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Sunscreens prevent sunburn and may also prevent
skin cancer by protecting from ultraviolet-induced
DNA damage. We assessed the ability of two sun-
screens, with different spectral profiles, to inhibit
DNA photodamage in human epidermis in situ. One
formulation contained the established ultraviolet B
filter octyl methoxycinnamate, whereas the other
contained terephthalylidene dicamphor sulfonic acid,
a new ultraviolet A filter. Both formulations had sun
protection factors of 4 when assessed with solar
simulating radiation in volunteers of skin type I/II.
We tested the hypothesis that sun protection factors
would indicate the level of protection against DNA
photodamage. Thus, we exposed sunscreen-treated
sites to four times the minimal erythema dose of
solar simulating radiation, whereas vehicle and

control sites were exposed to one minimal erythema
dose. We used monoclonal antibodies against
thymine dimers and 6—4 photoproducts and image
analysis to quantify DNA damage in skin sections. A
dose of four times the minimal erythema dose, with
either sunscreen, resulted in comparable levels of
thymine dimers and 6—4 photoproducts to one mini-
mal erythema dose * vehicle, providing evidence
that the DNA protection factor is comparable to the
sun protection factor. The lack of difference between
the sunscreens indicates similar action spectra for
erythema and DNA photodamage and that erythema
is a clinical surrogate for DNA photodamage that
may lead to skin cancer. Key words: DNA photo-
damage/photoprotection/skin cancer/sunscreen/UVA pro-
tection. J Invest Dermatol 115:37—-41, 2000

unscreens are formulated to prevent sunburn. Their

efficacy is indicated by their sun protection factor (SPF),

which is evaluated, according to strict industry guide-

lines, using solar simulating radiation (SSR). Sunscreen

use is widely advocated to inhibit the long-term effects of
solar exposure, such as skin cancer and photoageing, and animal
studies have supported this approach (Harrison ef al, 1991;
Fourtanier, 1996). Some studies in humans have shown that
sunscreen use is associated with a reduction in actinic keratoses
(Thompson et al, 1993; Naylor et al, 1995) that are widely regarded
as precursors for squamous cell carcinomas (SCC). More recently,
in a 4.5 y randomized controlled study with a broad spectrum SPF
16 product, Green ef al (1999) showed a 40% reduction in the total
number of SCC, but no effect on the number of people with SCC
nor on basal cell carcinoma, whether assessed by total count or
number of people with tumors. Other studies have suggested a
positive correlation between sunscreen use and malignant melano-
ma, most recently the work of Autier et al (1998). It has been
suggested that ultraviolet A (UVA) may play a role in malignant
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melanoma (Setlow and Woodhead, 1994). Thus, one reason for a
possible association between sunscreen use and malignant melano-
ma may have been the lack of adequate UVA (320—400 nm)
protection in sunscreens until quite recently. Some workers, based
entirely on in vitro studies, have suggested that sunscreen filters or
pigments themselves are photomutagenic (Knowland et al, 1993;
Dunford et al, 1997) and therefore potentially carcinogenic.

In reality, the role of sunscreens in the prevention of skin cancer
is poorly understood, but has important public health implications
(McGregor and Young, 1996), especially in education campaigns
about their value in reducing the high incidence of skin cancer in
susceptible white-skinned populations who sunburn easily. Ideally,
the role of sunscreens in the prevention of skin cancer should be
assessed by prospective randomized case control studies as done by
Green et al (1999). In practice such long-term (at least 4-7 y) studies
present practical and ethical problems. Another approach is to use
short-term surrogates for skin cancer. For example, there is
increasing evidence that nonmelanoma human skin cancer involves
at least two processes: (i) UVR-induced dipyrimidine DNA lesions,
such as cyclobutane pyrimidine dimers (CPDs), and consequent
mutation of the p53 gene (Brash ef al, 1996), and (if) UVR -induced
immunosuppression (Nishigori ef al, 1996a), which may be
mediated via CPDs (Kripke et al, 1992). Mouse studies have
shown that sunscreens can inhibit DNA photodamage (Wolf ef al,
1993; Ley and Fourtanier, 1997) and p53 mutation (Ananthaswamy
et al, 1997). Surprisingly, there are very few quantitative data on the
ability of sunscreens to prevent DNA photodamage in human skin
in vivo, and no study to date has adequately assessed the relationship
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between SPF and degree of protection from DNA photodamage in
human epidermis. A recent study (Bykov et al, 1998) reported that
protection from UVB (290-320 nm)-induced DNA photodamage
was at least as good as labeled SPF as determined by the
manufacturer. SPF, by definition, however, is assessed with SSR
and is valid only as an indicator of protection from erythema by a
given SSR source. UVB-rich sources, including SSR sources, can
result in a 100% overestimation of SPF when compared with
summer sunlight (Farr and Diffey, 1985; Sayre ef al, 1994). Thus,
the protection factor for erythema against a UVB-rich source is
likely to have been very much higher than the SPF stated on the
product tested, so that a comparison between labeled SPF and
protection from UVB-induced DNA photodamage is not valid. An
earlier study also used a UVB source and did not estimate DNA
protection factors (van Praag et al, 1993). Studies on the ability of
sunscreens to inhibit UVR-induced immunosuppression have
resulted in mixed conclusions (see Young and Walker, 1995 for
review) with several authors reporting that sunscreens do not afford
immunoprotection.

