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1. TNTRODUCTION 

Consider the solution e(s) to the initial value problem 

(g(s) l(/‘(s))’ +f(s) W) = 0, SE co, mc 
HO) = 1, V(O) = 0, (*I 

where we have assumed as usual, that f and g are given continuous 
functions of s and that g(s) > 0 for all s. 

If the solution t,G has a zero (a focal point), then it has a smallest zero, 
which we denote by <(*). 

In the literature there are several lower bounds for the distance between 
consecutive zeros of $ and/or +‘-cf. [2, 31. These lower bounds are 
usually given implicitly as in the following result. 

PROPCBITI~N A [2, 51. Zf g(s) _= 1 and $ 

I ‘(c-f)max {f(t),O)dt<l, 
0 

(1.1) 

then ((*) > c. 

An inspection of the Sturm comparison theorems (cf. [3, pp. 334 ff]) 
reveals that-intuitively speaking-the occurrence of negative values off 
and large values of g should help make r(*) large. We prove, that this is 
true in the following sense. 
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PROPOSITION 1. Suppose that f(s)g(s) 5 K* for some K E R + and all 
SE [O, c]. Zf 

71 
--? 5 5’ ((i?+f(t) g(t))/rcg(t)) dt S 9 for all sE LO, cl, (1.2) 

0 

then t(*) > c. 

Remark. In particular, it is now easy to construct examples of problems 
(*) which for any given c and Q in R + have g = 1 and 

5 (’ (c - t) max(f(t), 0} dt > Q, 
0 

but still t(*) > c. 

As one should expect, the lower bound ( - 7c/2) in condition (1.2) is not 
essential. This will be proved in a technical refinement of Proposition 1 
below (see Theorem 1). 

Our proofs of these results use a modification of the well-known Priifer 
transformation [3, p. 3321. In the last section we use the same transfor- 
mation to obtain a corresponding upper bound on t(*); In effect we show, 
that if g is small and iff is large in the average (again compared with x/2), 
then t(*) is small (Theorem 2). 

2. THE MODIFIED PRUFER TRANSFORMATION 

Let 1/I(s) be the solution to (*) and let JC be a positive constant. Then 

z(s) = Arc tan -g(s) es) 
4(s) 

(2.1) 

defines a continuously differentiable function of s, which is the “upside 
down” of the ordinary Priifer transformation. A straightforward com- 
putation gives (compare with [ 1, p. 5543) 

z’(s) = ~-If(s) cos’(z(s)) + Kg(s)-l sin2(z(s)) 

=$(I&-‘+K-‘j-(S)) 

(2.2) 



108 STEEN MARKVORSEN 

Now assume that f(s)g(s) 5 K* for all s in [0, c]. Then we get the following 
inequalities 

Z’(S)z&(Kg(S) ‘+K ‘.f‘(s))+~(Km;f‘(S)-K~(5)-‘)=Km ‘J’(s) (2.3) 

and 

z’(s) 5 “g(S) ’ if cos(2z(s)) 5 0 
i(rcg(s) --’ + K- If(s)) if COS(~Z(S)) 2 0. 

(2.4) 

We can now prove Proposition 1 as stated in the Introduction. We use the 
inequality (2.4) and have by assumption 

z(s) 5 (Kg(t)-‘+ K-if(t)) dt<; (2.5) 

for all s in [0, c] as long as z(s) 2 - n/4. But since the integral is assumed 
to be not less than -n/4 we see, that both inequalities in (2.5) hold true 
for all s in the interval [O, c] (the details of the argument are given below). 
Therefore t(*) cannot be in [0, c], since z(l(*)) = 7r/2. 

In order to weaken the lower bound on the integral in (1.2) we introduce 
the notation 

4s) =; @g(s)-’ + K-y(s)); sECO,CI (2.6) 

P(a, b) = jb u(t) dt; 
a 

a, b E [0, c]. (2.7) 

We construct a continuous function Q(s) on [0, c] as follows: 
Let CI be the largest element in [O, c] for which P(0, S) 2 - 7c/4 for all 

s E [O, cr] and define Q(s) = P(0, s) for s E [O, ~11. In the interval I= [a, c] 
we consider the continuous function h(s) = P(or, S) and its nonincreasing 
part h(s) which we define as follows: Let J= {t E [a, c] (h(t) 5 h(s) for all 
s < t > and define 

h(s)=h(sup(tEJIt~S}) for s E I, 

Then h is nonincreasing and continuous on Z. We define Q(S) = 
h(s) - h(s) - 7r/4 for s E I. In total Q is a well-defined continuous function on 
[0, c] with no value less than - 7r/4. 

We can now prove the following 
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LEMMA. Let $(s) be the solution to (*) and let z(s) be defined by (2.1). Zf 
z(s)5n/4for all SE [0, c], then 

4s) 5 Q(s) for all s E CO, c]. (2.8) 

Proof. We must prove the inequality (2.8) in the two intervals [0, a] 
and [cc, c]: 

(i) z(s)5 P(0, S) for all SE [0, a]. Indeed, if we let /?s a be the 
smallest solution to z(a) = - 71/4, then by (2.4) we have z(s) 5 P(0, S) for 
all s E [IO, p]. Now assume for contradiction that z(6) > P(O,6) for some 
6 E [j, a]. Then z(6) > - 7r/4 and there is by continuity an element 
yl E [fl, S[ closest to 6 such that z(q) = - 71/4 and z(s) > -x/4 for all 
SE 11, S]. From (2.4) we get z(s)5 -z/4+ P(q, S) for all SE [q, S]. In 
particular, z(6) S - 7c/4 + P(q, 6) 6 P(0, q) + P(q, 6) = P(0, 6), which is the 
desired contradiction. 

