
Journal of Symbolic Computation 47 (2012) 239–258

Contents lists available at SciVerse ScienceDirect

Journal of Symbolic Computation

journal homepage: www.elsevier.com/locate/jsc

A worst-case bound for topology computation of
algebraic curves
Michael Kerber a,1, Michael Sagraloff b
a Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria
b MPI for Informatics, Saarbrücken, Germany

a r t i c l e i n f o

Article history:
Received 8 April 2011
Accepted 25 October 2011
Available online 9 November 2011

Keywords:
Topology computation
Algebraic curve
Amortized analysis
Complexity analysis

a b s t r a c t

Computing the topology of an algebraic plane curve C means
computing a combinatorial graph that is isotopic to C and thus
represents its topology in R2. We prove that, for a polynomial of
degree n with integer coefficients bounded by 2ρ , the topology
of the induced curve can be computed with Õ(n8ρ(n + ρ)) bit
operations (Õ indicates that we omit logarithmic factors). Our
analysis improves the previous best known complexity bounds
by a factor of n2. The improvement is based on new techniques
to compute and refine isolating intervals for the real roots of
polynomials, and on the consequent amortized analysis of the
critical fibers of the algebraic curve.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Problem definition and results. We address the problem of topology computation. Given an algebraic
curve C = VR(F) := {(x, y) ∈ R2

| F(x, y) = 0} implicitly defined as the real vanishing set of a
bivariate polynomial F ∈ Z[x, y], find a planar (straight-line) graph G isotopic to C.2 This problem is
extensively studied in the context of symbolic computation; see related work below.

We analyze the bit-complexity of the problem. For F of total degree n and integer coefficients
bounded by 2ρ in absolute value, we show that an isotopic graph can be computed with

Õ(n8ρ(n+ ρ))

E-mail addresses:mkerber@ist.ac.at (M. Kerber), msagralo@mpi-inf.mpg.de (M. Sagraloff).
1 Tel.: +43 224390003307; fax: +43 224390002000.
2 C and G are isotopic if there exists a continuous mapping Φ : [0, 1] × C → R2 such that Φ(0, ·) = idC , Im(Φ(1, ·)) = G,

and Φ(t, ·) is a homeomorphism between C and Im(Φ(t, ·)) for every t ∈ [0, 1].

0747-7171/$ – see front matter© 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.jsc.2011.11.001

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82051149?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.jsc.2011.11.001
http://www.elsevier.com/locate/jsc
http://www.elsevier.com/locate/jsc
mailto:mkerber@ist.ac.at
mailto:msagralo@mpi-inf.mpg.de
http://dx.doi.org/10.1016/j.jsc.2011.11.001

240 M. Kerber, M. Sagraloff / Journal of Symbolic Computation 47 (2012) 239–258

Fig. 1. First, the curve is sheared to be located in a generic position. Then, critical points are projected onto the x-axis defining
the x-critical values. In the lifting step, the fibers at the critical values and at points in between are computed. Finally, each pair
of lifted points connected by an arc of C is determined and a corresponding line segment is inserted. The right-hand figure
shows the final graph that is isotopic to C .

bit operations with a deterministic algorithm, where Õ means that we ignore logarithmic factors in
n and ρ. This is the best known complexity bound for this problem, beating the former record by a
factor of n2.

We give a high-level description of our algorithm first. A more detailed explanation is given in
Section 2. First, VR(F) is transformed to an isotopic VR(f) by a shear such that the sheared curve
VR(f) satisfies a certain genericity condition to simplify subsequent steps. Second, the x-coordinates
of critical points are computed as the real resultant roots of f and its derivative with respect to y.
Third, the curve is lifted at each critical fiber, i.e., the fiber points are computed by real root isolation
of the fiber polynomial f |x=α (with α a critical x-coordinate), and the index of the (unique) critical
point is determined. Finally, the number of fiber points in between critical points is determined by the
Sturm–Habicht sequence (also known as the signed subresultant sequence). The gathered information
is sufficient for an isotopic (combinatorial) graph of F ; see also Fig. 1.

Although our algorithm does not differ from related approaches (in fact, its high-level description
is almost identical to that of the algorithm described by Gonzalez-Vega and Necula (2002)), we are
still able to derive a complexity bound that improves on all previous approaches. This is due to two
major novelties in our approach.

(1) New algorithms for real root isolation of a univariate polynomial (Sagraloff, 2011) as well as for
the subsequent refinement of the isolating intervals (Kerber and Sagraloff, 2011) express the
running time in the sum of the local separations and the modulus of the polynomial’s roots. In
particular, when applied to an integer polynomial of degree d and bitsize λ, the bit complexity for
root isolation is bounded by Õ(d3λ2); we use this to bound the complexity of the root isolation of
the resultant polynomial. Moreover, both root isolation and refinement are applicable to arbitrary
real polynomials by approximating the coefficients and using validated numeric methods. This
makes them especially useful for computing roots of fiber polynomials, which is a critical step in
the algorithm.

(2) We consequently use the idea of amortized analysis in this work.When amethod is applied to each
fiber polynomial, we bound the sum of the costs. Usually, that sum gives the same complexity as
the worst-case bound for a single fiber, which means that not all fibers can be bad at the same
time. As the main theoretical novelty, we bound the complexity of isolating all fiber polynomials
by Õ(n8ρ2) using this technique.

Relatedwork. Computing the topology of a curve is a problem considered in numerous papers.We can
separate existing approaches into those which permit one to shear the curve as a first step (Basu et al.,
2006, Section 11.6); (Diochnos et al., 2009; Seidel and Wolpert, 2005; Gonzalez-Vega and Necula,
2002; Gonzalez-Vega and El Kahoui, 1996), and those which do not permit a shear (Hong, 1996;
Cheng et al., 2009). The latter approaches also reveal geometric information about the curves, for
instance the coordinates of critical points. A mixed approach is taken by Eigenwillig et al. (2007),
where shearing the curve is allowed, but geometric information is still obtained by undoing the shear
in a post-processing step.

Nomatterwhether they initially shear or not, almost allmentioned techniques use the same three-
step approach as the method presented in this paper: they project the critical points of the curve,

M. Kerber, M. Sagraloff / Journal of Symbolic Computation 47 (2012) 239–258 241

lift the fibers at critical x-coordinates, and connect the fiber points by segments corresponding to
paths on the curve. The approach by Cheng et al. (2009) is an exception since it avoids computing
complete fibers. Instead, it isolates the critical points of the curve in R2 and finds an isotopic graph by
subsequently subdividing the real plane. Another subdivision algorithm by Burr et al. (2008) avoids
root isolation altogether by subdividing regions containing critical points down to a so-called eval-
uation bound. Since root isolation is usually the bottleneck of topology computation in practice, this
approach looks promising; however, both theoretical and practical comparisons are missing to date.

The time complexity for topology computation has been considered by several of the afore-
mentioned approaches. For simpler comparison, let N := max{n, ρ}. Arnon and McCallum (1988)
gave the first polynomial bound of O(N30). Gonzalez-Vega and El Kahoui (1996) improved this to
Õ(N16) (using classical arithmetic), and Basu et al. (2006, Section 11.6) prove a bound of Õ(N14).
The best known bound of Õ(N12) was presented first by Diochnos et al. (2009). The same bound was
also shown by Kerber (2009) for the algorithm presented in Eigenwillig et al. (2007). In the two last-
mentioned papers, the technique of amortized analysis is extensively used. In the technical part of our
analysis, we sometimes refer to those works when the analysis of substeps is identical.

Outline. We start with a more detailed description of our algorithm in Section 2. In Section 3, we fix
the required notation for the technical magnitudes needed in the complexity analysis. The analysis
starts in Section 4, where we consider univariate polynomials in general and fiber polynomials in
particular, and bound quantities of these polynomials such as their Mahler measure, coefficient size,
and separation. In Section 5, we summarize the running time of the subalgorithms (e.g., computing
greatest common divisors (gcd) and real root isolation) needed for the main result. Finally, Section 6
proves the running time of our topology algorithm, combining the amortized bounds from Section 4
with the subalgorithms from Section 5.

2. Algorithm

We start with a description of the topology computation algorithm to be analyzed; see Algorithm 1
for the pseudo-code. The input is a square-free bivariate polynomial F , representing an algebraic curve
C = VR(F) in R2 by its zero set. The output is an embedding of a graph in the plane that is isotopic
to C.