A very important question relating to the use of sunscreens to
inhibit skin cancer is whether SPF is indicative of the level of
protection against skin cancer or its surrogates. The answer to part
of this question was one of the goals of this study, which was
designed to determine whether SPF is indicative of the level of
protection against one class of CPD, the thymine dimer (TT), and
6-4 photoproducts ((6-4)PP) induced by SSR in human epidermis
in vivo. We also set out to determine if erythema per se is indicative
of DNA photodamage, especially as we have recently reported that
the action spectra for human erythema and TT in human epidermis
in situ are very similar (Young et al, 1998a), which suggests that
DNA is a chromophore for erythema. We approached this problem
by comparing the DNA protective abilities of two sunscreens, each
with the same SPF (as confirmed in our laboratory) but with quite
different absorption spectra. The same SSR source was used for the
SPF determination and the DNA studies. As photobiological effects
are very wavelength dependent, we believe that it is essential to use
the same SSR source when comparing protection from erythema,
i.e., SPF, and other endpoints. The significance of this point is
often not appreciated and this has resulted in considerable
confusion in the photoprotection literature.

MATERIALS AND METHODS

UVR source The UVR source was SSR from an Oriel (Leatherhead,
U.K.) Solar Simulator equipped with a 1 mm WG320 filter (Schott, Mainz,
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Figure 1. Emission spectrum of SSR source compared with
London U.K. noon summer sunlight. The xenon source was modified
by a dichroic mirror and filtered with two Schott filters (WG320, 1 mmy;
UG11, 1 mm). The data are normalized at 320 nm.
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Germany), 2 1 mm UG11 (No.18812, Schott, Clichy, France), and a
dichroic mirror. The emission spectrum is shown in Fig 1. SSR doses were
routinely monitored with a broad band thermopile radiometer (Medical
Physics, Dryburn Hospital, Durham, U.K.) and calculated by making
comparisons  with  spectroradiometric ~ determinations  (Bentham
Instruments, Reading, U.K.).

Volunteers The study was approved by the Ethics Committee of St.
Thomas’s Hospital, London. Volunteers gave informed consent and were
selected according to the following criteria: inclusion - aged 18—45, skin
types I or II; exclusion - pregnancy, a history of nude tanning whether by
sunlight or sunbeds, any medication within 7 d prior to the start of the
study with the exception of oral contraception, any investigational drug
within 28d of the start of the study. The 24 h just perceptible minimal
erythema dose (MED) for 14 volunteers (skin type II with one skin type I)
was assessed clinically on previously unexposed buttock skin sites
(Iecm X 1cm) using a geometric series of six exposure doses with
increments of V2. Eight volunteers with the same MED (2.0] per cm? —
full SSR UV spectrum) and one whose MED was 2.8] per cm? were
selected from this group and used for the SPF part of the study. Of these,
eight agreed to take part in the study to assess the ability of sunscreens to
protect from DNA photodamage. In all cases, erythema was also assessed in
triplicate by a reflectance device (Dia-Stron, Andover, U.K.). The
erythema index per experimental site is ‘“background corrected” by
subtracting the erythema reading from an adjacent nonirradiated control
site.

