

Discrete Mathematics 232 (2001) 153-161

www.elsevier.com/locate/disc

Note

On a conjecture concerning optimal orientations of the cartesian product of a triangle and an odd cycle

K.M. Koh*, E.G. Tay

Department of Mathematics, National University of Singapore, 10 Kent Ridge Road, Singapore 119260, Singapore

Received 21 September 1999; revised 14 June 2000; accepted 26 June 2000

Abstract

Let $G \times H$ denote the cartesian product of the graphs G and H, and C_n the cycle of order n. We prove the conjecture of Konig et al. that for $n \ge 2$, the minimum diameter of any orientation of the graph $C_3 \times C_{2n+1}$ is n + 3. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: Minimum diameter; Orientation; Triangle; Odd cycle; Gossip problem

1. Introduction

Let G be a graph with vertex set V(G) and edge set E(G). For $v \in V(G)$, the *eccentricity* e(v) of v is defined as $e(v) = \max\{d(v,x) | x \in V(G)\}$, where d(v,x) denotes the distance from v to x. The *diameter* of G, denoted by d(G), is defined as $d(G) = \max\{e(v) | v \in V(G)\}$. Let D be a digraph with vertex set V(D) and edge set E(D). For $v \in V(D)$, the notions e(v) and d(D) are similarly defined. An *orientation* of a graph G is a digraph obtained from G by assigning to each edge in G a direction. An orientation D of G is *strong* if every two vertices in D are mutually reachable in D. Let $\mathcal{D}(G)$ be the family of strong orientations of G. Define $\vec{d}(G) = \min\{d(D) | D \in \mathcal{D}(G)\}$.

By evaluating d(G), we more than refine the one-way problem of Robbins [10]. Indeed, the parameter $\vec{d}(G)$ also provides an upper bound for the half-duplex version of the gossip problem (see for e.g., [1–3]).

Let $G \times H$ denote the cartesian product of two graphs G and H, and P_n , C_n and K_n the path, cycle and complete graph, respectively, of order n. Roberts and Xu [11–14],

^{*} Corresponding author.

E-mail address: matkohkm@nus.edu.sg (K.M. Koh).

and independently Koh and Tan [5], evaluated the quantity $\overline{d} (P_m \times P_n)$. Recently, Koh and Lee [4] evaluated $\overline{d} (P_m \times C_{2n+1})$, Koh and Tay [6–8] determined the quantities $\overline{d} (P_m \times C_{2n})$, $\overline{d} (C_{2m} \times C_{2n})$ and $\overline{d} (K_m \times C_{2n+1})$, where $m \ge 4$, and Konig et al. [9] independently enumerated $\overline{d} (C_m \times C_n)$ for almost all m, n but not including the case m=3 and $n \ge 5$, where n is odd. While Koh and Tay [7] remarked that the value of $\overline{d} (C_3 \times C_{2n+1})$, where $n \ge 2$, was difficult to ascertain, Konig et al. [9] proposed the following.

Conjecture. \vec{d} ($C_3 \times C_{2n+1}$) = n + 3 for $n \ge 2$.

In this note, we shall prove that this conjecture is true.

2. Notation and terminology

Given two graphs G_1 and G_2 , their *cartesian product* $G = G_1 \times G_2$ has $V(G) = V(G_1) \times V(G_2)$ and two vertices (u_1, u_2) and (v_1, v_2) of G are adjacent if and only if either $u_1 = v_1$ and $u_2v_2 \in E(G_2)$ or $u_2 = v_2$ and $u_1v_1 \in E(G_1)$.

We write $V(C_n) = \{i \mid 1 \le i \le n\}$ and $V(C_3 \times C_{2n+1}) = \{(i,j) \mid 1 \le i \le 3, 1 \le j \le 2n+1\}$. Thus, two distinct vertices (i,j) and (i', j') are adjacent in $C_3 \times C_{2n+1}$ iff either j = j' or $j - j' \equiv \pm 1 \pmod{2n+1}$ and i = i'.

