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This article is concerned with the oscillatory behavior at infinity of the solution 
y: [a, co) + R* of a system of two second-order differential equations, 

y”(t) + Q(t) y(t) =O, tE [a, 00); 

Q is a continuous matrix-valued function on [a, co) whose values are real sym- 
metric matrices of order 2. It is shown that the solution is oscillatory at infinity if 
the largest eigenvalue of the matrix 1: Q(S) ds tends to infinity as t + co. This proves 
a conjecture of D. Hinton and R. T. Lewis (Rocky Mountain J. Math. 10 (1980), 
751-766) for the two-dimensional case. Furthermore, it is shown that considerably 
weaker forms of the condition still suffice for oscillatory behavior at infinity. 
0 1985 Academic Press, Inc. 

1. INTRODUCTION 

We are concerned with the differential equation 

Y”(f) + Q(t) v(t) = 09 t E [a, m ), (1.1) 

for a vector-valued function y: [a, co) + R”. Here Q is a continuous 
matrix-valued function on [a, co) whose values are real symmetric matrices 
of order n. 

Two points a, fi E [a, cc ) are said to be conjugate relative to (1.1) if there 
exists a nontrivial function y which satisfies (1.1) and vanishes at a and /I. 
Equation (1.1) is said to be oscillatory at infinity if, for any point 
a E [a, co), there exists a point /?E (a, co) such that a and B are conjugate 
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relative to (1.1). We use the notation Q1(r) for the matrix of the integrals 
over [a, t] of the corresponding elements of Q(t), 

Q,(t) = j’ Q(s) ds. 
a 

(1.2) 

The oscillation theory for (1.1) has received considerable attention; see, 
for example, the recent monograph by Reid [7, Chap. V]. It has been con- 
jectured, see Hinton and Lewis [2], that (1.1) is oscillatory at infinity 
whenever 

where 1, { .} is the largest eigenvalue of the matrix inside the braces. This 
conjecture is interesting because, if true, it would imply that eigenvalues 
other than the largest one have no impact on oscillation at infinity. At this 
point the conjecture is still open, although it has been established under 
additional growth conditions on the trace of Q,(t) by Mingarelli [ 5, 61 
and, more recently, by Kwong et al. [3]. In this article we show that the 
conjecture is indeed true for n = 2. In fact, we show that, in this case, the 
condition (1.3) can be relaxed considerably. Unfortunately, the method we 
use to prove these results is rather technical and does not seem to extend in 
an obvious way to higher dimensions. 

The oscillatory properties of the solution of (1.1) are usually studied by 
means of the prepared or conjoined solutions of the associated matrix dif- 
ferential equation, i.e., those solutions Y (n x n matrix-valued functions of 
t) of the equation 

Y”(t) + Q(t) Y(t) = 0, t E [a, 00 1, (1.4) 

for which Y’(t) Y-‘(t) is selfadjoint (Hermitian). An alternative approach, 
which we shall use in this article, is based on the solution of a nonlinear 
equation for the matrix-valued function R, 

R(t) = R(a) + s’ Q(s) ds + j’ R*(s) ds, t E [a, co). (1.5) (1 a 

The solutions of Eqs. (1.4) and (1.5) are related by the change of variables, 

R(t)= -Y’(t) Y-‘(t). (1.6) 

If Y is a conjoined solution of (1.4), then the corresponding R is a selfad- 
joint matrix-valued function which satisfies (1.5), and vice versa. It can be 
shown that, if R(a) is selfadjoint (real), then the matrix R(t), which is uni- 
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quely determined by (1.5), is selfadjoint (real) for all t for which it is 
defined. Of course, the matrix R(t) may blow up at a finite value of t. This 
happens when the corresponding matrix Y(t) becomes singular. 

