View metadata, citation and similar papers at core.ac.uk

1083-8791/03/0905-0001$30.00/0 SBMT.
doi:10.1016/51083-8791(03)00086-7

ican Society for Blood
and Marrow Transplantation

Antigen-Specific Immune Function after
Hematopoietic Stem Cell Transplantation

Robertson Parkman

Division of Research Immunology/Bone Marrow Transplantation, Children’s Hospital Los Angeles; Department of
Pediatrics, Keck School of Medicine/University of Southern California, Los Angles, California

Correspondence and reprint requests: Robertson Parkman, MD, Division of Research Immunology/Bone Marrow
Transplantaton, Children’s Hospital Los Angeles, 4650 Sunset Blvd, Los Angeles, CA 90027
(e-mail: rparkman@chla.usc.edu).

Received March 2, 2003; accepted March 7, 2003

ABSTRACT

Hematopoietic stem cell recipients are characterized by an immunodeficiency of varying severity and duration.
The present review focuses on the antigen-specific function of recipients with the hypothesis that the
acquisition of antigen-specific function is predictive of the recipient’s capacity to resist lethal infection with
environmental pathogens.
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INTRODUCTION

The first organized effort to evaluate antigen-
specific immune function after hematopoietic stem
cell transplantation (HSCT) was the assessment
of patients with chronic graft-versus-host disease
(GVHD) [1,2]. Because normal individuals do not
have any pre-existing immunity to bacteriophage, pa-
tients were immunized with bacteriophage $X174.
Patients with chronic GVHD showed (1) a reduced
primary IgM antibody response and (2) reduced im-
munoglobulin class switching to IgG antibody com-
pared with long-term HSCT recipients without
chronic GVHD. When patients with chronic GVHD
were immunized with a pneumococcal carbohydrate
vaccine, they did not have significant antibody titers.
Thus, recipients with chronic GVHD had defects in
their ability to respond to both a neo-antigen (¢$X174)
as well as to a recall antigen (pneumococcal carbohy-
drate). The transplantation community, however, did
not undertake additional evaluations of the post-
HSCT antigen-specific immune function in patients
without chronic GVHD because it was felt that the
immune deficiency present in recipients with chronic
GVHD was only part of the myriad of complications
associated with chronic GVHD. Furthermore, be-
cause most patients with chronic GVHD were on
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immunosuppressive therapy, the ongoing immuno-
suppression could contribute to the patients’ reduced
antigen-specific immune responses.

The current interest in post-HSCT immune re-
constitution was generated in part by the observations
that the adult recipients of unrelated HSCT, who did
not have chronic GVHD and were not on immuno-
suppression, were as likely to have severe infections as
recipients who had chronic GVHD [3]. Thus, the
adult recipients of unrelated HSCT had an increased
likelihood of severe infections regardless of their
chronic GVHD status. In addition, the Memorial-
Sloan Kettering group reported that the adult recipi-
ents of unrelated HSCT were more likely to have
life-threatening infections than the adult recipients of
related transplants and that all adult recipients of
HSCT, whether unrelated or related, were more
likely to have life-threatening infections than children
[4]. Thus, the recipients of unrelated transplants, es-
pecially adults, had significant deficits in their immune
reconstitution after HSCT that left them at risk of
severe and potentally life-threatening infections.

During the last decade, a significant effort has
been made to evaluate the immune reconstitution of
HSCT recipients. In addition to evaluating cellular
and humoral antigen-specific function, the assessment
of post-HSCT immune function has been aided by
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the development of new techniques to quantify thy-
mopoiesis and define antigen-specific populations
[5-8]. Using a combination of immunophenotypic
analysis, assessment of thymopoiesis, tetramer analy-
sis, and antigen-specific function, we now have a
clearer picture of post-HSCT immune reconstitution.
This review focuses on our current knowledge of
post-HSCT antigen-specific immune function. The
preclinical and clinical attempts to improve immune
reconstitution after HSCT will not be part of this
review.

INITIAL OBSERVATIONS

The first coordinated assessment of immune re-
constitution after HSCT was in infants transplanted
for severe combined immune deficiency (SCID)
[9,10]. The assessments were first performed when
monoclonal antibodies for the identification of T and
B lymphocytes did not exist. Nevertheless, it was
shown that PHA-responsive cells of donor origin (T
lymphocytes) were detectable within 3 weeks after
successful histocompatible HSCT. However, normal-
ization of immune function took up to a year after
HSCT with an initial inability of the new immune
system to reject third-party skin grafts and produce
normal levels of immunoglobulins. In light of our
current understanding of T lymphocyte differentia-
tion, it is likely that the T lymphocytes seen early after
HSCT were derived from mature donor—derived T
lymphocytes or committed lymphoid progenitors
rather than HSCs [11].