Let G be a graph, $F \in \mathcal{D}(G)$ and A a subdigraph of F. The eccentricity and outdegree of a vertex v in A are denoted, respectively, by $e_A(v)$ and $s_A(v)$. The subscript A is omitted if A = F.

Let *D* be a digraph. For $X \subseteq V(D)$ or $X \subseteq E(D)$, the subdigraph of *D* induced by *X* is denoted by D[X]. Given $F \in \mathcal{D}(C_3 \times C_{2n+1})$, where $1 \leq i \leq 3$ and $1 \leq j \leq 2n+1$, let $F^i = F[\{i\} \times V(C_{2n+1})]$ and $F_j = F[V(C_3) \times \{j\}]$.

For $x, y \in V(D)$, we write ' $x \to y$ ' or ' $y \leftarrow x$ ' if $xy \in E(D)$. Also, for $A, B \subseteq V(D)$, we write ' $A \to B$ ' or ' $B \leftarrow A$ ' if $x \to y$ in D for all $x \in A$ and for all $y \in B$. When $A = \{x\}$, we shall write ' $x \to B$ ' or ' $B \leftarrow x$ ' for $A \to B$.

The converse of D, denoted by D, is the digraph obtained from D by reversing each arc in D.

3. The main result

First we state the following bounds obtained by Konig et al. [9].

Lemma 1. $n + 2 \leq \vec{d} (C_3 \times C_{2n+1}) \leq n + 3.$

For ease of presentation, we shall consider the case when n=2 separately from when $n \ge 3$.

Fig. 1.

We shall first consider the general case when $n \ge 3$. By assuming that $\vec{d} (C_3 \times C_{2n+1}) = n + 2$, we try to get some information about the outdegree of each vertex in $C_3 \times C_{2n+1}$.

Lemma 2. Let $F \in \mathcal{D}(C_3 \times C_{2n+1})$, where $n \ge 3$, be such that d(F) = n + 2. Then s(v) = 2 for all $v \in V(F)$.

Proof. Since F is strong, $1 \le s(v) \le 3$ for all $v \in V(F)$. Suppose that the statement is false. As $d(\tilde{F}) = d(F)$, we assume that s(v) = 3 for some $v \in V(F)$. We shall split our consideration into two cases according to where the 'in' edge is.

Case 1: There exists $(i, j) \in V(F)$ such that s((i, j)) = 3 and either $(i, j+1) \rightarrow (i, j)$ or $(i, j-1) \rightarrow (i, j)$, where j+1 and j-1 are taken modulo 2n+1.

We may assume that $(1,2) \to (1,1) \to \{(1,2n+1),(2,1),(3,1)\}$. (As an illustration, see Fig. 1.) We now have:

 $\begin{array}{l} d((2,n+3),(1,1)) \leqslant n+2 \text{ implies that } (2,n+3) \to (2,n+4) \to \cdots \to (2,2) \to (1,2); \\ d((3,n+3),(1,1)) \leqslant n+2 \text{ implies that } (3,n+3) \to (3,n+4) \to \cdots \to (3,2) \to (1,2); \\ d((1,n+3),(1,1)) \leqslant n+2 \text{ implies that } (1,n+3) \to (1,n+) \to \cdots \to (1,2); \\ d((1,2),(2,n+1)) \leqslant n+2 \text{ implies that } (2,2) \to (2,3) \to \cdots \to (2,n+1); \\ d((1,2),(3,n+1)) \leqslant n+2 \text{ implies that } (3,2) \to (3,3) \to \cdots \to (3,n+1); \\ d((2,1),(1,n+3)) \leqslant n+2 \text{ implies that } (1,2n+1) \to (1,2n) \to \cdots \to (1,n+3); \\ d((2,1),(1,n+2)) \leqslant n+2 \text{ implies that } (2,n+1) \to (2,n+2) \to (1,n+2); \\ d((3,1),(1,n+2)) \leqslant n+2 \text{ implies that } (3,n+1) \to (3,n+2) \to (1,n+2); \\ d((1,2),(2,n+2)) \leqslant n+2 \text{ implies that } (1,n+3) \to (2,n+3) \to (2,n+2); \\ d((1,2),(3,n+2)) \leqslant n+2 \text{ implies that } (1,n+3) \to (3,n+3) \to (3,n+2). \end{array}$

It follows from the above sequence of arguments that $d((2,4),(1,n+3)) \ge n+3$, a contradiction.