As Etgen and Pawlowski [ 1 ] have shown, Eq. (1.1) is nonoscillatory at 
infinity if and only if (1.4) has a nonsingular conjoined solution on [a, 00). 
(More precisely, Eq. (1.1) is nonoscillatory at infinity if and only if (1.4) 
has a nonsingular conjoined solution on [a,, cc ) for some a, 2 a. However, 
as u in (1.1) is arbitrary, there is no loss in generality if we take a,, and a to 
be the same point.) Hence, a necessary and sufficient condition for (1.1) to 
be nonoscillatory at infinity is that (1.6) has a continuous selfadjoint 
solution on [a, 00). It is the latter criterion that we shall use to study the 
oscillatory behavior at infinity of the system (1.1) with n = 2. 

In the next section we establish several ordering relations for the 
quadratic term in the two-dimensional matrix Riccati equation. We use 
these relations in Section 3 to prove the conjecture mentioned earlier, viz., 
that the solution of (1.1) is oscillatory at infinity if the larger of the two 
eigenvalues of Ql( t) tends to infinity as t --t co. Finally, in Section 4 we 
present several weaker conditions on the asymptotic behavior of this eigen- 
value, under which one can prove oscillatory behavior at infinity. Our main 
results are formulated in Theorem 3 and Theorem 8. 

2. ORDERING RELATIONS 

In this section we shall establish an ordering relation for the quadratic 
term in the matrix Riccati equation 

R(t)=F(t)+]‘R2(s)ds, t 2 0. (2.1) 
0 

Here F is a given continuous function on [0, co), whose values are selfad- 
joint matrices of order 2. We shall use the standard partial ordering in the 
space of selfadjoint matrices, viz., A 2 B if A - B is nonnegative. The sym- 
bol Z stands for the identity matrix of order 2. 

LEMMA 1. Suppose R is a continuous serfaajoint matrix-valued global 
solution of(2.1). ZfA,(F(t)} 2 1 for all 220, then 

R2(s) ds a ;Z. (2.2) 

ProoJ: Without loss of generality we may assume that the matrix 
lg’ R’(s) ds is diagonal, (: 69 , ) say; otherwise, an appropriate similarity 
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transformation can be applied to both sides of the identity (2.1) to make 
this matrix diagonal. We use the following notation: 

R(t)=mat[r,(t): i,j= 1,2], 

P(t) = j-’ R’(s) ds = mat[pO(t): i, j= 1,2], 
0 

where r,i and r22 are real-valued functions; r,2 and rz, are complex-valued 
functions, with rzl( t) = r12( t). 

The proof is by contradiction. Assume that (2.2) does not hold. Then at 
least one of the numbers (pi, rr2 is less than c; for example, 

g2 = I5 ((r&))2 + lr12(s)12) ds < c. s 
The interval [0,25] is the union of two disjoint sets S, and SL, where 

S,= {TV [0, 251: lr22(t)l <c and Ir12(t)l cc} 

and S: = [O, 25]\S,. Clearly, mes SC < c - ’ = 4. 
If R satisfies (2.1) and &{F(t)}>l, then A,(R(t)-P(r)}2 1 or, 

explicitly, 

C(r,,-pll+r22--22)2-4trl~-pll)(r22-P22)+4lrI2-P12l211’2 

2 2-(rll-ptl+r22-P22). 

Two possibilities arise: either the expression in the right member is negative 
or, if it is positive, the expression inside the square brackets is greater than 
or equal to the square of the expression in the right member. In the former 
case, rl122+pl,-r22+p22. But p22 is nonnegative and lr22l < c on S,, so 
in this case we certainly have the inequality 

rll 2 1 +pll on S,. 

In the latter case we find, after some simplification, 

(2.3) 

r,,(l+p22-r22)~(1+P~~)(1+P22-r22)-Ir~2-P~212~ (2.4) 

The last term can be estimated in the obvious way, 

lr12-p1212~ lr1212+21~~21 lr121 + b1212 

G lr1212+ (1 + 1~121~) Irl2l + b1212. 

Because P(t) is nonnegative, we necessarily have lpi21 * G pll p22 on CO, 251. 
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Also, p2&eing the integral of a nonnegative function-is nondecreasing, 
so p22 <a,<~ on [0,25]. Hence, lp1212<cpll on [0,25] and therefore 

b.12 - P1212 < (1 + l~121)(1~12/ + WI,) on [0,25]. 