Initially, the curve F is transformed to f by means of a shear; that is, f (x, y) = F(x + sy, y) for
some shear factor s ∈ Z. Since the sheared curve C = VR(f) is isotopic to C, it suffices to compute
a graph isotopic to C . The shear factor is chosen such that C is in a generic position; that is, every
critical point has a distinct x-coordinate, and there exist no infinite arcs that converge to a vertical
asymptote. In particular, the leading coefficient of each fiber polynomial f |x=α := f (α, y) ∈ R[y] at an
arbitrary α ∈ C is an integer. We refer to the corresponding paragraph in Section 6 for details of how
to compute such a shear factor.

In the next step, the x-critical points (i.e., all points p ∈ C with ∂ f
∂y = 0) are projected onto the (real)

x-axis via resultant computation. We write fy :=
∂ f
∂y . Let Sresi(f , fy) ∈ Z[x] be the i-th subresultant

polynomial and sresi(f , fy) be the i-th subresultant coefficient. R := sres0(f , fy) is the resultant of f
and fy which is the determinant of the Sylvester matrix of f and fy. Since f is in a generic position, the
set VR(R) of real roots α1, . . . , αm of R contains exactly the projections of all x-critical points. Without
loss of generality,we assume thatα1, . . . , αm are in consecutive order. The set of all points onC located
above a certain αi is called a critical fiber. The y-coordinates of these points are defined by the roots of
the critical fiber polynomial f |x=αi ∈ R[y].

It is well known (Collins, 1975) that the curve C is delineable betweenαi andαi+1; that is, C consists
of disjoint function graphs which we call arcs from now on. Distinct arcs can only meet at critical
points of the curve, and, by genericity, there is exactly one such critical point per fiber. By these
considerations, the following information is sufficient to compute an isotopic graph for f :

(i) the number of points in each critical fiber, which equals the number of distinct real roots of f |x=αi ,
(ii) the index of the unique critical point in each critical fiber, which equals the index of the unique

multiple root of f |x=αi , and

242 M. Kerber, M. Sagraloff / Journal of Symbolic Computation 47 (2012) 239–258

(iii) the number of arcs between two critical fibers (for arcs in between two critical fibers above αi
and αi+1, this number equals the number of real roots of fα with an arbitrary α ∈ (αi, αi+1)).

In all three steps, we use the subresultant coefficients of fiber polynomials. The following property
(Yap, 2000, Section 4.4); (Basu et al., 2006, Section 8.3.5), together with our genericity assumption,
shows that we get them for every fiber by evaluating the general subresultant at the corresponding
x-coordinate.

Lemma 1 (Specialization Property). For any α ∈ R with deg(f |x=α) = degy f and any i,

Sresi(f , fy)|x=α = Sresi(f |x=α, f |′x=α).

For (i), we first compute the square-free part of each critical fiber polynomial. For that, we initially
compute the subresultants of f and fy with cofactors;, that is, we compute ui, vi ∈ Z[x, y] satisfying

Sresi(f , fy) = uif + vify
and such that degy(ui) ≤ n − i − 2, degy(vi) ≤ n − i − 1. For a critical fiber at α, we compute
kα := deg gcd(f |x=α, f |′x=α) using the well-known property (Basu et al., 2006, Proposition 4.24)

kα := min{k ≥ 0 | sresk(f , fy)(α) ≠ 0}. (1)

It follows with Basu et al. (2006, Prop.10.14, Cor.10.15) that vkα−1|x=α is the square-free part of f |x=α .
We apply the root isolation algorithm from Sagraloff (2011) to this polynomial. The results yield the
number of real roots and an isolating interval for each root which can be further refined to any desired
precision.

For (ii), the index of the critical point is computed with the following lemma, used in Gonzalez-
Vega and Necula (2002).

Lemma 2. Let Sresi,j(f , fy) denote the coefficient of Sresi(f , fy) for yj (in particular, Sresi,i(f , fy) =
sresi(f , fy)). For k := kα , define the rational function

β(x) = −
sresk,k−1(f , fy)(x)
k · sresk,k(f , fy)(x)

.

Then, the multiple root of f |x=α is β(α).

Indeed, using this rational expression, β(α) can be approximated until it can be uniquely assigned to
one of the isolating intervals of the fiber polynomial.

Finally, for computing the number of arcs between consecutive critical points (iii), we choose
rational values q0, . . . , qm with qi−1 < αi < qi for all i = 1, . . . ,m. The number of fiber points at
qi can be determined by the signs of sresi(f , fy)(qi) using Sturm–Habicht sequences (González-Vega
et al., 1998). The counting function is easy to compute if the signs are known, but its definition is quite
lengthy. We refer to Eigenwillig et al. (2007, Section 2) for a summary.

3. Notation

We fix the following notation and conventions. For a positive real number φ, we write Lφ := log 1
φ
.

We say that an integer polynomial g (univariate or bivariate) is of magnitude (d, λ) if its total degree
is bounded by d, and each integer coefficient is bounded by 2λ in its absolute value. For a univariate
polynomial g , we denote by V (g) the set of distinct (complex) roots of g and by V(g) the multiset of
roots of g; that is, each root of g occurs as many times in V(g) as its multiplicity as a root of g .

For a univariate polynomial g ∈ C[x] of magnitude (d, λ) with roots z1, . . . , zd, we write lcf(g) for
the leading coefficient of g . We define the root bound of g as

Γ (g) := logmax{1,max{|zi| | i = 1, . . . , d}},

the local separation of g at zi as

sep(g, zi) := min
(i,j):zi≠zj

|zi − zj|,

M. Kerber, M. Sagraloff / Journal of Symbolic Computation 47 (2012) 239–258 243

Algorithm 1 Topology computation
1: procedure Top(F)
2: Compute s ∈ Z such that f (x, y) := F(x+ sy, y) is in a generic position
3: Compute Sres0(f , fy), . . . , Sresn(f , fy) with cofactors ui, vi s.t. Sresi(f , fy) = uif + vify.
4: Isolate the real roots α1, . . . , αm of Sres0(f , fy)
5: for α ∈ {α1, . . . , αm} do
6: k← deg gcd(f |x=α, f |′x=α)
7: C ← vk−1 ◃ C |x=α is the square-free part of f |x=α

8: Isolate the real roots of C |x=α

9: Identify the index of the multiple real root of f |x=α

10: end for
11: Compute q0, . . . , qm ∈ Q, with qi−1, αi < qi, and compute the number of real roots of f |x=qi

for i = 1, . . . ,m
12: Construct and return a combinatorial graph isotopic to f
13: end procedure

the separation of g as

sep(g) := min
i=1,...,d

sep(g, zi)

(the latter two definitions only make sense if g has at least two distinct roots), and

Σ(g) :=
−

z∈V (g)

Lsep(g,z).

The Mahler measure of g is defined as

Mea(g) := |lcf(g)|
d∏

i=1

max{1, |zi|}.

It is known (Basu et al., 2006, Prop. 10.8 and 10.9) that Mea(g) ≤ ‖g‖2 ≤
√
d+ 1 · 2λ, and thus

logMea(g) = O(λ+ log d). (2)

Finally, the local gcd degree of g is defined as

k(g) := deg(gcd(g, g ′)).

Throughout the paper, f denotes the bivariate square-free integer polynomial obtained by shearing
our input polynomial F ; that is, f (x, y) = F(x+sy, y)with a generic shear factor s ∈ Z. The polynomial
f is of magnitude (n, τ), where n = deg F and τ depends on the bitsize ρ of the coefficients of F and
the bitsize of s. In our analysis, we will first compute the bit complexity of our algorithm in terms of
the magnitude of f and then relate the result to the magnitude of F .

As already used in Section 2, we write fy :=
∂ f
∂y , Sresi(f , fy) ∈ Z[x, y] for the i-th subresultant

polynomial, and sresi(f , fy) ∈ Z[x] for the i-th subresultant coefficient. For convenience, we alsowrite
sri := sresi(f , fy). The resultant polynomial of f and fy is defined as R := sr0. We can apply Hadamard’s
bound to immediately read off that R is of magnitude (n(n− 1), c · n(τ + log n)) for some constant c.
We further denote V (R) := {α1, . . . , αr} (with r ≤ n(n− 1)) the set of critical x-coordinates of f and,
without loss of generality, we assume that the first m roots α1, . . . , αm are exactly the real roots of R
and that they are in consecutive order.

We aremainly interested in the fiber polynomials f |x=α of f withα ∈ C. Ifα is a critical x-coordinate
of f , we also talk about critical fibers and critical fiber polynomials. For shorter notation, we also define

Γα := Γ (f |x=α), sepα := sep(f |x=α), Σα := Σ(f |x=α),

Meaα := Mea(f |x=α) and kα := k(f |x=α).