Remark 1. The argument above works for n = 2 as well. Thus if $F \in \mathcal{D}(C_3 \times C_5)$ be such that d(F) = 4, then there does not exist $(i, j) \in V(F)$ such that s((i, j)) = 1 or 3 and either $(i, j + 1) \rightarrow (i, j)$ or $(i, j - 1) \rightarrow (i, j)$, where j + 1 and j - 1 are taken modulo 5.

Case 2: There exists $(i,j) \in V(F)$ such that s((i,j)) = 3 and either $(i+1,j) \rightarrow (i,j)$ or $(i-1,j) \rightarrow (i,j)$, where i+1 and i-1 are taken modulo 3.

We may assume that $(2,1) \rightarrow (1,1) \rightarrow \{(1,2n+1),(1,2),(3,1)\}$. The fact that $d((2,n+1),(1,1)) \leq n+2$ implies that $(2,n+1) \rightarrow (2,n) \rightarrow \cdots \rightarrow (2,1)$ or $(2,n+2) \rightarrow (2,n+3) \rightarrow \cdots \rightarrow (2,1)$. By symmetry, we may assume the former. The fact that $d((1,n+2),(1,1)) \leq n+2$ implies that $(2,2n+1) \rightarrow (2,1)$.

Suppose $(2, 1) \rightarrow (3, 1)$. To avoid Case 1, we must have $(3, 2) \leftarrow (3, 1) \rightarrow (3, 2n+1)$. The fact that $d((2, 2), (2, n+2)) \leq n+2$ implies that $(2, 2) \rightarrow (1, 2) \rightarrow (1, 3) \rightarrow \cdots \rightarrow (1, n+1)$ or $(2, 2) \rightarrow (3, 2) \rightarrow (3, 3) \rightarrow \cdots \rightarrow (3, n+1)$. If $(2, 2) \rightarrow (1, 2) \rightarrow (1, 3) \rightarrow \cdots \rightarrow (1, n+1)$, then $d((1, 2), (2, n+4)) \geq n+3$, a contradiction. If $(2, 2) \rightarrow (3, 2) \rightarrow (3, 2) \rightarrow (3, 3) \rightarrow \cdots \rightarrow (3, n+1)$, then $d((3, 2), (2, n+4)) \geq n+3$, a contradiction.

Thus, $(3,1) \to (2,1)$. The fact that $d((2,1),(2,n+1)) \le n+2$ implies that $(1,2) \to (1,3) \to \cdots \to (1,n+1) \to (2,n+1)$.

(*) The fact that $d((2,2),(2,n+2)) \le n+2$ implies that $(2,2) \to (1,2)$ or $(2,2) \to (3,2) \to (3,3) \to \cdots \to (3,n+1)$. Suppose $(2,2) \to (1,2)$. We have:

 $d((1,2),(2,n+4)) \leq n+2 \text{ implies that } (1,2) \to (3,2) \to (3,1) \to (3,2n+1);$ $d((3,2n+1),(3,n)) \leq n+2 \text{ implies that } (3,2n+1) \to (3,2n) \to \dots \to (3,n);$ $d((3,n+2),(1,1)) \leq n+2 \text{ implies that } (3,n+2) \to (2,n+2) \to (2,n+3)$ $\to \dots \to (2,2n+1);$ $d((3,2n+1),(2,n-1)) \leq n+2 \text{ implies that } (3,2n+1) \to (2,2n+1).$

To avoid Case 1, we have $(2, 2n + 1) \rightarrow (1, 2n + 1)$ and hence $d((1, 2n + 1), (2, n - 1)) \ge n + 3$, a contradiction. Thus, we have $(1, 2) \rightarrow (2, 2)$ and $(2, 2) \rightarrow (3, 2) \rightarrow (3, 3) \rightarrow \cdots \rightarrow (3, n + 1)$.