With the development of monoclonal antibodies,
immune reconstitution after HSCT could be further
defined. The early emergence of natural killer cells
generally was seen followed by the appearance of CD8
and then CD4 T lymphocytes [12-14]. Immunophe-
notypic B lymphocytes were present in normal num-
bers by 1 to 2 months after transplantation, although
there was an increased proportion that was CDS5 pos-
itive [15]. When techniques for successful T cell-
depleted HSCT were developed, it became possible to
separate the contribution of the T lymphocytes
present in the HSC product from the T lymphocytes
derived from donor HSC. After the T cell-depleted
HSCT of infants with SCID, who received pretrans-
plant chemotherapy, no immunophenotypic T lym-
phocytes were seen until 2 to 3 months after trans-
plantation. This time frame is similar to that seen in
fetal lymphoid ontogeny when T lymphocytes are not
seen in the peripheral fetal circulation until 12 weeks
of gestation [16]. These observations support the hy-
pothesis that it takes 12 weeks for HSC to engraft,
migrate to the thymus, undergo effective thymopoi-
esis, and produce detectable levels of circulating T
lymphocytes. As in the case of fetal lymphoid ontog-
eny, the first immunophenotypic T lymphocytes are
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not functional and are unable to respond to stimula-
tion with either mitogens (PHA) or specific antigens.
After HSCT there is the sequential appearance of T
lymphocytes capable of being activated by mitogenic
stimulation but incapable of secreting interleuklin-2
(IL-2), followed by PHA responsive lymphocytes ca-
pable of IL-2 production [17]. The same hierarchy is
seen for responses to specific antigens: first, antigen-
specific T lymphocytes capable of being activated by
specific antigen but incapable of producing IL-2 are
followed by the emergence of antigen-specific T lym-
phocytes capable of IL-2 (and other cytokines) pro-
duction after antigen-specific stimulation [18]. Soon
after HSCT peripheral T lymphocytes with immuno-
phenotypes only found in the adult thymus or the fetal
peripheral blood can be detected [19].

T-CELL-REPLETE HSCT

When non-T cell-depleted HSC products are uti-
lized, immunophenotypic T lymphocytes of donor
origin can be detected within 2 to 3 weeks after trans-
plantation with bone marrow (BM) indicating that
either mature T lymphocytes or committed lymphoid
progenitors are responsible for early T lymphocyte
reconstitution. Over the last decade, the use of mobi-
lized peripheral blood cells (PBC) as a source of HSC
has come into common usage. Significant differences
exist between the rapidity and the nature of immune
reconstitution after HSCT with PBC compared with
BM. After HSCT with BM, antigen-specific T lym-
phocyte function as measured by antigen-specific in
vitro blastogenesis is not detected until patients are
re-immunized (to common vaccination antigens) or
there is reactivation of endogenous DNA viruses (cy-
tomegalovirus [CMV], varicella zoster virus [VZV],
herpes simplex virus [HSV]). In the recipients of PBC,
the sustained presence of antigen-specific blastogene-
sis is detected throughout the post-HSCT period in-
cluding the responses to both vaccines (tetanus toxoid)
and endogenous DNA viruses [20]. However, the sus-
tained presence of donor-derived antigen-specific T
lymphocytes has not resulted in a decrease in post-
HSCT viral and fungal infections [21]. Part of the
differences between the immune reconstitution in the
recipients of PBC compared with BM is that 10 times
as many immunophenotypic T lymphocytes are con-
tained in PBC product compared with BM. There also
may be differences in the state of activation of the T
lymphocytes present in the PBC because of G-CSF
stimulation, which results in the eschewing of immune
responses to a Th2 type [22]. Activation-induced ap-
optosis of T lymphocytes is present after HSCT and
may play a role in determining post-HSCT immune
function [23]. The presence of activation-induced ap-
optosis after HSCT of BM has an inverse correlation
with the rapidity of CD4 T lymphocyte reconstitu-



tion. Thus, patients with higher levels of activation-
induced apoptosis have lower CD4 counts 6 months
after HSCT. An unresolved question is whether gran-
ulocyte colony-stimulating factor (G-CSF) stimula-
tion changes the sensitivity of the transplanted T lym-
phocytes to activation-induced apoptosis.