244 M. Kerber, M. Sagraloff / Journal of Symbolic Computation 47 (2012) 239–258

4. Amortized algebraic bounds

In this section, we investigate the fiber polynomials of f at critical x-coordinates. For various
magnitudes, such as root bounds or local separations as defined in Section 3, we derive upper bounds
that depend on n and τ . We consequently consider all critical fibers at once, because this leads to the
same bounds as considering only the worst fiber among the critical fibers.

Lemma 3 (Mahler Bound). Let g be a univariate integer polynomial of magnitude (d, λ), and let V ′ ⊆
V(g) be any multiset of roots of g. Then,−

α∈V ′
logmax{1, |α|} ≤ logMea(g) = O(λ+ log d).

In particular, for g = R, the sum is bounded by O(n(τ + log n)).

Proof. Obviously, we can replace V ′ by V(g) for an upper bound on the sum. Thus,−
ξ∈V ′

logmax{1, |ξ |} ≤ log
∏

ξ∈V(g)

max{1, |ξ |} ≤ log
Mea(g)
lcf(g)

≤ logMea(g),

which proves the statement together with (2). �

With this simple result, we can already bound the sum of the root bounds over all critical fibers.

Lemma 4. For any multiset V ′ ⊆ V(R),−
α∈V ′

logΓα = O(n2(τ + log n)).

Proof. Note that, for any univariate polynomial h =
∑d

i=0 hixi, it holds that Yap (2000, Cauchy’s
Bound)

Γ (h) ≤ 1+max{|h0|, . . . , |hn|},

so it is enough to bound the coefficients of f |x=α . Notice that every coefficient is given by g(α), where
g ∈ Z[x] is a polynomial of magnitude (n, τ). It is thus straightforward to see that

Γα ≤ 1+ (n+ 1)2τ max{1, |α|}n ≤ (n+ 2)2τ max{1, |α|}n,

and so−
α∈V ′

logΓα ≤ n2 log(n+ 2)+ n2τ + n log
∏
α∈V ′

max{1, |α|}.

The result follows from applying Lemma 3 to the last summand. �

Lemma 5. For any multiset V ′ ⊆ V(R),−
α∈V ′

logMeaα = O(n2(τ + log n)).

Proof. Notice that Meaα ≥ 1 for every α ∈ V (R), and that the Mahler measure is multiplicative; this
means that Mea(g)Mea(h) = Mea(gh) for arbitrary univariate polynomials g and h. Therefore,−

α∈V ′
logMeaα ≤

−
α∈V(R)

logMea(f |x=α) = logMea

 ∏
α∈V(R)

f |x=α


.

Considering f as a polynomial in xwith coefficients in Z[y], we have that (Basu et al., 2006, Thm. 4.16)∏
α∈V(R)

f |x=α =
resx(f , R)
lcf(R)n

,

M. Kerber, M. Sagraloff / Journal of Symbolic Computation 47 (2012) 239–258 245

and, thus,−
α∈V ′

logMea(f |x=α) ≤ logMea(resx(f , R)).

It is left to bound the degree and bitsize of resx(f , R). Considering the Sylvester matrix of f and R
(whose determinant defines resx(f , R)), we observe that it has n rowswith coefficients of R (which are
integers of size O(n(τ + log n))) and n2 rows with coefficients of f (which are univariate polynomials
of magnitude (n, τ)). Therefore, the y-degree of resx(f , R) is bounded by n3, and its bitsize is bounded
by O(n2(τ + log n)). Using (2), this shows that logMea(resx(f , R)) = O(n2(τ + log n)), as claimed. �

Lemma 6 (Factorization to Multiplicities). R can be decomposed into R = R1 · · · Rn−1 such that Ri ∈ Z[x]
and V (Ri) = {α ∈ V (R) | kα = i}.

Proof. Without loss of generality, assume that R is primitive (otherwise, decompose its primitive part,
and multiply R1 by the content of R). We define S0 := R, and Si := gcd(Si−1, (sri)∞). This means that
the roots of Si are exactly the common roots of Si−1 and sri, and the multiplicity of each of these roots
is exactly its multiplicity as a root of Si−1. By construction, V (Si) = {α ∈ V (R) | kα > i}. Also, since
kα < n for all α, deg Sn = 0, and thus Sn = 1, because Sn divides R and R is assumed primitive. We
define Ri :=

Si−1
Si

. It is then straightforward to verify all claimed properties. �

In the subsequent proofs, we require the application of the generalized Davenport–Mahler bound
that we state here. See Eigenwillig (2008, Thm. 3.9) for a proof.

Theorem 7 (Generalized Davenport–Mahler Bound). Let g ∈ C[t] be a polynomial of degree n :=
deg g ≥ 2 which has exactly r ≤ n distinct complex roots V := V (g) = {ξ1, . . . , ξr}. Let G = (V , E) be
a directed graph on the roots such that

• G is acyclic,
• for every edge (α, β) ∈ E, it holds that |α| ≤ |β|, and
• the in-degree of any node is at most 1.

In this situation,

∏
(α,β)∈E

|α − β| ≥

√
|sresn−r(g, g ′)|

√
|lcf(g)|Mea(g)r−1

·

√
3
r

#E

·


1
r

r/2

·


1
√
3

min{n,2n−2r}/3

.

For the case that G has no edges, the left-hand side simplifies to 1.

For the next lemma, recall from Section 3 that Lφ = logφ−1 and sri = sresi(f , fy) ∈ Z[x].

Lemma 8. For every subset V ′ ⊆ V(R),−
α∈V ′

Lsrkα (α) = O(n3(τ + log n)).

Proof. We first ‘‘complete’’ the sum by writing−
α∈V ′

log
1

|srkα (α)|
=

−
α∈V(R)

log
1

|srkα (α)|
+

−
α∈V(R)\V ′

log |srkα (α)|.

Next, we show that both summands are bounded by O(n3(τ + log n)), starting with the second
term. For that, we apply the Davenport–Mahler bound for each f |x=α with α ∈ V ′, using the empty
edge set. This yields

1 ≥


|sreskα (f |x=α, f |′x=α)|
√
|lcf(f |x=α)|Meamα−1

α

·


1
mα

mα/2

·


1
√
3

min{n,2n−2mα}/3

.

246 M. Kerber, M. Sagraloff / Journal of Symbolic Computation 47 (2012) 239–258

Note that sreskα (f |x=α, f |′x=α) = srkα (α), that lcf(f |x=α) = lcfy(f), and that the two rightmost factors
are both bounded by

 1
n

n
from below. Therefore, we have that

1 ≥


|srkα (α)|

|lcfy(f)|Mean−1α

·


1
n

2n

.

Taking the logarithm of the inverse and summing up, we obtain

1
2

−
α∈V(R)\V ′

log |srkα (α)| ≤
n2

2
log |lcfy(f)| + n

−
α∈V(R)\V ′

logMeaα + 2n3 log n.

The first term is bounded by n2τ , and the second term is bounded by O(n3(τ + log n)), by Lemma 5.
It remains to prove that

∑
α∈V(R) log

1
|srkα (α)|

= O(n3(τ + log n)). We decompose R = R1 · · · Rn−1

according to Lemma 6, and obtain−
α∈V(R)

log
1

|srkα (α)|
=

n−1−
i=1

−
α∈V(Ri)

− log |sri(α)|

n−1−
i=1

− log

 ∏
α∈V(Ri)

sri(α)


=

n−1−
i=1

− log
 res(sri, Ri)

lcf(Ri)deg(sri)


=

n−1−
i=1

deg(sri)  
≤n2

log |lcf(Ri)| −

n−1−
i=1

log |res(sri, Ri)|  
≥1

≤ n2 log
n−1∏
i=1

|lcf(Ri)| = n2
|lcf(R)| = O(n3(τ + log n)). �

Thenext theorembounds the logarithmic inverses of the local separations of an arbitrary univariate
polynomial. We consider this result to be of independent interest.

Theorem 9. Let g ∈ R[t] be an arbitrary polynomial of degree d, and let k := k(g) = deg gcd(g, g ′). For
V ′ ⊆ V (g),−

ξ∈V ′
Lsep(g,ξ) = O(d logMea(g)+ L|sresk(g,g ′)|).

In particular, the bound holds for Σ(g) as defined in Section 3.

Proof. Write m := d − k, and let ξ1, . . . , ξm denote the roots of g . Moreover, let Γ := Γ (g) ≥ 0
denote the root bound of g . First of all, since every local separation is upper bounded by 2Γ+1,

2(Γ+1)d
∏
ξ∈V ′

sep(g, ξ) ≥
∏

ξ∈V (g)

sep(g, ξ).