As $d((3, n + 1), (1, 1)) \leq n + 2, (3, n + 1) \rightarrow (2, n + 1)$. To avoid Case 1, we have $(2, n + 1) \rightarrow (2, n + 2)$. As $d((2, n + 2), (1, 1)) \leq n + 2, (2, n + 2) \rightarrow (2, n + 3) \rightarrow \dots \rightarrow (2, 2n + 1)$. As $d((2, 1), (2, n + 2)) \leq n + 2, (1, 2n + 1) \rightarrow (1, 2n) \rightarrow \dots \rightarrow (1, n + 2) \rightarrow (2, n + 2)$.

The fact that $d((2, 2n + 1), (2, n + 1)) \leq n + 2$ implies that $(2, 2n + 1) \rightarrow (1, 2n + 1)$ or $(2, 2n + 1) \rightarrow (3, 2n + 1) \rightarrow (3, 2n) \rightarrow \cdots \rightarrow (3, n + 2)$. By symmetry, the argument starting from (*) above can be analogously used to show that $(1, 2n + 1) \rightarrow (2, 2n + 1)$ and $(2, 2n + 1) \rightarrow (3, 2n + 1) \rightarrow (3, 2n) \rightarrow \cdots \rightarrow (3, n + 2)$. To avoid Case 1, we have $(2, n + 2) \rightarrow (3, n + 2)$. Then $d((3, n + 2), (1, 1)) \geq n + 3$, a contradiction. \Box

Proposition 1. \overrightarrow{d} ($C_3 \times C_{2n+1}$) = n + 3 for $n \ge 3$.

Proof. Suppose there exists $F \in \mathscr{D}(C_3 \times C_{2n+1})$ such that d(F) = n+2. By Lemma 2, s(v) = 2 for all $v \in V(F)$.

Suppose there exists $(i,j) \in V(F)$ such that $s_{F_j}((i,j)) = 2$. We may assume that (i,j) = (2,1). Thus $(2,1) \to \{(1,1),(3,1)\}$ and we may assume that $(3,1) \to (1,1)$. By Lemma 2, $(1,1) \to \{(1,2),(1,2n+1)\}$ and $\{(2,2),(2,2n+1)\} \to (2,1)$. By symmetry and by Lemma 2, we may assume that $(3,2n+1) \to (3,1) \to (3,2)$.

The fact that $d((1,2),(2,n+4)) \le n+2$ implies that $(1,2) \to (2,2)$ and the fact that $d((3,2),(2,n+4)) \le n+2$ implies that $(3,2) \to (2,2)$.

By Lemma 2, $(2,2) \rightarrow (2,3)$. As $d((2,n+1),(1,1)) \leq n+2$, $(2,n+1) \rightarrow (2,n+2) \rightarrow \cdots \rightarrow (2,2n+1)$. As $d((2,1),(2,n+2)) \leq n+2$, $(1,2n+1) \rightarrow (1,2n) \rightarrow \cdots \rightarrow (1,n+3) \rightarrow (1,n+2) \rightarrow (2,n+2)$. As $d((1,n+1),(1,1)) \leq n+2$, $(1,n+1) \rightarrow (1,n) \rightarrow \cdots \rightarrow (1,2)$. By Lemma 2, $(1,2) \rightarrow (3,2)$. By Lemma 2, $(3,2) \rightarrow (3,3)$. As $d((3,n+1),(1,1)) \leq n+2$, $(3,n+1) \rightarrow (3,n+2) \rightarrow \cdots \rightarrow (3,2n+1)$.

Then $d((2, n+2), (2, 2)) \ge n+3$, a contradiction.