Sunscreens and vehicle Two coded sunscreen formulations and their
common uncoded vehicle were provided by L’Oréal Recherche, Clichy,
France. One formulation contained octyl methoxycinnamate, a widely
used UVB absorber (A,..=308nm), whereas the other contained
terephthalylidene dicamphor sulfonic acid, a broad spectrum UVA filter
with maximum absorption at 345nm. The absorption profiles of the
sunscreens and their common vehicle are shown in Fig2(a). We color
coded the preparations to minimize the chance of any application errors.
All samples were stored at room temperature. The formulations were
returned to the supplier after the study for re-analysis of their active
ingredients, and their stability during the study period was confirmed.

SPF determination COLIPA test method guidelines were followed for
in vivo SPF determination (except that we used V2 SSR. dose increments
rather than 25%), and we used a demarcated 42 cm? area (6 cm X 7 cm) of
previously unexposed buttock skin of nine volunteers. The product was
applied at a rate of 2.00 = 0.04 mg per cm?. Therefore each application was
approximately 84 mg per 42 cm?. All topical applications took place 15—
20 min before irradiation. All applications were determined by weighing
and were “‘spotted” evenly around the demarcated area and smoothed,
using a finger cot, over the surface of the skin as evenly as possible
(including peripheral areas). SSR exposure areas were demarcated with
1 em X 1 cm templates. The SPF was calculated according to the expression
(MED with sunscreen)/(MED without sunscreen). In vitro assessment of
monochromatic protection factors were made according to the method of
Diffey and Robson (1989).

Experimental design of DNA photoprotection studies Ideally, the
study should have been designed using the same approach as for SPF
assessment. SSR dose—response studies with and without sunscreen on the
same person were not possible, however, because of a limit of five biopsies
imposed by the Ethics Committee. Instead, the studies were designed to
test the assumption that SPF would be indicative of the level of protection
against DNA photodamage. In other words, does n X MED with a
sunscreen of SPF=n give the same level of DNA damage as 1 MED
without sunscreen? SPF evaluation had shown that both formulations had
an SPF of 4 (see Results for full details). The sunscreen-treated buttock sites
(same application techniques and operator as described above) were
exposed to 4 MEDs SSR about 20 min after application. The vehicle and
nontopically treated sites were exposed to 1 MED. Immediately after
exposure, 4 mm punch biopsies were taken, under local anesthesia, from all
four sites plus one nonirradiated nontopically treated control site.

Assessment of TT and (6—4)PP  Biopsies, taken immediately after SSR
exposure, were processed for analysis of TT and (6—4)PP. The details have
been published elsewhere (Chadwick et al, 1995; Young et al, 1996). In
summary, 3 Um paraffin sections were cut and immunostained with a
monoclonal antibody for TT (TDM-1) (Mizuno et al, 1991), or for (6—
4)PP (64 M) (Mori et al, 1991), followed by a DAB-peroxidase immune
reaction that gives brown nuclear coloration. Nuclei were counterstained
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Figure 2. Equivalent protection against erythema can be achieved
by sunscreens with very different absorption profiles. (a) These data
show the in vitro monochromatic protection factors of UVB (octyl
methoxycinnamate with A, =308nm) and UVA (terephthalylidene
dicamphor sulfonic acid with A, =345 nm) sunscreen formulations and
their common vehicle. Both sunscreen formulations showed an in vivo SPF
of 4. (b) Given that the action spectrum for human erythema shows that
UVB is orders of magnitude more potent than UVA (McKinlay and Diffey,
1987), it may seem surprising that a broad spectrum UVA sunscreen can
have the same level of protection against erythema as a conventional UVB
filter. Weighting (by multiplication) of the sunscreens’ absorption spectra
with the action spectrum for erythema and the emission spectrum of solar
UVR, however, shows that both preparations give maximal protection in
the UVB (at about 305 nm) region. As expected, the UVA sunscreen also
gives protection in the UVA part of the spectrum.

with thionine. The sections were analyzed using the Discovery automated
image analysis system (Becton Dickinson, Leiden, The Netherlands). In
each volunteer, the specific background mean optical density (MOD) per
nucleus (i.e., TT and (6—4)PP levels from a sample of biopsy obtained from

non-SSR exposed and nontopically treated skin) was subtracted from the
MOD of the SSR exposed sites.