Histocompatible or alternative donor recipients
with an absence of acute or chronic GVHD have
antigen-specific T lymphocyte function by 6 to 12
months after HSCT to environmental DNA antigens
and are able to respond appropriately to immunization
with vaccines such as tetanus toxoid and inactivated
polio virus [24-27]. However, patients with significant
GVHD have delays in the development of normal
antigen-specific T lymphocyte function. What was
initially unclear was whether the lack of antigen-spe-
cific T lymphocyte function was caused by an absence
of naive T lymphocytes or the dysfunction of the
existing T lymphocytes. The development of immu-
nophenotypic and chemical methods to assess human
thymopoiesis has given new insights into post-HSCT
immune reconstitution [5,6]. The immunophenotype
of recent thymic emigrants was determined to be
CD4", CD45RA™. Although an absolute correlation
between the immunophenotype and thymopoiesis is
now questioned, the immunophenotype was a valuable
tool to assess post-HSCT thymopoiesis. Recipient age
inversely correlated with the absolute number of im-
munophenotypic thymic emigrants, paralleling the re-
sults in normal individuals [28,29]. Thus, older HSCT
recipients had a reduced capacity to produce new T
lymphocytes compared with younger patients. In ad-
dition, recipients with a history of acute or chronic
GVHD had reduced numbers of recent thymic emi-
grants compared with patients without acute or
chronic GVHD.

T CELL EXCISION CIRCLE ANALYSIS

Because of the uncertainty as to whether all
CD4", CD45RA" cells were recent thymic emi-
grants, the T cell excision circle (TREC) assay has
represented a major step forward in the assessment of
post-HSCT immune reconstitution [5,6]. TREC are
episomal DNA. Thus, as peripheral T lymphocytes
divide, the frequency of TREC-positive cells de-
creases as the number of cell division increases. In
normal individuals, the frequency of TREC-positive
cells in the thymus remains constant throughout life.
Thus, on a per-cell basis, the capacity of the thymus to
make new T lymphocytes is maintained. However, the
absolute number of thymocytes produced decreases
with age. Therefore, to maintain a constant number of
peripheral T lymphocytes, increased extrathymic T
lymphocyte proliferation is required resulting in a
decreased frequency of TREC-positive cells.

When HSCT recipients were assessed for the fre-
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quency of TREC-positive cells, the results paralleled
those previously reported in the immunophenotypic
analyses of recent thymic emigrants (CD4",CD45RA™)
[6,30]. The frequency of CD4",CD45RA™ cells cor-
related with the frequency of TREC-positive cells.
Older recipients had significantly fewer TREC-posi-
tive cells than younger recipients. The production of
TREC-positive cells after T cell depleted—transplan-
tation (by SBA agglutination and E rosette formation)
was delayed as compared with unmanipulated BM,
suggesting that the T cell depletion removed lym-
phoid progenitors that contribute to thymopoiesis
post-HSCT. An assessment of the impact of acute and
chronic GVHD on post-HSCT thymopoiesis showed
that in the presence of chronic GVHD, TREC-posi-
tive cells, either CD4 or CD8, were not present [31].
Furthermore, a history of acute GVHD, in the ab-
sence of chronic GVHD, also had a significant nega-
tive impact on thymopoiesis. These clinical results
confirm the original murine experiments of Lapp et al.
[32], who showed that acute GVHD had a negative
impact on thymopoiesis. Thus, acute and particularly
chronic GVHD reduce the capacity of the thymus to
support the differentiation of the newly engrafted do-
nor HSC or common lymphoid progenitors.

T CELL FUNCTIONALITY

After nonablative chemotherapy without HSCT,
thymopoiesis is reduced. The recovery of thymopoi-
etic function after chemotherapy was inversely corre-
lated with patient age, and the capacity of the thymus
to produce CD4" T lymphocytes was predicted by an
increase in thymic volume [33]. Thus, in the non-
HSCT setting, chemotherapy and presumably irradi-
ation have a direct negative impact on the capacity of
the thymus to produce new T lymphocytes in an
age-dependent fashion.