Hence $F_i \in \mathscr{D}(C_3)$ for $1 \leq j \leq 2n+1$. For $(i,j) \in V(F)$, let *i* be taken modulo 3 and j be taken modulo 2n + 1. By Lemma 2, $F^i \in \mathscr{D}(C_{2n+1})$ for $1 \leq i \leq 3$. Suppose $(i, j) \to (i, j+1)$ for all $1 \le i \le 3$ and $1 \le j \le 2n+1$. Then $d((1, 1), (2, n+3)) \ge n+3$, a contradiction. The argument is similar if $(i, j) \rightarrow (i, j - 1)$ for all $1 \le i \le 3$ and $1 \leq j \leq 2n+1$. So we may assume that $(i,j) \rightarrow (i,j+1)$ for $1 \leq j \leq 2n+1$ if and only if i = 1, 3. Call F_i clockwise if $(i, j) \rightarrow (i + 1, j)$ for all $1 \le i \le 3$ and anti-clockwise otherwise. Without loss of generality, let F_1 be clockwise. If F_{n+3} is also clockwise, then $d((3,1),(1,n+3)) \ge n+3$, a contradiction. Thus F_{n+3} must be anti-clockwise. Using the argument repeatedly, we conclude that $F_{1+2p(n+2)}$ is clockwise and $F_{1+(2p-1)(n+2)}$ is anti-clockwise, where $p \ge 1$. Suppose n+2 and 2n+1 have a common factor q. Since 2(n+2) = (2n+1)+3, q divides 3 as well and so q = 3. We shall write n = 3k + 1 and so n + 2 = 3k + 3 and 2n + 1 = 6k + 3. Now, (2n + 1)/(n + 3k + 3)2 = (6k+3)/(3k+3) = (2k+1)/(k+1) which is in lowest terms since the fact that 2(k+1) = (2k+1) + 1 implies that 2k+1 and k+1 are coprime. Hence after 2k+1applications of the argument, we would return to F_1 for the first time and orient it anti-clockwise since 2k + 1 is odd. But this is a contradiction. Thus n + 2 and 2n + 1are coprime. Then after 2n+1 applications of the argument, we would return to F_1 for the first time and orient it anti-clockwise since 2n + 1 is odd, a contradiction again.

Hence $\overline{d}(C_3C_{2n+1}) \ge n+3$ for $n \ge 3$ and the result follows from Lemma 1. \Box

The single case when n=2 is surprisingly difficult and laborious. We present the proof here for completeness.

Proposition 2. \vec{d} ($C_3 \times C_5$) = 5.

Proof. Suppose there exists an $F \in \mathscr{D}(C_3 \times C_5)$ such that d(F) = 4. Let $L_j = \{i \mid (i, j - 1) \rightarrow (i, j) \text{ in } F\}$ where j and j - 1 are taken modulo 5.

Claim 1. $1 \leq |L_i| \leq 2$.

Proof. If $|L_i| = 0$, then $d((1, j-1), (2, j)) \ge 5$. If $|L_i| = 3$, then $d((2, j), (1, j-1)) \ge 5$.

Claim 2. If $|L_i| = 1$, then $|L_{i-1}| = 1$.

Proof. Suppose to the contrary that $|L_j| = 1$ and $|L_{j-1}| = 2$ and assume for simplicity that j = 2. By symmetry, we may assume $L_1 = \{1, 2\}$ and $(2, 1) \rightarrow (1, 1)$. There are three cases to consider.

Case 1: $L_2 = \{1\}$. Then $d((1,1),(2,5)) \leq 4$ implies that $(1,1) \to (3,1)$ and $d((3,1),(2,2)) \leq 4$ implies that $(3,1) \to (2,1)$. Thus $d((2,1), (2,4)) \ge 5$, a contradiction. *Case* 2: $L_2 = \{2\}$. Then $d((1,1),(1,3)) \ge 5$, a contradiction. *Case*: 3 $L_2 = \{3\}$. Since F is strong, we must have $(1,1) \rightarrow (3,1)$. The fact that $d((2,1),(2,4)) \leq 4$ implies that $(2,1) \rightarrow (3,1)$. Suppose $(1,5) \rightarrow (3,5)$. We now have: $d((1,2),(1,5)) \leq 4$ implies that $(1,2) \to (1,3) \to (1,4) \to (1,5)$; by Remark 1, $(2,5) \rightarrow (1,5)$; $d((1,5),(1,2)) \leq 4$ implies that $(3,2) \rightarrow (1,2)$; $d((3,5),(1,2)) \leq 4$ implies that $(3,5) \rightarrow (3,4) \rightarrow (3,3) \rightarrow (3,2)$; $d((3,2),(2,5)) \leq 4$ implies that $(3,2) \rightarrow (2,2) \rightarrow (2,3) \rightarrow (2,4) \rightarrow (2,5);$ by Remark 1, $(3,5) \rightarrow (2,5)$; $d((1,4),(2,2)) \leq 4$ implies that $(1,4) \rightarrow (3,4)$; by Remark 1, $(3,4) \rightarrow (2,4) \rightarrow (1,4)$.