Statistical analysis Statistical analysis was done by two-way analysis of

variance.

RESULTS
SPF assessment and sunscreen protection from
erythema The vehicle, with a mean SPF of 1.08 = 0.36 (SD)

(n=9), had no effect on MED or erythema response determined by
the reflectance device, as shown in Fig3. The UVA and UVB
sunscreens were shown to have SPFs in the region of 4 (4.3 £0.8
(SD) and 3.8 = 1.0 (SD), respectively). These results are close to the
SPFs that would be calculated from the monochromatic protection
factors, as shown in Fig2(a). Figure2(b) shows the relative
erythemally effective SSR transmitted through each sunscreen
normalized at 305nm. These data show that the UVA sunscreen
also gives excellent UVB protection after the appropriate weighting
functions for solar UVR and the erythema action spectra have been
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Figure 3. Erythema dose-response curves for all treatments are the
same when an SPF of 4 is assumed. SPF is normally assessed by
comparing threshold doses (MED) with and without sunscreen. These data
show 4-fold protection by sunscreens over a range of SSR doses. Note that
the reflectance device detects erythema below the visually assessed MED
(8/9 with MED of 2.0] per cm?). SDs not shown for visual clarity.

applied. In addition, the UVA sunscreen gives protection in the
UVA region. Figure3 shows the erythema dose-response data
with all preparations. It is clear that both sunscreens give 4-fold
protection against erythema over the SSR dose range used.

Photoprotection against DNA damage Figures 4(a), (b)
show the processed data using TT and (6—4)PP, respectively.
Analysis of variance showed no difference between any of the
treatment sites for either TT or (6—4)PP (p > 0.05 but mostly in the
region of 0.2—0.9). Thus, these results show that (i) vehicle has no
effect on DNA photodamage, (ii) 4 MEDs with either sunscreen
results in damage comparable to 1 MED without sunscreen (vehicle
or no topical application), and (iii) there is no difference in
photoprotection between the sunscreens.

DISCUSSION

We have previously shown that exposure to SSR (without a 1 mm
UG 11 filter, which cuts off visible radiation) resulted in dose-
dependent increases of TT and (6—4)PP (Young et al, 1996). The
TT dose—response curve suggested a plateau from about 2-3 MEDs
whereas that of (6—4)PP was linear to 4 MEDs. The data in this
study show that 4 MEDs of SSR with either sunscreen of SPF =4
resulted in DNA photodamage (CPD and (6—4)PP) equivalent to 1
MED without sunscreen. We can exclude any modifying effects of
CPD repair, which shows large interperson variation (Bykov et al,
1999), as biopsies were taken immediately after SSR exposure and
therefore before repair is evident (Young et al, 1996; Bykov et al,
1999). (6—4)PP repair is very much faster than CPD repair and also
shows large interperson variation (Young et al, 1996; Bykov et al,
1999), and some repair may have occurred during the approxi-
mately 12min it took to deliver the 4 MEDs. This may in part
explain the larger SDs seen for this photolesion. The sunscreens
were designed to have the same SPF, which was verified in our
laboratory with our SSR source. The vehicle had no significant
effect on the level of erythema or DNA damage. These data
strongly suggest that the DNA protection factor is at least as good as
the SPF. A similar conclusion can be reached from the data of
Freeman et al (1988) from a human study that used SSR but did not
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Figure 4. Exposure of skin to 4 MEDs of SSR plus either sunscreen
of SPF =4 results in the same level of DNA damage as 1 MED *
vehicle. (@) TT. (b) (6-4)PP. These results indicate that the DNA
protection factor is equivalent to the SPF and provide indirect evidence
that DNA is a chromophore for erythema. The larger SD seen with the (6—
4)PP data may be the result of the initiation of the repair process, which is
rapid and shows large interperson variation (Bykov ef al, 1999; Young ef al,
1996). The (6—4)PP antibody also tends to have higher background values,
however, than that for CPD in which the signal for a given dose is much
larger. Note that the SSR exposed sites have had the 0 MED site
background values subtracted on a person by person basis.