In particular, 

Ih2-P1212<C(1 +c)(l +P1*) on S,. 

Furthermore, 

1 -CC l+p,,-r22< 1+2c on S,. 

Thus we obtain the following inequality from (2.4): 

rllr1;Z+C2cC2(l+Pll) on S,. (2.5) 

Notice that the constant factor in the right member of this inequality is less 
than one, but certainly greater than $ if c = 4. The estimates (2.3) and (2.5) 
can thus be combined into one single estimate, 

r11> $U + Pll) on S,. (2.6) 

Because pi1 = rfl + lr,J2 2 rfl on [0,25], the function pli therefore satisfies 
the following differential inequalities: 

f&(t) > AAl + P1*(N2, fES,, (2.7-l) 

h(t) 2 09 tESc. (2.7-2) 

However, here we have arrived at a contradiction, as there is no differen- 
tiable function pli on [0,25] which satisfies (2.7). To prove this last 
statement, one may construct a comparison problem in the following way. 

The set {t~[O,25]:p;~(t)>&(l+p~~(t))~} is open and contains S,. 
Hence, it is a countable union of open intervals and has total measure at 
least 21. Let U be the union of a finite number of these intervals, such that 
mes U> 16. We define p as the solution of the differential equation 

p’(t) = iid1 + P(N2, tE u, 

p’(r) = a f4 u, 

on [0,25] which satisfies the initial condition p(O)=p,,(O)=O. Then 
0 G p(t) G pll(t), and, if pll is defined on [0,25], the same must be true for 
p. But a direct computation shows that p blows up before t reaches the 
right endpoint of U; hence, a contradiction. 1 
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A closer examination of the proof of the lemma shows that, instead of 
the constant b, we could have taken any positive constant c less than 
- 1 + fi in the inequality (2.2). But, as the following corollary shows, the 
precise value of the constant is immaterial. 

COROLLARY 2. Suppose R is a continuous selfadjoint matrix-valued 
global solution of (2.1). If I, {F(t)} 2 1 for all t B 0, then there exists a z > 0, 
which is independent of F, such that 

I ’ R*(s) ds > Z, t > r.. (2.8) 
0 

Proof: We can simply take z = 100. To see this, we first invoke 
Lemma 1, 

R’(s)ds+ 

By shifting the origin to t = 25 and changing variables, we can apply the 
same lemma to show that 

s 

50 

25 
R’(s) ds 2 $ I. 

We repeat this process two more times and combine the various 
inequalities into one single inequality, 

j;mR2(s)ds=(j;5+ j2;+ j5y+ j7y)R2(s)ds,l 1 

3. PROOF OF THE CONJECTURE 

The ordering relation which we proved in the previous section enables us 
to compare the quadratic term in (1.5) with multiples of the identity matrix 
and thus to show that (1.5) does not have a global solution if (1.3) holds. 

THEOREM 3. Zf (1.3) holds, then (1.1) is oscillatory at infinity for n=2. 

Proof: The proof is by contradiction, where we assume that the Riccati 
equation (1.5), which is equivalent with (1.1 ), has a continuous selfadjoint 
matrix-valued global solution R. 
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If (1.3) holds, then A,{R(a)+ Qi(f)} + co as t-+ co, so for t sufficiently 
large, t > to, say, we have 

Let to be kept fixed. For t 2 to we have 

R(t)=F,,(t)+~‘R*(s)ds, tat,, 
10 

where the function F,, is defined on [to, cc) by the expression 

(3.2) 

F,(t) = R(a) + Ql(t) + s” R*(s) ds, t>to. (3.3) 
(I 

The inequality (3.1) and the nonnegativity of the integral term imply that 

wow 2 1, t> to. (3.4) 