We concentrate on the product on the right-hand side first. Observe that, when the ξ are considered
as vertices in the complex plane, each sep(g, ξj) is given by the length of an edge connecting ξj to
its nearest neighbor. This induces a directed graph on the vertices, which is known as the nearest-
neighbor graph (Eppstein et al., 1997) (if a root has more than one nearest neighbor, we pick the one
with highest index). Let E0 denote the edge set of this nearest-neighbor graph. We can rewrite the
product as∏

ξ∈V (g)

sep(g, ξ) =
∏

(ξi,ξj)∈E0

|ξj − ξi|.

Our goal is to apply the Davenport–Mahler bound on this product. However, the nearest-neighbor
graph does not satisfy any of the required properties in general. We will transform the edge set E0

M. Kerber, M. Sagraloff / Journal of Symbolic Computation 47 (2012) 239–258 247

into another edge set E3 that satisfies the requirements of the Davenport–Mahler theorem, and we
will relate the root product of E0 to the root product of E3.

Note that a direct property of nearest-neighbor graphs is that all cycles have length 2 (Eppstein
et al., 1997). In the first step, we remove one edge of every cycle:

E1 := {(ξi, ξj) ∈ E0 | i < j ∨ (ξj, ξi) /∈ E0}.

This removes at most every second edge, and, for every removed edge, there is some edge in E1 with
the same value. Since every root product is bounded by 2Γ+1 from above, we can bound

2(Γ+1)d
∏

(ξi,ξj)∈E0

|ξj − ξi| ≥
∏

(ξi,ξj)∈E1

|ξj − ξi|
2.

In the next step, we redirect the edges in E1 in order to satisfy the second condition of the
Davenport–Mahler bound:

E2 := {(zi, zj) | ((zi, zj) ∈ E1 ∨ (zj, zi) ∈ E1) ∧ (|zi| < |zj| ∨ (|zi| = |zj| ∧ i < j))}.

In simple words, every edge points to the root with greater absolute value. Note that E2 does not
contain any cycles, because the absolute value of a root is non-decreasing on anypath, and, if it remains
the same, the index increases; thus no vertex can be visited twice on such a path. Since the only
difference between E1 and E2 is the orientation of edges, we have∏

(ξi,ξj)∈E1

|ξj − ξi| =
∏

(ξi,ξj)∈E2

|ξj − ξi|.

Finally, we need to ensure the last condition of the Davenport–Mahler bound, namely that each
vertex has in-degree at most 1. For that, if several edges point to some ξj, we throw away all of them
except the shortest one (in the definition, if the shortest edge is not unique, we keep the one with the
maximal index):

E3 := {(ξi, ξj) ∈ E2 | ∀(ξk, ξj) ∈ E2 : |ξk − ξj| > |ξi − ξj| ∨ (|ξk − ξj| = |ξi − ξj| ∧ k ≤ i)}.

Another basic property of the nearest-neighbor graph is that two edges that meet in a vertex must
forman angle of at least 60◦ (Eppstein et al., 1997). It follows that the degree of every vertex is bounded
by 6. Since E2 is a subgraph of the nearest-neighbor graph, possibly with some edges flipped, the
degree of every vertex is still bounded by 6. Since all edges in E2 point to the rootwith greater absolute
value, it can be easily seen that the in-degree of ξj is even bounded by 3. So, E3 contains at least E2

3
many edges. Since we always keep a smallest edge pointing to a ξj, we can bound

2(Γ+1)2d
∏

(ξi,ξj)∈E2

|ξj − ξi| ≥
∏

(ξi,ξj)∈E3

|ξj − ξi|
3.

Putting everything together, we have that

∏
(ξi,ξj)∈E0

|ξj − ξi| ≥ 2−5d(Γ+1)

 ∏
(ξi,ξj)∈E3

|ξj − ξi|

6

.

E3 meets all prerequisites of the Davenport–Mahler bound, and we can thus bound

∏
ξ∈V ′

sep(g, ξ) = 2−d(Γ+1)
∏

(ξi,ξj)∈E0

|ξj − ξi| ≥ 2−6d(Γ+1)

 ∏
(ξi,ξj)∈E3

|ξj − ξi|

6

≥ 2−6d(Γ+1)

 √|sresd−m(g, g ′)|
√
|lcf(g)|Mea(g)m−1

·

√
3

m

#E3

·


1
m

m/2

·


1
√
3

min{d,2d−2m}/3
6

≥ 2−6d(Γ+1)
 √

|sresk(g, g ′)|
√
|lcf(g)|Mea(g)d

·


1
d

2d
6

,

248 M. Kerber, M. Sagraloff / Journal of Symbolic Computation 47 (2012) 239–258

where, in the last term, we have simplified some of the factors which are irrelevant for our argument.
Passing to the inverse, and taking logarithms, we obtain−

ξ∈V (g)

Lsep(g,ξ) ≤ 6d(Γ + 1)+ 3L|sresk(g,g ′)| + 3 log lcf(g)+ 6d logMea(g)+ 12d log d

= O(d logMea(g)+ L|sresk(g,g ′)| + dΓ + log lcf(g)+ d log d),

and the last three terms are all dominated by d logMea(g), because Mea(g) is larger than 2Γ , lcf(g),
and log d, by definition. �

Let V ′ ⊆ V (R) be the set of all roots of R, where f |x=α has at least two roots. It has been shown
(Eigenwillig, 2008, Proposition 3.73) that−

α∈V ′
Lsepα
= O(n3(τ + log n)).

We will prove that this is also true when replacing sepα by the (strictly larger) Σα .

Theorem 10. Let V ′ ⊆ V (R) be the set of all roots of R, where f |x=α has at least two roots. Then,−
α∈V ′

Σα = O(n3(τ + log n)).

Proof. For fixed α ∈ V ′, we denotemα := n− kα ≥ 2 the number of distinct roots of f |x=α . We apply
Theorem 9 on each f |x=α (all of degree n) to obtain−

α∈V ′
Σα =

−
α∈V ′

O(n logMeaα + L|srkα (α)|) = O


n
−
α∈V ′

logMeaα +

−
α∈V ′

L|srkα (α)|


.

The first sum is bounded by O(n2(τ + log n)) (Lemma 5) and the second sum by O(n3(τ + log n))
(Lemma 8). �

5. Basic algorithms

In the whole paper, all complexity bounds refer to the bit complexity, that is, the number of bit
operations needed to achieve the algorithmic task. Our bounds usually depend on the magnitude
(n, τ) of the input polynomial. For simplicity, we mostly ignore logarithmic factors in n and τ in
the complexity bounds, and write Õ to refer to bounds where logarithmic factors are omitted. We
assume asymptotically fast multiplication on integers; hence, multiplication of two n-bit integers has
a complexity of Õ(n).

Basic operations. We list the complexity of several basic operations on univariate and bivariate
polynomials next. We omit most of the proofs; see Kerber (2009, Section 2) Basu et al. (2006, Section
8) and von zur Gathen and Gerhard (1999, Section 11.2) for a more complete treatment. Possibly the
most fundamental non-trivial suboperation that we need in our algorithm is evaluation at rational
values.

Lemma 11 (Rational Evaluation). (Kerber, 2009, Lemma 2.4.10) Given g ∈ Z[x] of magnitude (d, λ), and
a rational value c

d such that c and d have a bitsize of at most σ , then evaluating g(c
d) has a complexity of

Õ(d(λ+ dσ)).

Another fundamental operation is to compute the greatest common divisor of univariate
polynomials.

Lemma 12 (gcd Computation). Let both g, h ∈ Z[x] be of magnitude (d, λ). Computing their gcd has a
complexity of

Õ(d2λ),

the resulting gcd has degree at most d, and its coefficients have a bitsize of O(d+ λ).

M. Kerber, M. Sagraloff / Journal of Symbolic Computation 47 (2012) 239–258 249

Closely related to the gcd is the square-free part of a univariate polynomial, which is given by
g/ gcd(g, g ′).

Lemma 13 (Square-free Part). Let g ∈ Z[x] be of magnitude (d, λ). Its square-free part g∗ can be
computed in

Õ(d2λ),

and it has degree at most d. The bitsize of each coefficient of g∗ is bounded by O(d+ λ).

Root isolation. Given a univariate polynomial, we want to compute its real roots. By ‘‘computing’’,
we understand computing a list of isolating intervals, each interval containing exactly one root of
polynomial. For this subtask, we use the result from Sagraloff (2011).

Theorem 14 (Root Isolation). Let g =
∑d

i=1 gix
i
∈ R[x] be a square-free polynomial with |gn| ≥ 1,

Γ := Γ (g) the root bound of g, and Σ := Σ(g). Then, we can compute isolating intervals for the real
roots of g in time

Õ(d(dΓ +Σ)2).

