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Intrinsic charm in nucleons has been proposed as a phe-
nomenon, which can be described in the light-cone wave function 
formalism [1] using old fashioned perturbation theory [2]. It is 
characterized by a Fock state

|q1 q2 q3 Q 4 Q 5〉, (1)

with massless quarks qi and heavy quarks Q j of mass M Q .1 The 
emergence of this state can be viewed as a definite quantum fluc-
tuation in front of a general hadronic background, which can be 
resolved in deep-inelastic lepton–nucleon scattering.

Extrinsic heavy flavor contributions [4,5], on the other hand, are 
due to factorized single massless parton induced processes, exciting 
the heavy quark contributions. For neutral current interactions the 
process results from vector boson–gluon fusion [4] and appears in 
first order in the strong coupling constant αs at the quantum level.

Both processes are distinct and of very different nature. As 
has been shown in Ref. [1] the intrinsic charm contributions are 
situated at larger values of x, while major contributions of the ex-
trinsic charm appear at low values of x. While the intrinsic charm 
contribution appears in the scaling limit already, extrinsic charm 
contributes on the quantum level only.

In the following we derive the condition under which intrin-
sic charm is unambiguously visible in deep-inelastic scattering. We 
follow Drell and Yan, Ref. [6], and compare the lifetime, τlife, of 
the intrinsic charm state with the interaction time in the deep-
inelastic process, τint, demanding

τlife

τint
� 1 (2)

as a necessary criterion for the observation of the phenomenon. 
Eq. (2) delivered a clear condition on the applicability of the 
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(massless) parton model singling out the corresponding ranges in x
and Q 2. Here the major requests are that the virtuality Q 2 of the 
process is much larger than any transverse momentum squared in 
the hadronic wave-function, Q 2 � k2

⊥,i , and the Bjorken variable 
x shall neither get close to 1 nor take too small values, [6]. Usu-
ally, in the excluded regions other contributions, like higher twist 
terms are present and/or there is a need of novel small-x resum-
mations, which are both of comparable or even of larger size than 
the terms computed. In the following we will apply Eq. (2) to the 
case of the state (1).

In an infinite momentum frame we may express the momen-
tum transfer by the electro-weak boson probing the nucleon, q, as 
follows [6]

q = (q0;q3,q⊥), q0 = 2mpν + q2

4P
, q3 = −2mpν − q2

4P
, (3)

where q2 = −Q 2, mp the proton mass, ν the energy transfer to 
the nucleon in the proton rest frame, and P is the large (‘infinite’) 
momentum.

The interaction time τint is given by

τint = 1

q0
= 4P

2mpν + q2
= 4P x

Q 2(1 − x)
. (4)

Here x denotes the momentum fraction of the struck quark. Like-
wise, we obtain for the lifetime of the intrinsic charm state

τlife = 1∑
i Ei − E

= 2P(∑5
i=1

M2
i +k2

⊥,i
xi

)
− m2

p

∣∣∣∣∣∣∣∣∑
j x j=1

, (5)

with Ei =
√

x2
i P 2 + M2

i + k2
⊥,i the energies of the partons in the 

state and E the total energy, applying the infinite momentum rep-
resentation, consistently neglecting sub-leading terms ∼ 1/P in 
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Fig. 1. Left panel: normalized intrinsic charm distribution with finite mp ; Right panel: ratio of the probability distribution for intrinsic charm including the effect of the 
proton mass to the case mp/M Q → 0. The parameter c is given by c � 0.348 and M Q = 1.59 GeV in the pole mass scheme [7].3
the large momentum. Mi denotes the mass of the ith quark, k⊥,i
its transverse momentum, and xi its momentum fraction. Deriving 
τlife for intrinsic charm, we consider three massless valence quarks 
and the heavy quark–antiquark pair in the Fock state. We set the 
masses of the three light valence quarks to zero and neglect the 
effect of transverse momenta, as in the derivation of Eq. (8) [1], 
but retain the term m2

p/M2
Q here. One obtains

τlife(x) = 2P

M2
Q

1−x5∫
0

dx4

1−x4−x5∫
0

dx3
1 − x3 − x4 − x5

1
x4

+ 1
x5

− m2
p

M2
Q

∣∣∣∣∣∣∣
x5=x

= P x

6M2
Q (1 − cx)4

{
(1 − x)(1 − cx)[2 + x[5 − x

− c(1 − x)[4 + x(5 − 2c(1 − x))]]]

+ 6x(1 − cx(1 − x))2 ln

[
x

1 − cx(1 − x)

]}
, (6)

with c = m2
p/M2

Q . The integrals in (6) are the same as used to 
derive the probability distribution P (x) in [1] and Eq. (9), however, 
the energy denominator appears in the first power.

