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Abstract

The effective magnetic resonance imaging (MRI) trans-

verse relaxation rate R2* was investigated as an early

acute marker of the response of rat GH3 prolactinomas

to the vascular-targeting agent, ZD6126. Multigradient

echo (MGRE) MRI was used to quantify R2*, which is

sensitive to tissue deoxyhemoglobin levels. Tumor R2*

was measured prior to, and either immediately for up

to 35 minutes, or 24 hours following administration of

50 mg/kg ZD6126. Following MRI, tumor perfusion was

assessed by Hoechst 33342 uptake. Tumor R2* sig-

nificantly increased to 116 ± 4% of baseline 35 minutes

after challenge, consistent with an ischemic insult in-

duced by vascular collapse. A strong positive corre-

lation between baseline R2* and the subsequent

increase in R2* measured 35 minutes after treatment

was obtained, suggesting that the baseline R2* is

prognostic for the subsequent tumor response to

ZD6126. In contrast, a significant decrease in tumor

R2* was found 24 hours after administration of ZD6126.

Both the 35-minute and 24-hour R2* responses to

ZD6126 were associated with a decrease in Hoechst

33342 uptake. Interpretation of the R2* response is

complex, yet changes in tumor R2* may provide a

convenient and early MRI biomarker for detecting the

antitumor activity of vascular-targeting agents.
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Introduction

It is now well-established that the development, growth, and

survival of solid tumors are highly dependent on a functional

vascular network [1]. Established blood vessels, which

consist of endothelial cells, support cells, and a basement

membrane, provide tumor cells with oxygen and nutrients,

and enable the removal of toxic waste products of cellular

metabolism. Physiological angiogenesis is a tightly regu-

lated process that occurs only in a limited number of

situations such as wound healing or during the menstrual cycle.

In contrast, in several pathologic situations, including cancer,

angiogenesis is dysregulated [2]. As a result, tumor vascula-

ture has a very different morphology compared with normal

tissues. For example, in a normal adult, most of the vascular

endothelium is quiescent, with only 0.01% of endothelial cells

undergoing division, whereas in tumors, the expression of

proangiogenic growth factors can result in an endothelial cell

proliferation rate 35-fold higher than that of normal tissues [3,4].

Differences between normal and tumor endothelium are now

being exploited with novel therapies to selectively target the

proliferating tumor endothelium while leaving the normal

blood vessels relatively unaffected [5]. This strategy has sev-

eral advantages. In particular, the dependence of tumor

cells on functional blood vessels means that damage to rela-

tively few endothelial cells could result in the death of many

tumor cells [2,6–8].

ZD6126 (N-acetylcolchinol-O-phosphate) is a vascular-

targeting agent shown to have significant antitumor effects,

both against a wide range of rodent and human tumor model

systems [9–17] and against human tumor vasculature in the

clinic [15]. ZD6126 is rapidly converted by serum phospha-

tases to N-acetylcolchinol (NAC), and studies in vitro have

shown that NAC disrupts the tubulin cytoskeleton and induces

rapid changes in the endothelial cell morphology of proliferat-

ing, but not confluent, endothelial cells [18]. In vivo, disruption

of the tumor endothelium has been shown within an hour of

ZD6126 administration [11], with these early changes followed

by thrombosis and vessel occlusion resulting in massive

central tumor necrosis 24 hours after treatment. A common
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histologic observation is the existence of a viable rim of

tumor cells that survives treatment with ZD6126. Vascular-

targeting agents alone typically result in tumor growth delay,

but not regression—presumably a consequence of continued

growth from this surviving viable rim [10–12].

Methods for the assessment of tumor vasculature are

continually being sought to provide quantitative sensitive

indices of tumor pathophysiology and response that can be

translated to the clinic [19,20]. As many vascular-targeting

agents are not expected to induce rapid tumor regressions

as single-agent therapies, their clinical development will

benefit greatly from the use of biomarkers. In particular,

magnetic resonance imaging (MRI) provides a number of

potential imaging biomarkers associated with tumor blood

vasculature and its response to therapy, which require

evaluation before they can be deployed in clinical trials.