For that, every coefficient must be approximated to a precision of

Õ(dΓ +Σ)

bits after the binary point.

However, isolating intervals are not always sufficient for our algorithm; we often need that, in
addition, each interval is smaller than a given ε > 0. In this context, Kerber and Sagraloff (2011)
study the problem of root refinement.

Theorem 15 (Root Refinement). With the same notation as in Theorem 14, assume that the isolating
intervals for the real roots of g are known, and let ε > 0 be an arbitrary real value. Then, computing
the isolating intervals of g of width at most ε needs at most

Õ(d(dΓ +Σ)2 + d2Lε)

bit operations, and each coefficient must be approximated up to a precision of

Õ(Lε + dΓ +Σ)

bits after the binary point.

Putting both results together, we obtain the following.

Theorem 16 (Strong Root Isolation). With the same notation as in Theorem 14, given a polynomial g and
ε > 0, we can compute the isolating intervals of g of width at most ε within at most

Õ(d(dΓ +Σ)2 + d2Lε)

bit operations, and each coefficient must be approximated up to a precision of

Õ(Lε + dΓ +Σ)

bits after the binary point.

The special case of integer polynomials has been considered in the aforementioned papers, too. A
bound of

Õ(d3λ2
+ d2Lε) (3)

has been shown for this problem. Being slightly more careful, we obtain the same bound also for non-
square-free polynomials.:

250 M. Kerber, M. Sagraloff / Journal of Symbolic Computation 47 (2012) 239–258

Theorem 17 ((Strong) Root Isolation, Integer Case). Given a polynomial g ∈ Z[t], not necessarily
square free, of magnitude (d, λ), we can compute the isolating intervals for the roots of g with at most

Õ(d3λ2)

bit operations. If the intervals are additionally required to be of width at most ε, they can be computed with
a number of bit operations bounded by

Õ(d3λ2
+ d2Lε).

Proof. Let g∗ denote the square-free part of g . By Lemma 13, it can be computed within Õ(d2λ) bit
operations, and its magnitude is (d, d + λ). Using (3) for g∗ would yield a worse complexity than
claimed. Instead,weuse the bounds fromTheorems14 and16.Note that k(g∗) = deg gcd(g∗, (g∗)′) =
0, and so Theorem 9 yields Σ(g∗) ∈ O(d logMea(g∗)+ L|sres0(g∗,(g∗)′)|) = O(d logMea(g∗)), where the
last equality follows from sres0(g∗, (g∗)′) ≥ 1, because g∗ and its derivative are integer polynomials.
Moreover, Mea(g∗) ≤ Mea(g), because g∗ divides g over the integers. It follows that Σ(g∗) ∈
O(d(λ+ log n)) = Õ(dλ). Moreover, because g and g∗ have the same roots, we can apply the Cauchy
bound on g to get Γ (g∗) = Γ (g) = Õ(λ). Plugging in everything in Theorems 14 and 16 yields the
desired bounds. �

In some situations, we do not require small isolating intervals, but rather the contrary: we seek
for rational values which separate the roots of the polynomial from each other and have a small
accumulated bitsize. The following result achieves this; its proof is a direct consequence of the
properties of the isolating intervals returned by the root isolation algorithm from Sagraloff (2011).

Theorem 18 (Intermediate Values). For an integer polynomial g of magnitude (d, λ) with m real roots
z1, . . . , zm, we can compute rational values q0, . . . , qm with qi−1 < zi < qi and bitsizes γ0, . . . , γm that
sum up to O(d(λ+ log d)), performing not more than Õ(d3λ2) bit operations.

Proof. The algorithm from Sagraloff (2011) uses classical bisection to compute the isolating intervals
(ai, bi) for the real roots zi of g with

sep(g, zi)
16d2

< |ai − bi| < 2dsep(g, zi);

see Sagraloff (2011, Theorem 18). Thus, the bitsize of the endpoints of ai and bi is bounded by
log Lσ(g,zi) + log(16d2). For qi :=

bi−1+ai
2 , the bitsize γi of qi is also bounded by O(Lσ(g,zi) + log d).

Thus, summing up γi over all i yields an upper bound of O(Σ(g)+ d log d) = O(d(λ+ log d)). �

Note that, in particular, (qi−1, qi) is an isolating interval for zi.

Interval arithmetic. Themain operation that wewill perform on an algebraic number is the following.
Given h ∈ Z[x], α ∈ R algebraic, and δ > 0, compute some r ∈ Q such that |r − h(α)| < δ. In other
words, we want to approximate h(α) to absolute precision Lδ .

We achieve this task by using interval arithmetic. For two intervals I1 = [a1, b1], I2 = [a2, b2], we
set

B(I1 + I2) := [a1 + a2, b1 + b2]
B(I1 − I2) := [a1 − b2, b1 − a2]
B(I1 · I2) := [min{a1a2, b1a2, a1b2, b1b2},max{a1a2, b1a2, a1b2, b1b2}]

B(I1/I2) := B


I1 ·

[
1
b2

,
1
b1

]
, if 0 /∈ I2.

For a polynomial h =
∑d

i=0 aix
d and an interval I , we evaluate according to the Horner scheme3:

B(h(I)) := B(a0 + I · (a1 + I · (. . .))),

3 It should be noted that, unlike in Kerber and Sagraloff (2011), we use exact interval arithmetic;, that is, the boundaries are
not rounded to a floating point grid.

M. Kerber, M. Sagraloff / Journal of Symbolic Computation 47 (2012) 239–258 251

where each ai is interpreted as the interval [ai, ai]. We observe that B(h(I)) contains the image of h
under I , although it can bemuch larger than that. Also, note that an elementary arithmetic operation in
interval arithmetic consists of at most 4 elementary operations on the interval boundaries; therefore,
we can still use asymptotically fast methods for interval arithmetic. In particular, if the boundaries of
the interval are rationals with bitsizes bounded by σ , we can evaluate B(h(I)) with Õ(d(λ+ dσ)) as
in Lemma 11 (with h being of magnitude (d, λ)).

Going back to the problem of approximating h(α) to precision Lδ , assume that α is given by some
isolating interval I of size ε (initially set to 1

2). We evaluate h(I) using interval arithmetic to obtain an
interval J = Bh(I) which contains h(α). If the diameter of J is smaller than δ, any value in the interval
yields a valid approximation value. Otherwise, ε is set to ε2, and the method is repeated.

To quantify when I becomes ‘‘small enough’’, we use a technical result on interval arithmetic.

Lemma 19 (Kerber, 2009, Lemma 2.5.20). Let h ∈ Z[x] be of magnitude (d, λ) and I be an interval of
width 0 < ε < 2. Then, for each α ∈ I and each y ∈ Bh(I), we have

|y− h(α)| ≤ 2dε2λ max{1, |α|}d−1.

Theorem 20. Let g, h ∈ Z[x] be ofmagnitude (d, λ). Letα1, . . . , αm be the real roots of g, δ1, . . . , δm ∈ R
such that 0 < δi < 1, and δ :=

∏m
i=1 δi. Then, approximating h(αi) to precision δi for all i = 1, . . . ,m

has a total complexity of

Õ(d3λ2
+ d2Lδ).

Proof. Let Ii be the isolating interval of αi. If Ii is refined to size

εi :=
δi

2d+12λ max{1, |αi|}
d−1

,

the distance of y ∈ Bf (Ii) to h(αi) is bounded by

|y− h(αi)| ≤
1
2
δi

, using Lemma 19, and, by the triangle inequality, the length of Bh(I) is smaller than δi.
Thus, Ii must be refined at most to precision εi. Note that δi > δ for all i;, thus it suffices to refine

each Ii to size

ε := 2
δ

2d+12λ max{1, |αi|}
d−1

.

Since |αi| ∈ O(λ), we can bound

Lε = O(Lδ + d+ λ+ dλ) = Õ(Lδ + dλ).

Refining all the Ii to size ε takes

Õ(d3λ2
+ d2Lε)) = Õ(d3λ2

+ d2Lδ))

bit operations, by Theorem 17, which is the desired bound.
It is left to argue why the interval evaluation and the failing tries with too large values of ε in

the algorithm do not increase the complexity. Note first that if strong root isolation is applied for the
same polynomial and decreasing values of ε, the cost is determined by the call with smallest ε in
the sequence. Furthermore, since ε is squared in every step, the bitsizes of the interval boundaries
are doubled in each iteration. Thus, the evaluations are essentially determined by the last evaluation,
where the boundaries have a bitsize of O(λ + Lεi). Therefore, the final evaluation step for αi costs
Õ(d(dLεi + λ)). We show that

m−
i=0

Lεi = O(Lδ + d(λ+ log d)).