confirm labeled SPF with their source. Ideally, good human dose-
response data are required to confirm a specific DNA protection
factor, but such data are difficult to obtain because of restrictions on
the number of biopsies that can be taken from one person. TTs
seem to be unimportant in p53 mutation compared with cytosine-
containing dimers (Brash et al, 1996), but it is reasonable to assume
that a sunscreen-related reduction of TTs is also associated with a
comparable reduction of cyotsine dimers and cytosine-thymine
dimers (Bykov et al, 1999). Thus, sunscreens might be expected to
afford protection against p53 mutation. This has been demonstrated
in mouse skin (Ananthaswamy et al, 1997), but protection factors
were not determined. In our study, there was no difference
between the photoprotective properties of the UVB and the broad
spectrum UVA sunscreen formulations, although a similar study in
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mouse epidermis with the same two formulations showed that the
broad spectrum formulation resulted in better protection against
CPDs than the UVB product (Ley and Fourtanier, 1997). We do
not know the reason for this discrepancy. Our data support a role
for human erythema as a good clinical and spectral surrogate for
dipyrimidine DNA photolesions. This would be expected if the
action spectra in humans for such lesions in epidermis and erythema
are the same as described by Young ef al (1998a). Animal
(Monodelphis  domestica) studies have also suggested that CPD
formation is important in erythema (Ley, 1985). More recently,
the work of Berg et al (1998) suggests that sensitivity to erythema/
edema in mice is associated with the inability to carry out
transcription-coupled repair of dipyrimidine lesions. It should be
remembered that the MED, the endpoint in SPF evaluation, is a
threshold on a dose—response curve. Protection equivalent to the
SPF across a wide range of UVR doses would be expected if
sunscreens act as stable optical filters. This is shown in Fig 3. Thus,
assuming that erythema is a surrogate for DNA photodamage,
sunscreen protection equivalent to SPF would also be expected
against a wide range of UVR doses. This remains to be tested,
however.

Mouse studies in vivo have provided evidence that CPD is a
causal factor in UVR-induced immunosuppression (Kripke et al,
1992). There is also evidence that the formation of CPD in human
cells in vitro is associated with the release of tumor necrosis factor o
and interleukin-10 that are thought to play an important role in
UVR-induced immunosuppression (Kibitel et al, 1998; Nishigori
et al, 1996b). Thus, the data from our study also suggest that
sunscreens may afford protection against immunosuppression
mediated via DNA photodamage.

In conclusion, our study provides evidence that protection
against erythema, whether by a UVB sunscreen or a broad
spectrum sunscreen with maximal absorption in the UVA region, is
indicative of comparable levels of protection against DNA
photolesions at dipyrimidine sites in human epidermis in situ.
One might speculate that protection from dipyrimidine lesions
would also result in comparable protection against mutation.
Protection by a broad spectrum UVA sunscreen may offer
additional protection from oxidative damage to DNA caused by
UVA (Kvam and Tyrrell, 1997) and, more speculatively, malignant
melanoma if UVA is confirmed as being important (Setlow and
Woodhead, 1994). Comparable protection from sunburn and
DNA photodamage with two sunscreens with quite different
absorption spectra provides indirect evidence that the action spectra
for TT and erythema are the same, as reported by Young et al
(1998a). Overall, these data suggest that DNA is a chromophore for
erythema, which may be regarded as a useful noninvasive clinical
surrogate for DNA photodamage. It is important to stress,
however, that lack of erythema does not mean lack of epidermal
DNA photodamage, which does occur in keratinocytes and
melanocytes at suberythemal exposures (Young et al, 1996,
1998a, b). Finally, our data support the proper use of sunscreens
as one of the means of reducing nonmelanoma skin cancer risk.
Such a reduction has been seen in practice (Green et al, 1999) but
only for the total number of SCC in the study population over a 4.5
y period. This reduction may be expressed as a tumor (SSC)
protection factor of 1.6, which is only a tenth of the labeled SPF.
Many factors such as prior UVR exposure history, real SPF under
conditions of use, etc., however, are likely to be important in the
final level of tumor protection. A better understanding of the
relationship between SPF, acute protection from skin cancer
surrogates, and “‘cancer protection factor” is an important research
objective if we are to understand and predict the likely impact of
sunscreen use in skin cancer prevention.
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6379), the Cancer Research Campaign, U.K., and L’Oréal Recherche, Clichy,

France.
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