1; 5). We now have:

by Remark 2, (3; 5)→ (3; 4)→ (3; 3)→ (3; 2);
d((1; 5); (1; 2))6 4 implies that (1; 5)→ (3; 5);
d((1; 5); (2; 2))6 4 implies that (1; 5)→ (2; 5);
by Remark 1, (2; 5)→ (3; 5);
d((3; 2); (3; 4))6 4 implies that (1; 4)→ (3; 4);
by Remark 1, (1; 2)→ (2; 2)→ (3; 2) and (3; 4)→ (2; 4)→ (1; 4);
d((3; 3); (3; 5))6 4 implies that (3; 3)→ (1; 3).

Thus d((2; 2); (3; 3))¿ 5, a contradiction.
Hence (1; 2)→ (2; 2). We now have:

by Remark 1, (2; 2)→ (3; 2);
d((3; 1); (3; 3))6 4 implies that (1; 2)→ (1; 3)→ (3; 3);
by Remark 2, (3; 3)→ (3; 2);
d((1; 5); (1; 2))6 4 implies that (1; 5)→ (3; 5);
d((2; 5); (1; 2))6 4 implies that (2; 5)→ (3; 5);
by Remark 1, (1; 5)→ (2; 5); (1; 4)→ (1; 5) and (3; 5)→ (3; 4);
d((3; 3); (3; 5))6 4 implies that (3; 3)→ (3; 4)→ (1; 4);
by Remark 2, (1; 4)→ (1; 3).

Thus d((3; 2); (1; 4))¿ 5, a contradiction and Claim 3 is proved.
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By Claim 3, we may assume that Lj = {3} for 16 j6 5. Because 5 is an odd
number, there must be a j such that either (2; j − 1) → (1; j − 1) and (2; j) → (1; j),
or (1; j − 1) → (2; j − 1) and (1; j) → (2; j). We may assume (2; 1) → (1; 1) and
(2; 2)→ (1; 2). We now have:

d((1; 5); (2; 1))6 4 implies that (3; 1)→ (2; 1);
d((1; 1); (2; 2))6 4 implies that (1; 1)→ (3; 1) and (3; 2)→ (2; 2);
d((2; 1); (1; 2))6 4 implies that (3; 2)→ (1; 2).

Thus d((1; 2); (2; 3))¿ 5, a contradiction.
Hence

*
d (C3 × C5)¿ 5 and the proposition follows from Lemma 1.

The conjecture is proven true from Propositions 1 and 2.
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