252 M. Kerber, M. Sagraloff / Journal of Symbolic Computation 47 (2012) 239–258

Indeed,

m−
i=0

Lεi =

m−
i=0

Lδi + (d+ 1) log 2+ λ log 2+ (d− 1) log
m∏
i=1

max{1, |αi|},

and the latter is bounded by O(λ+ log d), by Lemma 3. Thus, the interval evaluations are bounded by
Õ(d2Lδ + d3λ), which is dominated by the overall complexity bound. �

The previous proof can be used for a slightly more general result. We will not just approximate
h(αi) for a single h, but for a whole sequence hi,1, . . . , hi,k, all of the same magnitude. Instead of just
multiplying the above bound by k, we can do better.

Theorem 21. Let g, α1, . . . , αm, δ1, . . . , δm, and δ be defined as before. Moreover, let (hi,j)
j=1,...,k
i=1,...,m denote

a set of m · k polynomials, all of magnitude (d, λ). Then, approximating hi,j(αi) to precision δi for all
i = 1, . . . ,m and j = 1, . . . , k has a total complexity of

Õ(d3λ2
+ k(d3λ+ d2Lδ)).

Proof. The previous proof shows that, once αi is refined to precision εi, the width of Bh(α) is less
than or equal to δi for any h of magnitude (d, λ). Thus, we still need not more than Õ(d3λ2

+ d2Lδ)
bit operations for the refinements, no matter how many hi,j we consider. The additional summand
k(d3λ + d2Lδ) arises because we have to bound the cost of the interval evaluations. We have shown
the bound of O(d(dLεi + λ))) for evaluating a single hi,j; since there are k polynomials to evaluate, the
evaluation costs are O(kd(dLεi+λ))) for αi. The results follow from bounding the sum of Lεi in analogy
to Theorem 20. �

6. Topology computation

Theorem 22 (Main Result). Algorithm 1 has a bit complexity of

Õ(n8ρ(n+ ρ)).

Generic position. We first ensure that the sheared curveV (f) = V (F(x+sy, y)) is in a generic position;
this means that

• deg(f) = degy(f) (the leading coefficient of f , considered as a polynomial in y, is a real value)
• for each α ∈ R, f |x=α has at most one multiple root.

Geometrically, this is equivalent to the absence of vertical asymptotes and covertical critical points.
The original curve and the sheared curve are known to be isotopic, so computing the topology of the
sheared curve is sufficient.

For a bivariate polynomial F and s an indeterminate, we define

F∗(s, x, y) := F(x+ sy, y),

D(s, x) := resy


F∗,

∂F∗

∂y


,

∆(s) := min
k


sresk


D,

∂D
∂x


| sresk


D,

∂D
∂x


≠ 0


.

Theorem 23. If s0 ∈ R is neither a root of ∆(s) nor a root of lcfy(F(x+ sy, y)), then F(x+ s0y, y) is in a
generic position.

Proof. Basu et al. (2006, Prop. 11.23). �

M. Kerber, M. Sagraloff / Journal of Symbolic Computation 47 (2012) 239–258 253

Note that ∆(s) is of degree at most n4, and lcfy(F(x+ sy, y)) is of degree n, so at most n4
+ n ‘‘bad’’

shear factors are possible. Moreover, let ks denote the index of the first non-vanishing subresultant of
D and ∂D

∂x (that is, the k in the definition of ∆(s)).
We can compute a generic shear factor without computing ∆(s).4 For that, note that at least one

shear factor in the set {0, . . . , n4
+ n} yields a generic curve. For each s0 in this set, we first check

whether lcfy(F(x+ s0y, y)) vanishes. If so, we remove s0 from the set; at least n4
+1 elements remain.

For them, we compute F∗(s0, x, y) ∈ Z[x, y], D(s0, x) ∈ Z[x], and ks0 , which is the index of the first
non-vanishing subresultant of D(s0, x) and its derivative. Let smin be such that ksmin is minimal among
all the obtained ks0-values. We claim that smin is a generic shear factor. Indeed, it is straightforward
to verify that ks0 ≥ ks for each s0 in the set, and ks0 > ks if and only if ∆(s0) = 0. Because we have at
least 1+ deg∆(s) elements, the minimal ks0 equals ks.

We bound the bit complexity of computing a single ks0 value: note that each s0 has a bitsize of
O(log n); thus f (x + s0y, y) has a maximal coefficient bitsize of O(ρ + log n) = Õ(ρ). Its resultant,
D(s0, x), can be computed with Õ(n4ρ) bit operations (Reischert, 1997), and the resultant is of degree
at most n2 with coefficient bitsizes bounded by Õ(nρ). Note that ks0 equals the degree of the gcd of
D(s0, x) and its derivative, by (1). Therefore, it suffices to compute that gcd, which can be done in
Õ(n5ρ) bit operations, by Lemma 12. This must be done for at most n4

+ n + 1 many choices s0. We
summarize as follows.

Theorem 24. We can compute a shear factor s0 ∈ Z with 0 ≤ s0 ≤ n4
+ n, such that f (x, y) :=

F(x+ s0y, y) is in a generic position, with a bit complexity of Õ(n9ρ).

As explained above, f (x, y) has a maximal coefficient size of τ = O(ρ + log n) = Õ(ρ). From
now on, we assume that f has been transformed into a generic position in all subsequent steps. In
particular, the results from Section 4 apply for f .

Computing subresultants and critical values. The computation of the subresultant polynomials
Sres0(f , fy), . . . , Sresn(f , fy) with their cofactors can be done in Õ(n4τ) bit operations (Reischert,
1997). Each Sresi(f , fy) is a polynomial of x-degree at most n2, y-degree at most n − i, and maximal
coefficient size of n(τ + log n). In particular, R := Sres0(f , fy) is a univariate polynomial of degree
n2, and its roots are the critical x-coordinates of the curve. Computing them is now an application of
Theorem 17 to R, which yields a complexity of

Õ(n6
· (n(τ + log n))2) = Õ(n8τ 2) = Õ(n8ρ2).

Computing the k. Recall that, for a root α of R, we denote by kα the degree of gcd(f |x=α, f |′x=α).

Theorem 25. The total complexity of computing kα for all roots of R is

Õ(n8τ) = Õ(n8ρ).

Proof. kα is defined by the minimal index k such that sresk(f , fy)(α) ≠ 0. Checking whether
sresk(f , fy)(α) vanishes can be done by computing gcd(R, sresk(f , fy)), and checking whether the
sign of the gcd changes when evaluated at the boundaries of any isolating interval for α. Since
both polynomial are of degree n2 (at most), and their coefficient bitsizes are bounded by n(n + τ)

(n(log n+τ) for sresk(f , fy)), one such gcd operation has a bit complexity of Õ(n5(n+τ)), by Lemma12.
We need to do this at most n times.

We use Theorem 18 to choose the evaluation points. Letm ≤ n2 denote the number of real roots of
R, and let q0, . . . , qm denote the rational intermediate values. Computing them requires Õ(n8τ 2) bit
operations. Let γ0, . . . , γm denote the corresponding bitsizes. We have to evaluate each gcd at each
value qj. One such evaluation costs

Õ(n2(n(n+ τ)+ n2γj)),

4 We note that computing ∆(s) explicitly and finding a non-root of it directly is possible within the same bit complexity,
adapting the approach of Diochnos et al. (2009).

254 M. Kerber, M. Sagraloff / Journal of Symbolic Computation 47 (2012) 239–258

and the total costs are therefore bounded by

Õ


n

m−
j=0

n2 n(n+ τ)+ n2γj

= Õ


n6(n+ τ)+ n5

m−
j=0

γj


.

Because the γj sum up to Õ(n3τ), we obtain a bound of Õ(n8τ) for this step. �

Computing the fibers. We next bound the costs for isolating the roots of the fiber polynomials.

Theorem 26. Given f , R, andα1, . . . , αr , as above. Assuming that the square-free part gi of f |x=αi is known
for i = 1, . . . , r, isolating the real roots of all of them is bounded by

Õ(n8τ 2) = Õ(n8ρ2).

Proof. We have to show two parts. On the one hand, we have to bound the running time of the root
isolation algorithm, assuming that a sufficient precision of the coefficients is available. On the other
hand, we need to bound the time for computing a sufficient precision.