Thus $d((2,4),(2,2)) \ge 5$, a contradiction. Hence $(3,5) \to (1,5)$. Suppose $(2,5) \to (3,5)$. We now have: $d((1,1),(2,1)) \le 4$ implies that $(3,2) \to (2,2)$; $d((2,2),(2,5)) \le 4$ implies that $(2,2) \to (2,3) \to (2,4) \to (2,5)$; by Remark 1, $(1,5) \to (2,5)$; $d((3,5),(2,2)) \le 4$ implies that $(3,5) \to (3,4) \to (3,3) \to (3,2)$; $d((3,3),(3,5)) \le 4$ implies that $(3,3) \to (2,3)$; by Remark 1, $(2,3) \to (1,3) \to (3,3)$; $d((1,1),(1,3)) \le 4$ implies that $(3,2) \to (1,2) \to (1,3)$; $d((1,1),(2,4)) \le 4$ implies that $(3,4) \to (2,4)$; by Remark 1, $(2,4) \to (1,4) \to (3,4)$; $d((1,1),(1,4)) \le 4$ implies that $(1,5) \to (1,4)$. Thus $d((1,4),(1,5)) \ge 5$, a contradiction. Hence $(3,5) \rightarrow (2,5)$. We now have: by Remark 1, $(3, 4) \rightarrow (3, 5)$; $d((1,1),(3,4)) \leq 4$ implies that $(3,2) \rightarrow (3,3) \rightarrow (3,4)$; $d((1,1),(2,4)) \leq 4$ implies that $(2,5) \rightarrow (2,4)$; $d((1,1),(1,4)) \leq 4$ implies that $(1,5) \rightarrow (1,4)$; Suppose $(2,2) \rightarrow (3,2)$. We now have: by Remark 1, $(3,2) \rightarrow (1,2)$; $d((2,5),(2,2)) \leq 4$ implies that $(2,4) \rightarrow (2,3) \rightarrow (2,2)$; by Remark 1, $(1,2) \rightarrow (2,2)$; $d((1,1),(2,3)) \leq 4$ implies that $(3,3) \rightarrow (2,3)$; by Remark 1, $(2,3) \rightarrow (1,3) \rightarrow (3,3)$; $d((1,1),(1,3)) \leq 4$ implies that $(1,2) \rightarrow (1,3)$. Thus $d((1,3),(3,1)) \ge 5$, a contradiction. Hence $(3,2) \rightarrow (2,2)$. We now have: by Remark 1, $(1,2) \rightarrow (3,2)$; $d((1,1),(1,2)) \leq 4$ implies that $(2,2) \rightarrow (1,2)$; $d((1,1),(1,3)) \leq 4$ implies that $(3,3) \rightarrow (1,3)$; by Remark 1, $(2,3) \rightarrow (3,3)$; $d((1,3),(1,5)) \leq 4$ implies that $(1,3) \rightarrow (1,4) \rightarrow (3,4)$;

by Remark 1, $(3,4) \rightarrow (2,4)$;

 $d((2,4),(1,5)) \leq 4$ implies that $(2,4) \to (1,4)$.

Thus $d((1,4),(1,2)) \ge 5$, a contradiction and Claim 2 is proved.

Remark 2. If $|L_j| = 1$ for some $j, 1 \le j \le 5$, then by induction $|L_k| = 1$ for all $1 \le k \le 5$. As $d(\tilde{F}) = d(F)$, we may assume $|L_j| = 1$ for $1 \le j \le 5$.

Claim 3. $L_i = L_{i-1}$ for $1 \leq i \leq 5$.