Dynamic contrast-enhanced (DCE) MRI has been used to

demonstrate the dose-dependent activity of ZD6126 in two

rodent tumor models, rat GH3 prolactinomas [14] and

murine colon 38 carcinomas [15]. In particular, the effect

of 50 mg/kg ZD6126 on rat GH3 prolactinomas was pro-

found 24 hours after administration. However, DCE MRI is

unsuited to hyperacute measurements because several

hours must elapse between measurements to permit con-

trast agent elimination.

We are currently further investigating the use of intrinsic

susceptibility MRI, which utilizes endogenous deoxyhemo-

globin as the primary source of image contrast, to assess

tumor response to ZD6126. Deoxyhemoglobin is paramag-

netic and its presence creates magnetic susceptibility pertur-

bations around blood vessels, thus increasing the effective

transverse magnetic resonance relaxation rateR2* of the sur-

rounding tissue in proportion to the tissue deoxyhemoglobin

concentration. In the absence of other changes, R2* depends

on tissue deoxyhemoglobin levels and hence may provide an

acute index of changes in tissue oxygenation. We originally

hypothesized that following treatment with ZD6126, hemo-

globin within erythrocytes would deoxygenate, resulting in an

increase in tumor R2*. Intriguingly, in a pilot study designed

to establish efficacy of ZD6126 on rat GH3 prolactinomas,

tumor R2* was found to decrease 24 hours after treatment,

and this correlated with massive hemorrhagic necrosis [14].

The aims of the present study were to investigate the use of

tumor R2* as an early acute marker of tumor response to

ZD6126 and provide appropriate histologic validation of any

MRI findings.

Materials and methods

Animals, Tumors, and Study Protocol

All experiments were performed in accordance with the

local ethical review panel, the UKCCCR guidelines [21], and

the UK Home Office Animals Scientific Procedures Act 1986.

Rat GH3 prolactinomas were grown in the flanks of 27 female

Wistar Furth rats [22]. Anesthesia was induced with a 4 ml/kg

intraperitoneal injection of fentanyl citrate (0.315 mg/ml) plus

fluanisone (10mg/ml) (‘‘Hypnorm’’; Janssen Pharmaceutical,

Ltd.), midazolam (5 mg/ml) (‘‘Hypnovel’’; Roche), and water

(1:1:2). Tumor volume was measured using calipers, assum-

ing an ellipsoidal shape. The mean tumor volume at the time

of randomization to treatment groups was 2.43 ± 0.2 cm3.

Two MRI study protocols were performed. The first was

designed to monitor tumor R2* immediately following admin-

istration of ZD6126, whereas the second was designed to

measure tumor R2* and R2 prior to and 24 hours following

treatment with ZD6126.

Intrinsic Susceptibility Contrast MRI—Study 1

MRI was performed on a Varian Unity Inova system

interfaced to a 4.7-T horizontal magnet, using a three-turn,

25-mm–diameter imaging coil. A lateral tail vein was cannu-

lated with a 27-G butterfly needle for administration of either

ZD6126 or saline. The rats were positioned so that the tumor

hung vertically into the imaging coil and covered with a warm

water blanket to maintain the core temperature at 37jC. Field
homogeneity was optimized by shimming on the water signal

for each tumor to a linewidth of ca. 50 Hz.

Multigradient echo (MGRE) images were acquired using

a train of eight echoes spaced 5 milliseconds apart, an initial

echo time of 5 milliseconds, with a flip angle a = 45j and a

repetition time of 80 milliseconds. Images were acquired

from five contiguous 1-mm–thick transverse slices through

each tumor, using four averages of 256 phase encode

steps over a 4 � 4 cm field of view (FOV), giving a temporal

resolution of 7 minutes. Two baseline MRI data sets were

acquired to enable an assessment of the repeatability of the

R2* measurement, followed by a further five data sets (at

7, 14, 21, 28, and 35 minutes) after administration of either

saline, 30 or 50 mg/kg ZD6126, i.v.