In the proof, we will write f ∗|x=α for the square-free part of f |x=α . Note that f ∗|x=α = Ci|x=α (for
some i), where Ci ∈ Z[x, y] is a cofactor polynomial of a subresultant of f and fy; see Basu et al. (2006,
Prop.10.14, Cor.10.15). Let Ci,j ∈ Z[x] denote the coefficient of Ci at yj. It is known that each Ci,j is a
polynomial in xwith degree at most n2, and bitsize at most n(τ + log n).

For the first part, recall from Theorem 14 that the running time of root isolation for f ∗|x=α is

Õ(n(nΓ (f ∗|x=α)+Σ(f ∗|x=α)2).

We observe that Γ (f ∗|x=α) = Γα and Σ(f ∗|x=α) = Σα . Moreover, with Theorem 9, we have
Σα ∈ O(n logMeaα + srkα (α)). Thus, we obtain a bit complexity of

Õ


n

r−
i=1

(nΓαi + n logMeaαi + Lsrkαi (αi))
2



= Õ

n3


r−

i=1

Γαi

2

+ n3


r−

i=1

Meaαi

2

+ n


r−

i=1

Lsrkαi (αi)

2
 .

The first sum is dominated by the second, because Γαi ≤ Meaαi . The second sum is bounded by
O(n2(τ + log n)), according to Lemma 5. The last sum is bounded by O(n3(τ + log n)), by Lemma 8.
Hence, we get a complexity of Õ(n7τ 2) for this step.

For the second part, we use the second part of Theorem 14. Let δi be such that Lδi is the number
of bits to which the coefficients of f |x=αi need to be approximated for isolation. Because Lδi =

O(nΓαi + Σαi), it can be seen by the same methods as above that the Lδi sum up to O(n3(τ + log n)).
Moreover, let Ci be the cofactor polynomial of f and fy that defines the square-free part. Our problem is
to find approximations of Ci,0(αi), . . . , Ci,n(αi)with a precision of δi. We can use Theorem 21 to bound
the costs, setting hi,j ← Ci,j, d← n2, λ← n(τ + log n), k← n and Lδ ← n3(τ + log n), which yields

Õ(n8τ 2)

for getting sufficient precision for root isolation. �

Detecting the multiple root. Let α := αi be a critical x-coordinate, and βα,1, . . . , βα,mi the roots of
f |x=α . Since f is in a generic position, exactly one of the βα,j is a multiple root. Since we have worked
with the square-free part of f |x=α in the isolation, we do not know yet which root is multiple. Recall
from Lemma 2 that the multiple root is given by β(α) with

β(x) = −
sresk,k−1(f , fy)(x)
k · sresk,k(f , fy)(x)

.

We describe a simple algorithm to find the index of the multiple root. We set ε := 1
2 and refine I until

J := Bβ(I) has a width of at most ε. We also refine the isolating intervals of the fiber polynomial

M. Kerber, M. Sagraloff / Journal of Symbolic Computation 47 (2012) 239–258 255

f |x=α to size ε. If J overlaps with only one isolating interval of f |x=α , we have found the multiple root.
If there is more than one such overlap, we set ε to ε2, and retry.

It is not difficult to see that the above algorithm terminates at the latest when ε < 1
4 sepα . We

next prove a bound on the width of I such that this is guaranteed. For simpler notation, we set
pα := sreskα ,kα−1(f , fy) ∈ Z[x] and qα := sreskα ,kα (f , fy) ∈ Z[x].

Lemma 27. If the width of I is smaller than

δα :=
|q(α)|2sepα

25+Γα

2n22n(τ+log n) max{1, |α|}n2

2 ,

the width of β(I) = − p(I)
k·q(I) is smaller than 1

4 sepα .

Proof. Note that p and q are ofmagnitude (n2, n(τ+log n)). Let I be isolating forα withwidth smaller
than δα . Set y ∈ Bp(I). By Lemma 19, we have that

y− p(α) ≤ ε :=
|q(α)|2sepα

25+Γα2n22n(τ+log n) max{1, |α|}n2
,

and the analogous inequality holds for q(α).
ε has the following three properties.

(1) ε ≤
|q(α)|

2 . Indeed, we can rewrite ε as

ε =
|q(α)|

2
·
1
8

sepα

2Γα+1
·

|q(α)|

2n22n(τ+log n) max{1, |α|}n2
,

and the latter factors are both smaller than 1.
(2) ε ≤

|q(α)|sepα

32 , by the same argument as in (1), and noting that Γα ≥ 0.

(3) ε ≤
|q(α)|2sepα

32|p(α)|
. Again, we can replaceΓα by 0 and exploit that |p(α)| ≤ 2n22n(τ+log n) max{1, |α|}n

2
.

Fix some y ∈ Bβ(I). We can write y as

y = −
p(α)+ e1

k(q(α)+ e2)

with |e1|, |e2| ≤ ε. So we get that

|β(α)− y| =
1
k

p(α)

q(α)
−

p(α)+ e1
q(α)+ e2

 ≤  e2p(α)

q(α)(q(α)+ e2)
−

e1
q(α)+ e2


≤

 e2p(α)

q(α)(q(α)+ e2)

+  e1
q(α)+ e2

 ≤ ε|p(α)|

|q(α)||(q(α)+ e2)|
+

ε

|q(α)+ e2|
.

By (1), we have that |q(α)+ e2| ≥
|q(α)|

2 ; thus

|β(α)− y| ≤
2ε|p(α)|

|q(α)2|
+

2ε
|q(α)|

≤
sepα

16
+

sepα

16
=

sepα

8
,

using (2) and (3). Thus, it follows by the triangle inequality that two values in Bβ(I) cannot have a
distance of more than sepα

4 . �

Lemma 28. Let V ′ ⊆ V (R) denote the real roots of R. Then,−
α∈V ′

Lδα = O(n3(τ + n)).

256 M. Kerber, M. Sagraloff / Journal of Symbolic Computation 47 (2012) 239–258

Proof. Note that 0 < δα < 1 for any α ∈ C. Thus, we can bound−
α∈V ′

Lδα ≤

−
α∈V (R)

Lδα

≤ 5+
−

α∈V (R)

Γα + 2n4
+ 2n3(τ + log n)+ 2n2

−
α∈V (R)

max{1, |α|}

+

−
α∈V (R)

Lsepα
+ 2

−
α∈V (R)

1
srkα (α)

.

The first sum is bounded byO(n2(τ+log n)) (Lemma 4), the second sumbyO(n(τ+log n)) (Lemma 3),
the third by O(n3(τ + log n)) (Theorem 10), and the fourth by O(n3(τ + log n)) (Lemma 8). �

Theorem 29. Identifying the multiple roots for all fibers can be done in

Õ(n8τ 2) = Õ(n8ρ2).

Proof. Recall the algorithm to find the critical point. It consists of threemajor building blocks: refining
the isolating interval I of α (to size δα in the worst case), evaluating Bβ(I) using interval arithmetic,
and refining the isolating intervals of the fiber polynomials to a size of 1

4 sepα in the worst case.
We analyze each part separately. For the first part, it is enough to refine each isolating interval of

R to a precision of
∑

α∈V ′ Lδα . Using Theorem 17 and Lemma 28, this can be done with at most

Õ(n8τ 2
+ n7(τ + n)) = Õ(n8τ 2)

bit operations. For the second part (interval arithmetic), we note that the costs are dominated by the
last evaluation, because ε is squared in every iteration. The bitsizes of the interval boundaries are
bounded by δα , so the last evaluation has a bit complexity of

Õ(n2(n(τ + log n)+ n2Lδα).

Summing up over all the α yields Õ(n7(n + τ)). Finally, we bound the third part (refining the fiber
polynomials) using Theorem 16. Note that, with the notation of that theorem, Lε ←

Lsepα
4 , and Lsepα

is dominated by Σα , which also appears in the bound. It follows that the term ‘‘d2Lε ’’ is dominated by
the first summand, and the complexity reduces to the cost of isolating the fiber polynomial, which is
bounded by Õ(n8τ 2), with Theorem 26. �

Fiber points at intermediate positions. The last missing step is to compute the number of arcs between
two ascending critical x-coordinates.We do so by computing the number of fiber points over a rational
x-value between these critical x-coordinates. Recall from Theorem 18 that we can find such rational
values q0, . . . , qm in time Õ(n8τ 2) = Õ(n8ρ2), and their bitsizes sum up to Õ(n3τ).

The number of roots of the polynomial f |x=qi is determined by the sign pattern of the principal
subresultants of f |x=qi and its derivative according to the Sturm–Habicht sequence (González-Vega
et al., 1998). Let γi denote the bitsize of qi. Evaluating the n principal subresultants at qi has a cost of

Õ(n3(n(τ + log n)+ n2γi)),

by Lemma 11, and summing up over all qi yields a bit complexity of Õ(n8τ) = Õ(n8ρ).