The change of variables K(t) = R(t, + t) reduces (3.2) to 

R(t)=F(t)+ [‘R*(s)ds, t>o, (3.5) 
JO 

where F(t) = F,(t, + t). It follows from (3.4) that A1 {F(t)} 2 1 for all t 2 0, 
so according to Corollary 2 there exists a r > 0 such that j; R’(s) & 2 I. 
Let t 1 = to + z thus determined be kept fixed. Then we have the ordering 
relation 

s ’ R*(s)ds>Z, t> t,. (3.6) 
10 

We now proceed to the next step. 
We define the function F, on [tl, co) by adding the integral of R* over 

the interval [to, tl] to the function F,: 

Fl(t) = F,(t) + j” R*(s) ds, t>t,. (3.7) 
f0 

The inequalities (3.4) and (3.6) together imply that 

ww)> 2 2. 

Furthermore, if R satisfies (3.2), then 

R(t) = F,(t) + jr R*(s) ds, tat,. 
11 

(3.8) 

(3.9) 



202 KWONGANDKAPER 

The change of variables R(t) = +R(t, + It) transforms this equation into 
(3.5), where F(;(t)=iFI(tI+$t). Thus, I,{F(t)>>l for all t>O and 
Corollary 2 applies. Using the same value z as in the first step, we conclude 
that J; R2(s) ds > Z for t 2 t, i.e., 

1’ R2(s)ds>2Z, tat,, (3.10) 

where t2=tl+fT=to+$z. 
Continuing this procedure we find, after n steps, 

I f R2(s)dE>2"-1z, tat,, (3.11) 
L I 

where t,=t,-l+2-(“-‘) r - t, + 2( 1 - 2 -“) t. Thus, when we add the con- - 
tributions from each of the intervals [a, to], [to, tl],..., [tnpl, t,] we 
obtain the estimate 

I ‘R’(s)dr>(2”-l)Z, t> t,. (3.12) 
a 

But t, tends to the finite limit to + 22 as n --f co, so we conclude that there 
exists a finite number T such that J; R’(s) ds blows up as t t T. This con- 
clusion, however, contradicts the assumption that (1.5) has a global 
solution. 8 

4. GENERALIZATIONS 

A closer examination of the proof of Lemma 1 reveals that all that is 
needed for the lemma to hold is that the estimate (2.6) is satisfied on a suf- 
ficiently large set. The estimate (2.6) followed from the inequality 
II, {F(t)} > 1, provided t E S,. Hence, if the same inequality holds on a suf- 
ficiently large set, the lemma is stil true. This observation is made more 
precise in the following lemma, which we state without proof. 

LEMMA 4. Suppose R is a continuous serfaa!joint matrix-valued global 
solution of (2.1). Then there exists a z > 0, which is independent of F, such 
that 

(4.1) 

whenever mes(sE [0, t]: n,(F(s)) 2 1) 2~. 
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With this lemma we can generalize the result of Theorem 3. We shall use 
the following notation: 

S(P)= (1~ [a, 00): 4{QdO) a~), p > 0. (4.2) 

THEOREM 5. If 

lim p mes S(p) = cc, 
P--a, 

(4.3) 

then (1.1) is oscillatory at infinity for n = 2. 

ProoJ The proof is by contradiction, where we assume that the Riccati 
equation (1.5) has a continuous selfadjoint matrix-valued global 
solution R. 

If p is sufficiently large, then 

Repeating the arguments used in the proof of Theorem 3, we find that there 
exists a finite number T such that J-L R’(s) ds blows up as rt T, unless 
mes S&) < 47/p, where 

s,(p) = {SE [a, 7-l: A,(W) + QN> 2 fd 

Clearly, S&)I((s(p)n [a, T]), so, if T is suficiently large, then 
mes S,(p) > 4 mes S(p). Hence, p mes S,(p) 2 fp mes S(p), and (4.3) 
implies that ~1 mes S,(p) must grow beyond any finite bound as p + co. 
The inequality mes ST(p) 2 4z/p is therefore not satisfied for sufficiently 
large p and we have a contradiction. 1 

Some special cases of Theorem 5 are of interest. Let J be an unbounded 
subset of [a, co) and f a function defined on [a, co). We say that 
lim I+ oo,rEJ f(t) = 00 if, for any positive number N, there exists a t,, E (a, cc) 
such thatf(t)aNfor all tEJn[t,, CCI). 