Immediately after the final MRI acquisition, the rats were

rapidly removed from the magnet bore and injected with

15 mg/kg of the perfusion marker Hoechst 33342 through

the tail vein. Hoechst 33342 is a dye that stains the nuclei

of endothelial cells, lining blood vessels that are perfused at

the time of injection, and thus affords a measure of functional

tumor vasculature. One minute later, the rats were sacrificed

by cervical dislocation and the tumors rapidly excised and

frozen over liquid nitrogen.

Intrinsic Susceptibility Contrast MRI—Study 2

In this study, MGRE MRI was performed on GH3 prolacti-

nomas prior to treatment as described above, except that

images were acquired from a single 1-mm–thick transverse

slice through the center of each tumor, using eight averages

of 256 phase encode steps over a 4� 4 cm FOV. In addition,

spin echo images with TE = 11, 20, 30, and 40 milliseconds,

and TR = 300 milliseconds were acquired from the same

central slice andFOV. The total imaging timewas 14minutes.

The rats were then treated intravenously with either saline or

50 mg/kg ZD6126 and the tumors subsequently imaged

again 24 hours later, with the tumor being positioned carefully

within the coil so as to afford a degree of registration of the

MR images with those acquired prior to treatment. Following

MRI, the rats were administered 15 mg/kg Hoechst 33342

and the tumors excised as above.
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MRI Data Analysis

Tumor R2* and R2 maps for each slice were calculated

from the image data sets by fitting a single exponential to the

signal intensity echo time curve pixel-by-pixel [23,24]. The

mean R2* and R2 for each slice from each individual tumor

were determined from a region of interest (ROI) encompass-

ing the whole tumor but excluding the surrounding skin/

muscle. In addition, for study 2, maps of R2V (= R2* � R2)

were synthesized and the mean R2V determined. Frequency

histograms for each slice were also derived from the ROI to

assess the distribution of R2* values.

Fluorescence Microscopy

Contiguous frozen sections through each tumor (10 mm)

were subsequently cut on a cryotome in approximately

the same plane as for the MRI, and stored at �80jC until

processed. Sections were fixed in ice-cold acetone for

10 minutes and then mounted in phosphate-buffered saline.

Hoechst 33342 fluorescence signals from whole tumor sec-

tions were then recorded at 365 nm using a motorized

scanning stage (Prior Scientific Instruments Ltd., Cam-

bridge, UK) attached to a BX51 microscope (Olympus Opti-

cal Co. Ltd, London, UK), driven by analysis (Soft Imaging

System, Munster, Germany). Digital images from all the

tumors were acquired using the same exposure time and

composite images were then synthesized [25]. Fluorescent

particles were detected above a constant threshold for all

the composite images and the area of the tumor section with

Hoechst 33342 fluorescence determined and expressed

as a percentage of the whole tumor section (mean Hoechst

Figure 1. Tumor R2* maps and associated frequency histograms obtained from one transverse slice through a rat GH3 prolactinoma (a) prior to, (b) 7 minutes,

(c) 21 minutes, and (d) 35 minutes following administration of ZD6126, 50 mg/kg, i.v. The frequency histograms were acquired from an ROI that encompassed

the whole tumor but excluded the surrounding skin/muscle. Note the skewing of the distribution of R2* pixel values toward faster values following administration

of ZD6126.
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perfused area, or mHPA). As the images were acquired and

analyzed under identical conditions, any differences in

mHPAwould result from differences in tumor perfusion. Thus

these data could be used to validate any changes in intrinsic

R2* contrast induced by ZD6126.

Statistical Analysis

Results are presented in the form mean ± SEM. Unless

otherwise stated, significance testing employed the two-

tailed t-test, assuming unequal variances with a 5% level of

significance. Repeatability of the R2* measurement was

assessed using a Bland-Altman plot for differences and

confidence intervals, and also by derivation of the intra-

tumoral coefficient of variation [26].

Results

Serial R2* maps and associated frequency histograms from

one GH3 prolactinoma from study 1, treated with 50 mg/kg

ZD6126, are shown in Figure 1. For all the tumors studied,

the baseline R2* maps were typically heterogeneous and

exhibited a symmetrical distribution of R2* values. The intra-

tumoral coefficient of variance (rms CoV) for the baselineR2*

measurements within each tumor was 1.7%. Using all the

successive baseline R2* measurements in study 1 before

treatment, the repeatability of the R2* measurement was

determined. From the Bland-Altman analysis, the 95% con-

fidence interval between the two pretreatment R2* measure-

ments was [�9.5 sec�1, 8 sec�1]. This confidence interval

contains 0 (i.e., we would fail to reject the null hypothesis

that d = 0, where d is the difference between the two

pretreatment R2* measurements) and is extremely small

compared to the range of R2* values (83–135 second�1).