The development of tetramer technology has per-
mitted the identification of antigen-specific CD8 T
lymphocytes (using class I tetramers) and CD4 T
lymphocytes (using class II tetramers) [7,8]. Besides
enumerating the frequency of antigen-specific T lym-
phocytes after HSCT, tetramer binding has permitted
the evaluation of antigen-specific T lymphocyte func-
tion after HSCT. Whereas the majority of CD8 an-
tigen-specific T lymphocytes in normal individuals are
capable of cytokine production after antigen stimula-
tion, heterogeneous responses to clinically relevant
antigens like CMV are seen in HSCT recipients [8].
The functional capacity of CMV-specific T lympho-
cytes after HSCT predicts the likelihood of clinically
significant CMV infections. Patients in whom the
majority of their CMV-positive CD8 T lymphocytes
were unable to produce tumor necrosis factor alpha
(TNF-w) after antigen stimulation, were at increased
risk of CMV infection compared with individuals
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whose tetramer-positive CD8 T lymphocytes were
capable of cytokine production. Further, the addition
of steroids to standard post-HSCT immunosuppres-
sion resulted in the selective loss of the functional
CMV-specific CD8 T lymphocytes. Currently, little is
known about the regulation of antigen-specific differ-
entiation after HSCT. It is clear, however, that the
presence of antigen-specific T lymphocytes does not
always predict protective immunity and resistance to
infections. The tetramer binding results confirm pre-
vious observations that CMV-specific cytolytic T lym-
phocytes were not reproducibly detected until a year
after HSCT [34].

Many life-threatening infections that occur in un-
related recipients both with and without chronic
GVHD are caused by encapsulated respiratory bacte-
ria, suggesting defects in antibody production rather
than cellular immunity [3,35]. To evaluate the re-
sponse of HSCT recipients to a naturally occurring
bacterial carbohydrate antigen, recipients were as-
sessed for their spontaneous antibody production to
polyribosophosphate, the capsule antigen of Hemophi-
lius influenza type b, which cross reacts with the K100
strains of Escherichia coli;which are normally found in
the gastrointestinal tract. In normal infants, protective
levels of antibody (>100 wg/mL) are found by 18 to
24 months of age [27]. When autologous HSCT re-
cipients were evaluated, the kinetics of anti-PRP an-
tibody production paralleled those of normal infants,
with the majority of patients having protective levels
of antibody by 18 to 24 months after HSCT. When
histocompatible transplant recipients without chronic
GVHD were assessed, the majority of patients had
protective levels of antibody by 2 years after HSCT
[36]. However, there was a minority of patients with-
out detectable chronic GVHD who did not have pro-
tective levels of antibodies for as long as 9 years after
HSCT. Thus, some histocompatible recipients have a
prolonged inability to make protective levels of anti-
carbohydrate antibodies. When the recipients of un-
related HSCT were assessed, 90% of recipients were
unable to produce protective levels of anticarbohy-
drate antibodies for up to 10 years after HSCT. The
few patients who were able to produce protective
levels of antibodies were children who had undergone
transplantation at less than a year of age. In spite of
their inability to produce anticarbohydrate antibodies,
all recipients had protective levels of antibodies to
tetanus toxoid after immunization. Therefore, their
inability to produce anticarbohydrate antibodies is not
part of a generalized antibody deficiency syndrome,
but represents a specific defect. With follow-up of
almost 10 years, it suggests that the recipients of
unrelated transplants, regardless of their chronic
GVHD status, have a prolonged and potential perma-
nent inability to produce protective levels of antibod-
ies to carbohydrate antigens, predisposing them to
severe infections with respiratory bacteria. Because in
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normal lymphoid ontogeny the development of anti-
carbohydrate antibodies is the most differentiated an-
tigen-specific function, it is not surprising that the
inability to produce anticarbohydrate antibodies is the
most frequently found immune deficit in HSCT re-
cipients.

CONCLUSION

The immune reconstitution of HSCT recipients is
more complicated than initially realized. Whereas ini-
tially only patients with chronic GVHD were felt to
have prolonged immunodeficiency, it is now realized
that many patients, after HSCT with both related and
unrelated donors, have significant prolonged and po-
tentially permanent defects in their immune reconsti-
tution, which predisposes them to severe infections.
Because HSCT for neoplastic diseases is successful in
reducing the frequency of relapse, ongoing research to
reduce HSCT-related morbidity and mortality caused
by post-transplant immunodeficiency will be neces-
sary to improve the overall survival rates of HSCT
recipients.
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