COROLLARY 6. Zf there is a measurable subset J of [a, 00) of infinite 
measure, such that 

then (1.1) is oscillatory at infinity for n = 2. 
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COROLLARY 7. Zf there is a measurable subset J of [a, 00) of finite 
measure and a y E (0, 1) such that 

s L-~,(Q~(W+ dt= 00, (4.5) 
J 

where [.I + =max{., 0}, then (1.1) is oscillatory at infinity for n= 2. 

Proof. That (4.3) follows from (4.5) is shown in Kwong and Zettl [4, 
Corollary 31. 1 

Corollary 7 shows that oscillatory behavior at infinity may result even if 
A,{ Q,(t)} is negative on a set of infinite measure. 

An example to which Corollary 7 applies is a two-dimensional system 
with l,(Ql(t)} > ta sin t, cr>O. 

In the scalar case, Q,(t) = sin t results in oscillatory behavior at infinity. 
Whether the same result is true for systems, if A,{Ql(t)} = sin t, is not 
known. This problem seems to be nontrivial even in the two-dimensional 
case. 

We remark that by changing variables one can sometimes extend the 
applicability of oscillation criteria. For instance, the techniques used in 
Kwong and Zettl [4, Sect. 61 apply also to systems. We state without 
proof the following extension of Theorem 5 to Zlamal-type oscillation con- 
ditions. 

THEOREM 8. Zf there exist a Cl-function f: [a, co) + [0, co) and a set 
Jc [a, oo), such that 

s J(f(t))-l dt= 00 

and 

lim A,{~f’(t)Z+{~[f(s)Q(s)-sZ]ds}=;a, (4.6) 
t-CO,ts/ 

then (1.1) is oscillatory at infinity for n = 2. 

This theorem generalizes a result of Reid for two-dimensional systems 
[7, Sect. V.15.201. It has the following interesting corollary. 

COROLLARY 9. Zf there exist a set Jc [a, co) and a nonincreasing Cl- 
function f: [a, GO) + [0, co) such that 

' 
(4.7) 
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then the condition 

lim 1, 
t-r co,1eJ (4.8) 

implies that (1.1) is oscillatory at infinity for n = 2. 

Examples of functions f satisfying (4.7) are f(t) = tY for y < 1, andf(t) = 
t(ln t)“, t(ln t) -’ (In In t)*, t(ln t In In t)-’ (In In In t)“, etc., for a < -1. 

REFERENCES 

1. G. J. ETGEN AND J. F. PAWLOWSKI, Oscillation criteria for second-order self-adjoint dif- 
ferential systems, PaciJic J. Math. 66 (1976), 99-l 10. 

2. D. HINTON AND R. T. LEWIS, Oscillation theory for generalized second-order differential 
equations, Rocky Mounrain J. Math. 10 (1980), 751-766. 

3. MAN KAM KWONG, H. G. KAPER, K. AKIYAMA, AND A. B. MINGARELLI, Oscillation of 
linear second-order differential systems, Proc. Amer. Math. Sot. 91 (1984), 85-91. 

4. MAN KAM KWONG AND A. ZETTL, Integral inequalities and second-order linear oscillation, 
J. Differential Equations 45 (1982), 1633. 

5. A. MINGARELLI, On a conjecture for oscillation of second-order ordinary differential 
systems, Proc. Amer. Math. Sot. 82 (1981), 593-598. 

6. A. MINGARELLI, An oscillation criterion for second-order self-adjoint differential systems, 
C. R. Math. Rep. Acad. Sci. Canada 2 (1980), 287-290. 

7. W. T. REID, “Sturmian Theory for Ordinary Differential Equations,” Springer-Verlag, New 
York. 1980. 