Application of a paired two-sample t-test showed that there

was no significant difference between the means of the

two baseline R2* measurements (P = .52). Taken together,

these findings clearly show an excellent repeatability of the

R2* measurement.

Administration of saline induced no significant change in

the R2* maps and distribution (data not shown), whereas

administration of ZD6126 induced a marked increase in R2*

over the first 35 minutes of challenge. Localized increases in

R2* could be discerned qualitatively as early as 7 minutes

after administration of ZD6126, with statistically significant

increases found 14 minutes post 50 mg/kg ZD6126

(P < .02). Visual inspection of the R2* maps showed that

tumor regions exhibiting a relatively fast (intense) basal R2*

showed the greatest increase in R2* over 35 minutes in

response to ZD6126 (Figure 1). The time course of R2*

response for all the tumors in study 1 is shown in Figure 2,

which shows that whereas all six saline-treated tumors

showed little change in R2*, 9 of 10 tumors treated with

ZD6126 showed an increase in R2*. To identify any trends

within a treatment group, a Jonckheere-Terpstra test was

applied to the data. This is a nonparametric test for ordered

differences in R2* among classes (e.g., dose, time), which

tests the null hypothesis that the distribution of R2* does not

differ among the classes and thus essentially tests for a

monotonic response. No significant trend in response (cor-

rected for baseline values) was observed for the saline-

treated group (P = .28), whereas for both the 30- and

50-mg/kg treatment groups, a significant monotonic re-

sponse was observed up to 35 minutes with P values of

P = .0023 and P = .0051, respectively.

Composite fluorescence images of Hoechst 33342 tumor

uptake are shown in Figure 3, in which a decrease in tumor

perfusion with ZD6126 treatment can be seen. A summary of

the data acquired from study 1 is shown in Table 1.

The R2* maps and frequency histograms shown in

Figure 4 were acquired from one GH3 prolactinoma prior

to and 24 hours following treatment with 50 mg/kg ZD6126,

as part of study 2. Control tumors maintained a relatively

Figure 2. Profile plots of R2* (mean R2* of all five transverse slices) for each individual rat in study 1. Two baseline MGRE MRI data sets to quantify R2* were

acquired prior to intravenous administration of (a) saline (n = 6), (b) 30 mg/kg ZD6126 (n = 3), or (c) 50 mg/kg ZD6126 (n = 7), after which a further five MGRE MRI

data sets were acquired. A statistically significant increase in R2* was found 14 minutes after administration of 50 mg/kg ZD6126 (paired two-sample t-test, P < .02).
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constant and heterogeneous distribution of R2* values

24 hours after administration of saline (data not shown). In

contrast, treatment with ZD6126 resulted in both a decrease

and a more homogeneous distribution of R2* values over the

whole tumor (Figure 4). The individual R2* values pre- and

24 hours posttreatment for all the tumors in study 2 are

shown in Figure 5. All five tumors treated with saline showed

a small, nonsignificantR2* increase 24 hours after challenge,

whereas all six tumors treated with ZD6126 showed a strik-

ing reduction in R2*. A similar response was also found for

both tumorR2 andR2V. As in study 1, composite fluorescence

images of Hoechst 33342 tumor uptake revealed a dra-

matic reduction in the perfusion of ZD6126-treated tumors

(Figure 6). The data from study 2 are summarized in Table 2.

The data shown in Figure 2c suggest that tumors exhibit-

ing a relatively fast basal R2* subsequently showed the

greatest increase in R2* 35 minutes after treatment with

50 mg/kg ZD6126. By simply plotting the average baseline

R2* against the change in R2* at 35 minutes, a correlation

would be expected even when there may be no relationship

[26]. To overcome this and to test whether the baseline tumor

R2* was predictive for the subsequent magnitude of re-

sponse to ZD6126, the average of the final and mean

baseline R2* was plotted against the change in R2* mea-

sured 35 minutes after challenge for each tumor (Figure 7).