Proof. Assume the contrary and by symmetry let $L_2 = \{1\}$ and $L_1 = \{3\}$.

The fact that $d((2,5),(2,2)) \le 4$ implies that $(2,5) \to (2,4) \to (2,3) \to (2,2)$ and $d((1,4),(1,1)) \le 4$ implies that $(3,1) \to (1,1)$. Suppose $(1,1) \to (2,1)$. We now have:

by Remark 1, $(2, 1) \rightarrow (3, 1)$; $d((3, 1), (2, 3)) \leq 4$ implies that $(1, 2) \rightarrow (1, 3) \rightarrow (2, 3)$; by Remark 1, $(2, 3) \rightarrow (3, 3)$; $d((1, 3), (1, 1)) \leq 4$ implies that $(1, 3) \rightarrow (3, 3) \rightarrow (3, 2)$; by Remark 1, $(3, 3) \rightarrow (3, 4)$ and $(1, 4) \rightarrow (1, 3)$; $d((3,4),(1,1)) \leq 4 \text{ implies that } (3,4) \to (3,5);$ by Remark 2, (1,5) \to (1,4); $d((1,4),(1,1)) \leq 4$ implies that (1,4) \to (3,4); by Remark 1, (3,4) \to (2,4) \to (1,4).

Thus $d((2,4),(1,1)) \ge 5$, a contradiction. Hence $(2,1) \rightarrow (1,1)$. By Remark 1, $(3,1) \rightarrow (2,1)$. Suppose $(1,2) \rightarrow (3,2)$. We now have:

 $d((3,2),(3,4)) \leq 4 \text{ implies that } (3,2) \rightarrow (3,3);$ by Remark 2, (1,3) \rightarrow (1,2); $d((2,5),(3,2)) \leq 4 \text{ implies that } (2,2) \rightarrow (3,2);$ by Remark 1, (1,2) \rightarrow (2,2); $d((3,1),(1,3)) \leq 4 \text{ implies that } (1,5) \rightarrow (1,4) \rightarrow (1,3);$ by Remark 2, (3,3) \rightarrow (3,4) \rightarrow (3,5); $d((1,4),(1,1)) \leq 4 \text{ implies that } (1,4) \rightarrow (3,4);$ by Remark 1, (3,4) \rightarrow (2,4) \rightarrow (1,4); $d((1,3),(1,5)) \leq 4 \text{ implies that } (1,3) \rightarrow (3,3) \text{ and } (3,5) \rightarrow (1,5);$ by Remark 1, (3,3) \rightarrow (2,3) \rightarrow (1,3) and (1,5) \rightarrow (2,5) \rightarrow (3,5).

Thus $d((1,3),(2,5)) \ge 5$, a contradiction. Hence $(3,2) \to (1,2)$. The fact that $d((1,2),(1,5)) \le 4$ implies that $(1,2) \to (1,3)$ $\to (1,4) \to (1,5)$ or $(1,2) \to (2,2)$. Suppose $(1,2) \to (1,3) \to (1,4) \to (1,5)$. We now have: by Remark 2, $(3,5) \to (3,4) \to (3,3) \to (3,2)$; $d((1,5),(1,2)) \le 4$ implies that $(1,5) \to (3,5)$; $d((1,5),(2,2)) \le 4$ implies that $(1,5) \to (2,5)$; by Remark 1, $(2,5) \to (3,5)$; $d((3,2),(3,4)) \le 4$ implies that $(1,4) \to (3,4)$; by Remark 1, $(1,2) \to (2,2) \to (3,2)$ and $(3,4) \to (2,4) \to (1,4)$;

 $d((3,3),(3,5)) \leq 4$ implies that $(3,3) \rightarrow (1,3)$.