(ii) z(s) 5 Q(s) = h(s) - I;(s) -n/4 for all s E I= [a, c]. In fact, 
suppose, for contradiction, that z(S)> Q(J) for some 6~ ]a, c]. Then 
z(6) > - 7c/4 and again by continuity there is an element q E [a, S[ closest 
to 6 such that z(q) = - 7r/4 and z(s) > - 7c/4 for all s E Is, S]. From (2.4) 
we have z(s)5 --x/4+ P(r], S) and hence 0 < P(q, S) = h(s)- h(q) for all 
s E 1% a. 

We conclude that h(s) is constant on this interval: h(s) = h, 5 h(q) for all 
s E [q, S]. Therefore 

P(rl, s) = 4s) -b) + (4s) -h(v)) 

2 4s) -h(s), 

and finally, 

z(6) 5 -$ + P(q, 6) 

5 -;+h@)-h(6) 

= e(s), 

which is the desired contradiction. 1 

Our main result can now be stated as follows. 

THEOREM 1. Suppose that f(s)g(s) 5 K* for some K E R, and all 
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s E [0, c J. If Q(s) 5 n/4 ,fi)r all s E [0, c J, where Q is dejined in terms oj’,f; g, 
and K as above, then the initial value problem (*) has 

<(*)>c. 

Proof: Assume for contradiction, that r(*) s c. Then z(r(*)) = n/2, 
which is clearly impossible by the lemma, which gives 

3. SOME EXAMPLES AND DISCUSSION 

In order to illustrate the use of Theorem 1 we consider the following 
class of Mathieu equations 

i+b”(s) + (a. cos(bs) - 1) $(s) = 0, (3.1) 

where a and b are constants. It is well known that (3.1) has no focal point 
when a 5 1. As a consequence of Theorem 1 we have 

COROLLARY. For any given number a in the interval ] 1,2] there is a 
positive number b,(a) such that if b 2 b,(a), then Equation (3.1) has no focal 
point in R, . 

Proqf Since g(s)- 1 and f(s) =a cos(bs) - 1 we get f(s) g(s)5 
a- 1 =IC~ for all .TER+. Thus 

and P(0, s) = +(I.s + p sin(bs)), where 1 = (a- 2)/m _I 0 and p = 
a/b ,,&?. We see that P(0, s) is the sum of a linear function and a 
periodic function which can be uniformly scaled by b. Hence there is a 
&(a) such that Q(s) = P(0, s) 5 7r/4 for all s 2 tl when b 2 &(a). Further- 
more, when subtracting the nonincreasing part of P(0, s) from P(0, s) in 
the interval [a, co[ what remains is again a periodic function whose 
maximum is uniquely determined by b when a is given. In total, the 
function Q(s) for this particular problem has a b-controlled maximum 
value which can be made arbitrarily small so that Theorem 1 applies and 
the corollary follows. 1 

We note here that the otherwise strong disconjugacy results of Hille and 
Nehari (see [l] for most general statements) do not apply to the setting of 
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the corollary, since they all require the weight functionf to be positive. One 
of the main features of Theorem 1 is precisely that one can obtain 
disfocality by balancing the effect of the positive part off with the effect of 
the negative part off: 

In fact, if we only consider nonnegative weights f, our result cannot even 
compete with the original Liapunov estimate in Proposition A. As an 
example, we consider the problem (*) with g(s) = 1 and f(s) = 
(I + d2 - s)-’ on the interval [0, 1 + $5’1, where 6 is any small number in 
R, Then Proposition A gives 5(*) > 1 independent of 6 --+ 0, whereas 
Proposition 1 only gives <(*) > 0.61 as 6 --, 0. 

We also note that any construction of a uniform approximation to the 
actual function z(s) defined in (2.1) automatically will give an estimate of 
<(*). This approach has been discussed by W. Leighton in [6], where he 
.uses step-function approximations off and g to approximate 5(*). Such a 
procedure will, of course, produce much more information than what is 
needed to bound <(*) and hence it will, in general, take much more 
(numerical) work than what is required to construct the function Q(s) for 
Theorem 1. 

4. AN IMPLICIT UPPER BOUND 

As mentioned in the introduction we finally show the following partial 
complement to the previous results. 

THEOREM 2. Iff(s)g(s)szc*for soww KER, and all s~[O,c], and zf” 

(4.1) 

then 

Proof. Assume, for contradiction, that i(*) > c. Then z(s) < 7c/2 for all 
SE [0, c]. But from (2.3) and the assumption (4.1) we also have 

which is the desired contradiction. m 



112 STEEN MARKVORSEN 

REFERENCES 

1. J. H. BARRETT, Disconjugacy of second order linear differential equations with nonnegative 
coefficients, Proc. Amer. Ma/h. Sot. 10, II (1959), 552-561. 

2. J. H. E. COHN, Consecutive zeros of solutions of ordinary second order differential 
equations, J. London Marh. Sot. 5 (1972), 465468. 

3. P. HARTMAN, “Ordinary Differential Equations,” 2nd ed., Birkhluser, Base1 1982. 
4. P. HARTMAN AND A. WINTNER, On an oscillation criterion of Liapunov, Amer. J. Mafh. 73 

(1951), 885-890. 
5. M. K. KWONG, On Lyapunov’s inequality for disfocality, J. Math. Anal. Appl. 83 (1981), 

486-494. 
6. W. LEIGHTON, Computing bounds for focal points and for c-points for second-order linear 

differential equations, in “Ordinary Differential Equations, 1971 NRL-MRC Conference,” 
Academic Press, New York 1972, (L. Weiss, Ed.), pp. 497-503. 