A significant and strong positive correlation was obtained

(r = 0.899, P < .01), which was greater than the correlation

of 0.7 we would expect to see by chance [26]. No such cor-

relation was obtained for the tumors imaged 24 hours after

treatment with ZD6126 (r = �0.331, P > 0.1).

Discussion

Noninvasive imaging techniques are continually being de-

veloped for the assessment of tumor vascular function and

its therapeutic response. As the oxygenation of hemoglobin

is proportional to arterial blood paO2 and therefore in equi-

librium with tissue pO2, quantitation of the relaxation rate R2*

by MGRE MRI provides a sensitive index that, under some

circumstances, may relate to tissue oxygenation. Further-

more, the method is completely noninvasive, relying inter alia

on intrinsic deoxyhemoglobin for image contrast rather than

an exogenously administered contrast agent.

The presence of paramagnetic deoxyhemoglobin in blood

vessels produces an additional relaxation rate term in the

surrounding tissue that is linearly dependent on the blood

volume fraction and the magnetic susceptibility difference

between the surrounding tissue and in the blood vessels [27].

The total R2* relaxation rate of tissue can be written as:

R2 ¼ R2 þ R V
2þ kibviHcti ð1� Yi ÞDv ð1Þ

where R2 and R2V represent the irreversible and reversible

relaxation rates, respectively, in tumor tissue in the absence

Figure 3. Composite fluorescence images of Hoechst 33342 uptake into rat GH3 prolactinomas ca. 35 minutes after administration of either (a) saline or (b)

50 mg/kg ZD6126. The composite image shown in (b) is taken from the same tumor shown in Figure 1.

Table 1. Summary of the Data Acquired from Study 1.

Pretreatment 35 min Postsaline Pretreatment 35 min Post 30 mg/kg ZD6126 Pretreatment 35 min Post 50 mg/kg ZD6126

R2* (sec
�1) 110 ± 6 108.7 ± 6 90.8 ± 4 114.4 ± 7 106.4 ± 6 123.2 ± 10y

mHPA (%) 13.6 ± 2 4.8 ± 1* 9.1 ± 1

Tumor R2* was measured prior to and immediately following administration of either saline (n = 6), 30 mg/kg ZD6126 (n = 3), or 50 mg/kg ZD6126 (n = 7), i.v., for up

to 35 minutes.

Tumor perfusion was assessed by Hoechst 33342 uptake (mHPA).

Treatment with ZD6126 resulted in an increase in tumor R2* over 35 minutes of challenge and was consistent with a decrease in tumor perfusion.

Values are mean ± 1 SEM.

*P < .05.
yP < .01.

*
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of deoxyhemoglobin, and the last term represents the re-

laxation in the tumor tissue due to the presence of deoxy-

hemoglobin. Hct is the hematocrit, Y is the fraction of

oxygenated blood, bv is the fraction of tissue occupied by

blood vessels, Dv is the absolute susceptibility difference

between fully oxygenated and deoxygenated blood, and k is

a term dependent on blood vessel morphology and magnetic

field strength. The subscript i indicates that there should be a

summation over arterial, capillary, and venular vascular net-

works [28]. We can use Eq. (1) throughout the discussion to

help interpret how the observed changes in tumor R2*

following administration of ZD6126 relate to the underlying

physical processes.

Study 1

Our underlying hypothesis was that following treatment

with ZD6126, hemoglobin within erythrocytes would deoxy-

genate, resulting in an increase in tumor R2*. Tumor R2*

increased over the first 35 minutes of challenge with either

30 or 50 mg/kg ZD6126 and was associated with a decrease

in tumor perfusion as indicated by the reduced uptake of

Hoechst 33342. This early R2* response is consistent with

the induction of an ischemic insult induced by vascular

shutdown/collapse, in agreement with our original hypo-

thesis. An increase in tumor R2* could be observed as early

as 7 minutes after administration of ZD6126. Increases in

tumor R2* were also seen with the more clinically relevant

dose of 30 mg/kg ZD6126. A similarly acute response to the

vascular-targeting agent combretastatin A-4 phosphate has

been shown by intravital microscopy of rat P22 carcino-

sarcomas grown in window chambers [29]. A hyperacute

increase in tumor R2* in response to photodynamic therapy

has also been recently reported [30].