Thus $d((2,2),(3,3)) \ge 5$, a contradiction. Hence $(1,2) \rightarrow (2,2)$. We now have:

by Remark 1, $(2,2) \rightarrow (3,2)$; $d((3,1),(3,3)) \leq 4$ implies that $(1,2) \rightarrow (1,3) \rightarrow (3,3)$; by Remark 2, $(3,3) \rightarrow (3,2)$; $d((1,5),(1,2)) \leq 4$ implies that $(1,5) \rightarrow (3,5)$; $d((2,5),(1,2)) \leq 4$ implies that $(2,5) \rightarrow (3,5)$; by Remark 1, $(1,5) \rightarrow (2,5), (1,4) \rightarrow (1,5)$ and $(3,5) \rightarrow (3,4)$; $d((3,3),(3,5)) \leq 4$ implies that $(3,3) \rightarrow (3,4) \rightarrow (1,4)$; by Remark 2, $(1,4) \rightarrow (1,3)$.

Thus $d((3,2),(1,4)) \ge 5$, a contradiction and Claim 3 is proved.

160

By Claim 3, we may assume that $L_j = \{3\}$ for $1 \le j \le 5$. Because 5 is an odd number, there must be a *j* such that either $(2, j - 1) \rightarrow (1, j - 1)$ and $(2, j) \rightarrow (1, j)$, or $(1, j - 1) \rightarrow (2, j - 1)$ and $(1, j) \rightarrow (2, j)$. We may assume $(2, 1) \rightarrow (1, 1)$ and $(2, 2) \rightarrow (1, 2)$. We now have:

 $d((1,5),(2,1)) \leq 4$ implies that $(3,1) \rightarrow (2,1)$; $d((1,1),(2,2)) \leq 4$ implies that $(1,1) \rightarrow (3,1)$ and $(3,2) \rightarrow (2,2)$; $d((2,1),(1,2)) \leq 4$ implies that $(3,2) \rightarrow (1,2)$.

Thus $d((1,2),(2,3)) \ge 5$, a contradiction.

Hence $\overline{d}(C_3 \times C_5) \ge 5$ and the proposition follows from Lemma 1. \Box The conjecture is proven true from Propositions 1 and 2.

Acknowledgements

The authors would like to express their sincere thanks to the referees for their helpful comments.

References

- J. Bang-Jensen, G. Gutin, Directed Graphs: Theory, Algorithms and Applications, Springer, London, 2000, to be published.
- [2] J.-C. Bermond, J. Bond, C. Martin, A. Pekec, F.S. Roberts, Optimal orientations of annular networks, DIMACS Technical Report 99–13, 1999.
- [3] P. Fraigniaud, E. Lazard, Methods and problems of communication in usual networks, Discrete Appl. Math. 53 (1994) 79–133.
- [4] K.M. Koh, K.T. Lee, Optimal orientations of products of odd cycles and paths, preprint, 1998.
- [5] K.M. Koh, B.P. Tan, The diameters of a graph and its orientations, Research report, Department of Mathematics, National University of Singapore, 1992.
- [6] K.M. Koh, E.G. Tay, On optimal orientations of cartesian products of even cycles and paths, Networks 30 (1997) 1–7.
- [7] K.M. Koh, E.G. Tay, On optimal orientations of cartesian products of graphs (I), Discrete Math. 190 (1998) 115–136.
- [8] K.M. Koh, E.G. Tay, On optimal orientations of cartesian products of even cycles, Networks 32 (1998) 299–306.
- [9] J.C. Konig, D.W. Krumme, E. Lazard, Diameter-preserving orientations of the torus, Networks 32 (1998) 1–11.
- [10] H.E. Robbins, A theorem on graphs with an application to a problem of traffic control, Amer. Math. Monthly 46 (1939) 281–283.
- [11] F.S. Roberts, Y. Xu, On the optimal strongly connected orientations of city street graphs I: Large grids, SIAM J. Discrete Math. 1 (1988) 199–222.
- [12] F.S. Roberts, Y. Xu, On the optimal strongly connected orientations of city street graphs II: Two east-west avenues or north-south streets, Networks 19 (1989) 221–233.
- [13] F.S. Roberts, Y. Xu, On the optimal strongly connected orientations of city street graphs III: Three east-west avenues or north-south streets, Networks 22 (1992) 109–143.
- [14] F.S. Roberts, Y. Xu, On the optimal strongly connected orientations of city street graphs IV: Four east-west avenues or north-south streets, Discrete Appl. Math. 49 (1994) 331–356.