One may estimate also a life-time for extrinsic cc̄-production, if 
viewed as Fock state. Due to the factorized production, one consid-
ers the state |cc̄ X〉, with X the hadronic remainder of momentum 
fraction x1, which yields

τ ext
life (x) = 2P

M2
Q

1∫
0

dx4

1∫
0

dx1δ(1 − x1 − x4 − x5)
1

1
x4

+ 1
x5

− c

∣∣∣∣∣∣
x5=x

= 2P x

M2
Q (1 − cx)2

{
(1 − x)(1 − cx)

+ x ln

[
x

1 − cx(1 − x)

]}
. (7)

The lowest order probability distribution for intrinsic charm, ac-
counting for the nucleon mass effect, is given by

P (x) = N(c)

1−x5∫
0

dx4

1−x4−x5∫
0

dx3
1 − x3 − x4 − x5(

1
x4

+ 1
x5

− c
)2

∣∣∣∣∣∣∣
x5=x

(8)

= N(c)x2

6(1 − cx)5

{
(1 − x)(1 − cx)[1 + x[10 + x
− c(1 − x)(x(10 − c(1 − x)) + 2)]]
+ 6x[1 + x(1 − c(1 − x))][1 − c(1 − x)x][ln(x)

− ln[1 − c(1 − x)x]]
}

, (9)

with N(c) determined such that 
∫ 1

0 dxP (x) = NIC, the integral frac-
tion of intrinsic charm. Here we retained the effect of the proton 
mass, which was neglected in [1], and illustrate the distribution 
in Fig. 1 (left). One obtains a modification of the intrinsic charm 
distribution due to the finite nucleon mass effect of up to 10%, 
as shown in Fig. 1 (right). Setting c → 0 leads to the previous re-
sult [1]

P (x) = 600NICx2

[
(1 − x)(x2 + 10x + 1) + 6x(x + 1) ln(x)

]
.

(10)

The ratio ρ(x) = τlife/τint is Lorentz-invariant and has to be 
larger than a suitable bound of O (5...10). The size of this value 
is fixed using standard requests applied also for the parameter 
setting in experimental pulse resolution techniques e.g. in parti-
cle detectors. Here ρ = 5 would refer to a failure rate of 20% and 
ρ = 10 of 10%.4

Using this condition we may determine the allowed Q 2-range 
as a function of x in which the quantum fluctuation leading to 
intrinsic charm can be unambiguously resolved by deep-inelastic 
scattering. Eqs. (4), (6) lead to the function

ρ(x) ≡ τlife(x)

τint(x)
≥ Q 2

12M2
Q

� Q 2

30.34 GeV2
. (11)

The function ρ(x) rises with growing values of x, i.e. a minimal 
bound of Q 2 > 151 GeV2 is obtained, demanding the ratio to be 
ρ(x) ≥ 5. We show the corresponding x-dependence in Fig. 2. We 
also show the boundary implied for extrinsic charm production.

Let us consider the kinematics of the EMC experiment at 
CERN [9], which probably was the first measuring charm final 
states of a larger amount in deep-inelastic scattering [10]. These 
data have frequently been analyzed also searching for intrinsic 

3 Lower values of mc ∼ 1.3 GeV used e.g. in [8] at NLO are fully compatible with 
the NNLO value applied in the present study, cf. [7].

4 I would like to thank Dr. J. Bernhard from the Compass experiment for a corre-
sponding remark.
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Fig. 2. Full line: lower boundary in Q 2/GeV2 for which ρ(x) ≥ 5 as a function of x. 
Long dashed line: lower boundary for extrinsic charm production resulting from 
Eq. (7) also for ρ(x) ≥ 5; Short dashed line: highest Q 2-bin of the EMC experi-
ment [9].

charm. The highest Q 2 bin is centered at Q 2 � 170 GeV2. The 
kinematic range allowed for a clear intrinsic charm signal demand-
ing ρ(x) ≥ 5 is obtained as x � 0.01, far below the peak-region 
at x � 0.22 of the predicted distribution. On the other hand, the 
bound resulting for extrinsic charm production, cf. Eq. (7), covers 
a wider range, also of the kinematic region probed by the EMC 
experiment. Note that, furthermore, the accessible range in x is 
strongly correlated to the probed region in Q 2 in deep-inelastic 
scattering experiments. This has to be taken into account inter-
preting low energy data as those of the EMC experiment in terms 
of intrinsic charm effects. Several phenomenological analyses have 
been carried out to search for intrinsic charm, cf. e.g. Refs. [11]. 
Other analyses came to very similar conclusions of a possible in-
tegral fraction of NIC in the range of up to O (1..3%). In all these 
analyses the life-time constraint (2) has not been considered.

Discoveries need clean conditions. The Q 2 bound illustrated by 
Fig. 2 points to a much more fortunate situation to search for 
intrinsic charm effects opening up at high energy colliders if com-
pared to fixed target experiments, such as at HERA or within future 
projects like the EIC [12] and LHeC [13], also operating at high lu-
minosity. Condition (2) is more easily fulfilled there because of the 
much wider kinematic range. As a consequence, intrinsic charm 
can be searched for in a dedicated way only at high energies.
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