The hyperacute increase inR2* following administration of

ZD6126 is most likely due to tumor blood becoming more

deoxygenated (a decrease in Y ) as a consequence of

reduced tumor blood flow due to the onset of vascular

collapse or thrombosis. According to the Poiseuille equation

for viscous laminar flow through a vessel, if blood pressure is

maintained constant, a 10% reduction in vessel radius (which

is a 20% reduction in vascular volume) will produce a 40%

reduction in blood flow. Thus, although according to Eq. (1) a

reduction in bv may be expected to decrease R2*, it is not

unreasonable to expect changes in Y to initially predominate.

Also, if the erythrocytes are trapped within the blood vessels

so that it is just a reduction in plasma that occurs and not a

reduction in erythrocyte density, then the product Hct�bv
remains constant and changes in R2* are again dominated

by the reduction in Y. Alternatively, occlusion of just a few

arteriolar supply vessels could cause widespread reduction

of blood flow in the capillary bed and hence a large decrease

in Y.

Analysis of the R2* maps from study 1 showed that those

voxels exhibiting a relatively fast basal R2* subsequently

Figure 4. Tumor R2* maps acquired from one rat GH3 prolactinoma (a) prior

to and (b) 24 hours posttreatment with ZD6126, 50 mg/kg, i.v. The associated

frequency histograms for these maps are shown in (c). Note the dramatic

decrease in both the distribution and pixel values of R2* 24 hours after

treatment with ZD6126.

Figure 5. Line series of R2* for each individual rat in study 2. Tumor R2* was measured from a single transverse slice prior to and 24 hours after intravenous

administration of either (a) saline (n = 5) or (b) 50 mg/kg ZD6126 (n = 6).
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showed the greatest initial increase in R2* in response to

ZD6126. Furthermore, a strong positive correlation between

the baseline tumor R2* and the subsequent hyperacute

increase in R2* measured 35 minutes after treatment with

50 mg/kg ZD6126 was obtained (Figure 7). This suggests

that the baseline R2* has: 1) prognostic value for subsequent

tumor response to ZD6126, and 2) is a predictor of the

magnitude of the acute R2* increase following treatment.

We have previously shown that intense regions (relatively

fast R2*) in the baseline R2* maps of GH3 prolactinomas are

consistent with the presence of perfused vascularized tissue

with relatively high deoxyhemoglobin concentrations (i.e.,

large blood volume), whereas dark regions (relatively slow

R2*) may indicate more poorly vascularized tissue in which

the capillaries have a limited ability to transport erythrocytes

[31]. Furthermore, we have demonstrated that the relatively

fast tumor R2* measured in rat GH3 prolactinomas is prog-

nostic for an acute radiotherapeutic response [32]. Thus, the

early R2* response to ZD6126 most likely reflects well-

perfused tumor regions to which the vascular-targeting agent

is rapidly delivered. It could also be speculated that these

same tumor regions are also under hypoxic stress, which

induces neovascularization, but we have no direct hypoxia

measurement (e.g., pimonidazole adduct formation) for the

tumors in this study. Nevertheless, we have recently shown

that mutant C6 gliomas with a relatively fast basal R2* and

larger blood volume compared to wild type were also more

hypoxic [33], whereas a preliminary clinical study has shown

that human prostate tumors exhibiting a relatively fast R2*

stained positive for pimonidazole whereas those tumors with

slow R2* stained negative [34].