To summarize, we have shown that every step in Algorithm 1 is bounded by Õ(n8ρ2) except for
computing a shear factor, which is in Õ(n9ρ). This finally proves our main Theorem 22.

7. Conclusion

Ourwork has proven a newworst-case bound for the reference problemof computing the topology
of an algebraic curve. The result would not have been possible without improving the complexity of
real root isolation (Sagraloff, 2011) and root approximation Kerber and Sagraloff (2011); however,
we emphasize that none of the algorithms that achieved the previously best complexity bounds

M. Kerber, M. Sagraloff / Journal of Symbolic Computation 47 (2012) 239–258 257

for topology computation (Diochnos et al., 2009; Kerber, 2009) would yield our bound if one just
exchanges the real root isolation and refinement procedures. This shows that the careful amortized
analysis performed in our work is an integral ingredient for the obtained result.

A natural question would be how to further improve the result. To get substantially lower bounds
than the presented one, we believe that deeper insights into the algebraic properties of algebraic
curves are necessary. For instance, a bottleneck in the current analysis is the isolation of the resultant
polynomial which is assumed to be a general polynomial of magnitude (n2, nτ). However, a counting
argument on the dimensions shows that not every polynomial of that magnitude can appear as the
resultant of a curve of magnitude (n, τ), which leads to the following question: is the isolation of a
resultant polynomial possibly easier than for a general polynomial? At the same time, it might be
worth thinking about lower bounds on the problem of topology computation; to our knowledge, no
lower bound except the trivial Ω(n2) (complexity of a planar graph with n2 vertices) is known.

One might also ask about the practical quality of the presented algorithm. Note that our algorithm
is very similar to the AlciX algorithm (Kerber, 2009; Eigenwillig et al., 2007) which has been
implemented as part of the algebraic kernel package of Cgal5 (Berberich et al., 2011b); the main
difference is the root isolation at fiber polynomials: while ourmethods computed the square-free part
of the polynomial for isolation, AlciX avoids this computation by usingm-k-Bitstream Descarteswhich
is a variant of the Descartes method that can cope with one multiple root in the fiber. The reason
for this choice was better practical performance compared to the computation and isolation of the
square-free part, sowe do not expect ourmethod to be faster than AlciX in practice. Moreover, Bouzidi
et al. (2011) and Berberich et al. (2011a) have recently presented new approaches which generally
outperform AlciX. It is an interesting question whether the same complexity result as in this work can
be achieved for AlciX, or for one of the two most recent methods.

A related but less studied question is the complexity analysis for computing the triangulation of an
algebraic surface. An algorithm for this problem has been presented by Berberich et al. (2010), where
computing the topology of the projected silhouette curve is a crucial building block. Since that curve
is of magnitude (n2, nτ) (for a surface of magnitude (n, τ)), a complexity bound of Õ(n18τ 2) appears
possible, and we pose the question whether this bound can really be achieved.

References

Arnon, D., McCallum, S., 1988. A Polynomial Time Algorithm for the Topological Type of a Real Algebraic Curve. Journal of
Symbolic Computation 5, 213–236.

Basu, S., Pollack, R., Roy, M.-F., 2006. Algorithms in Real Algebraic Geometry, 2nd ed.. In: Algorithms and Computation in
Mathematics., Vol. 10. Springer.

Berberich, E., Emeliyanenko, P., Kobel, A., Sagraloff, M., 2011a. Arrangement computation for planar algebraic curves. In:
Symbolic Numeric Computation (SNC), pp. 88–99.

Berberich, E., Hemmer, M., Kerber, M., 2011b. A generic algebraic kernel for non-linear geometric applications. In: Proc. of the
27th Annual Symposium on Computational Geometry. pp. 179–186.

Berberich, E., Kerber, M., Sagraloff, M., 2010. An efficient algorithm for the stratification and triangulation of algebraic surfaces.
Computational Geometry: Theory and Applications 43, 257–278. Special issue on SCG’08.

Bouzidi, Y., Lazard, S., Pouget, M., Rouillier, F., 2011. New bivariate system solver and topology of algebraic curves. In: Abstracts
from EuroCG 2011, 27th European Workshop on Computational Geometry. pp. 167–170.

Burr, M., Choi, S., Galehouse, B., Yap, C., 2008. Complete subdivision algorithms, II: Isotopicmeshing of singular algebraic curves.
In: Proc. Int’l Symp. Symbolic and Algebraic Computation, ISSAC’08, Hagenberg, Austria. July 20–23, 2008, pp. 87–94.

Caviness, B. F., Johnson, J. R. (Eds.), 1998. Quantifier Elimination and Cylindrical Algebraic Decomposition. In: Texts and
Monographs in Symbolic Computation, Springer.

Cheng, J., Lazard, S., Penaranda, L., Pouget,M., Rouillier, F., Tsigaridas, E., 2009. On the topology of planar algebraic curves. In: SCG
’09: Proc. of the 25th Annual Symposium on Computational Geometry. ACM, New York, NY, USA, pp. 361–370.

Collins, G. E., 1975. Quantifier elimination for real closed fields by cylindrical algebraic decomposition. In: Second GI Conference
on Automata Theory and Formal Languages. In: LNCS., Vol. 33. pp. 85–121. Reprinted in Caviness and Johnson (1998).

Eppstein, D., Paterson,M.S., Yao, F.F., 1997. On nearest-neighbor graphs. Discrete and Computational Geometry 17 (3), 263–282.
Diochnos, D. I., Emiris, I. Z., Tsigaridas, E. P., 2009. On the asymptotic and practical complexity of solving bivariate systems over

the reals. Journal of Symbolic Computation 44 (7), 818–835.
Eigenwillig, A., 2008 Real root isolation for exact and approximate polynomials using Descartes’ rule of signs. Ph.D. Thesis,

Saarland University, Saarbrücken, Germany.

5 The Computational Geometry Algorithms Library, http://www.cgal.org.

http://www.cgal.org
http://www.cgal.org
http://www.cgal.org
http://www.cgal.org

258 M. Kerber, M. Sagraloff / Journal of Symbolic Computation 47 (2012) 239–258

Eigenwillig, A., Kerber, M., Wolpert, N., 2007. Fast and exact geometric analysis of real algebraic plane curves. In: Brown, C. W.
(Ed.), Proceedings of the 2007 International Symposium on Symbolic and Algebraic Computation, ISSAC 2007. pp. 151–158.

Gonzalez-Vega, L., El Kahoui, M., 1996. An improved upper complexity bound for the topology computation of a real algebraic
plane curve. Journal of Complexity 12, 527–544.

Gonzalez-Vega, L., Necula, I., 2002. Efficient topology determination of implicitly defined algebraic plane curves. Computer
Aided Geometric Design 19, 719–743.

González-Vega, L., Recio, T., Lombardi, H., Roy,M.-F., 1998. Sturm-Habicht Sequences, Determinants andReal Roots of Univariate
Polynomials. In: Caviness, B. F., Johnson, J. R. (Eds.), Quantifier Elimination and Cylindrical Algebraic Decomposition, Texts
and Monographs in Symbolic Computation. Springer, pp. 300–316.

Hong, H., 1996. An efficient method for analyzing the topology of plane real algebraic curves. Mathematics and Computers in
Simulation 42, 571–582.

Kerber, M., 2009. Geometric algorithms for algebraic curves and surfaces. Ph.D. Thesis, Universität des Saarlandes, Germany.
Kerber, M., Sagraloff, M., 2011. Root refinement for real polynomials, arXiv:1004.1362v1.
Reischert, D., 1997. Asymptotically fast computation of subresultants. In: ISSAC’97: Proceedings of the 1997 International

Symposium on Symbolic and Algebraic Computation. ACM, New York, NY, USA, pp. 233–240.
Sagraloff, M., 2011. On the complexity of real root isolation, arXiv:1011.0344v2.
Seidel, R., Wolpert, N., 2005. On the exact computation of the topology of real algebraic curves. In: Proceedings of the 21st

Annual ACM Symposium on Computational Geometry, SCG 2005. pp. 107–115.
von zur Gathen, J., Gerhard, J., 1999. Modern Computer Algebra. Cambridge University Press, Cambridge.
Yap, C.K., 2000. Fundamental Problems in Algorithmic Algebra. University Press, Oxford.

http://arxiv.org/1004.1362v1
http://arxiv.org/1011.0344v2

	A worst-case bound for topology computation of algebraic curves
	Introduction
	Algorithm
	Notation
	Amortized algebraic bounds
	Basic algorithms
	Topology computation
	Conclusion
	References