Study 2

A small nonsignificant increase in tumor R2* was found

24 hours after treatment with saline, consistent with an in-

crease in deoxyhemoglobin as the tumor grows. In contrast

to our hypothesis, tumorR2* significantly decreased 24 hours

posttreatment with 50 mg/kg ZD6126, but which also cor-

related with a significant decrease in tumor perfusion mea-

sured by Hoechst 33342 uptake. The magnitude of the

decrease in R2* of GH3 prolactinomas following treatment

is similar to our previous observations and associated with

massive central necrosis at this time point [14]. The disrup-

tion of the tumor blood vessel cytoskeleton by ZD6126

causes complete vessel collapse and stacking of the fully

deoxygenated erythrocytes into rouleaux. The erythrocytes

would now be expected to be fully deoxygenated so that

Y = 0 in Eq. (1) and hence any changes in R2* must relate

to changes in the other parameters. If some tumor blood

flow remains, it is possible that there is a reduction in Hct

as the vessels collapse, and as Hct decreases with vessel

size [35], R2* would decrease.

From Eq. (1), there are several possibilities that would

allow R2* to decrease. For example, either the number of

erythrocytes per unit volume of tumor tissue is not constant

and decreases, or R2 + R2V decreases. The first case could

be true if erythrocytes are being cleared by macrophages,

but this seems unlikely 24 hours after treatment with

ZD6126. Another explanation is that there is an increase

in the water/macromolecule ratio due to the presence of

edema, which would cause a decrease inR2. Accordingly, we

found a significant decrease in tumor R2 measured 24 hours

Figure 6. Composite fluorescence images of Hoechst 33342 uptake into rat GH3 prolactinomas 24 hours after administration of either (a) saline or (b) 50 mg/kg

ZD6126. The composite image shown in (b) is taken from the same tumor shown in Figure 4.

Table 2. Summary of the Data Acquired in Study 2.

Pretreatment 24 hr

Postsaline

Pretreatment 24 hr Post 50

mg/kg ZD6126

R2* (sec
�1) 109.2 ± 14 123.6 ± 17 114.6 ± 10 63 ± 8y

R2 (sec�1) 45.3 ± 3 46.3 ± 3 44.7 ± 3 34.9 ± 2*

R2V (sec�1) 67 ± 11 75.7 ± 13 68.7 ± 7 23.9 ± 7y

mHPA (%) 17.4 ± 3 5.3 ± 1y

Tumor R2* and R2 were measured prior to and 24 hours after administration

of either saline (n = 5) or 50 mg/kg ZD6126 (n = 6), i.v.

Tumor R2V was determined from synthesized difference maps (R2* � R2).

Tumor perfusion was assessed by Hoechst 33342 uptake (mHPA).

A significant decrease in R2*, R2, and R2V was measured 24 hours after

treatment with ZD6126, associated with a significant decrease in tumor

perfusion.

Values are mean ± 1 SEM.

*P < .02.
yP < .001.
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after 50 mg/kg ZD6126. However, this response constituted

only ca. 20% of the decrease in tumor R2*. Synthesis of R2V
maps (= R2* � R2), which are highly sensitive to magnetic

field inhomogeneities [36], revealed that the decrease

in tumor R2* was clearly dominated by a decrease in R2V
(Table 1). The striking reduction in R2V clearly indicates the

absence of any paramagnetic deposits at this time point and

is associated with massive central necrosis in GH3 prolac-

tinomas as previously reported [14,16]. The pathophysio-

logical processes responsible for the decrease in tumor R2V
following treatment with ZD6126 are unclear, but may be

a consequence of the denaturation of paramagnetic deoxy-

hemoglobin by methemoglobin to diamagnetic hemi-

chromes, shown to cause a decrease in the transverse

relaxation rate of chronic brain hemorrhage [37,38].

Conclusion

Measurement of tumor R2* could be included in clinical trial

protocols of vascular-targeting agents in which DCE MRI is

already being used to assess drug activity [15]. The MGRE

MRI method is available on most clinical scanners and

measurements of human tumor R2* have been reported

[34,39]. Recent preliminary clinical data have shown similar

time-dependent oscillations in human tumor R2* following

treatment with the vascular-targeting agent combretastatin

A4 phosphate [40]. Clearly, the interpretation of R2* changes

is complex because, as we have shown, both increases and

decreases in R2* can occur at efficacious doses of vascular-

targeting agents. Nevertheless, a change in tumor R2* may

provide a convenient and early MRI biomarker for detecting

acute changes induced by vascular-targeting agents.
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