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We study thermodynamical properties of static dyonic AdS black holes in four-dimensional ω-deformed 
Kaluza–Klein gauged supergravity theory, and find that the differential first law requires a modification 
via introducing a new pair of thermodynamical conjugate variables (X, Y ). To ensure such a modifica-
tion, we then apply the quasi-local ADT formalism developed in Kim et al. (2013) [20] to calculate the 
quasi-local conserved charge and identify that the new pair is precisely the one previously introduced to 
modify the differential form of the first law.
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1. Introduction

Black holes are the most important compact objects predicted 
soon after Albert Einstein built his General Theory of Relativity 
[1] just one century ago. With lots of exact solutions being found, 
there are many researches on various different kinds of black holes 
and a large amount of great success has been achieved in the area 
of black hole physics. One of the remarkable achievements is the 
four laws of black hole thermodynamics established by Bardeen, 
Carter and Hawking [2] via the analogy with those of ordinary 
thermodynamical system. In particular, the differential first law 
is expressed as dM = T dS + � d J + � dQ + � dP for a station-
ary asymptotically flat black hole. In this formula, (M, J , Q , P ) are 
the mass, angular momentum, electric and magnetic charge mea-
sured at infinity, while (T , S, �, �, �) represent the temperature, 
entropy, angular velocity of the horizon, electro-static and mag-
netic potentials at the horizon, respectively.

However, it has been demonstrated in certain cases [3–9] that 
thermodynamics might receive necessary modifications due to the 
presence of nontrivial matter fields. If the asymptotic behavior of 
a scalar field at infinity is φ = φ∞ + φ1/r + φ2/r2 + · · · in the 
asymptotically flat spacetimes, it was shown in Ref. [3] that under 
variation of moduli field φ∞ , the first law of black hole thermo-
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dynamics becomes dM = T dS + � d J + � dQ + � dP − � dφ∞ , 
where � = φ1 is the scalar charge. In the cases of asymptotically 
AdS spacetimes with φ∞ = 0, the contribution of a scalar field 
to black hole thermodynamics was previously studied in Refs. [4,
5]. In recent researches [6–8] on thermodynamics of spherically 
symmetric static AdS black holes, such as the solution given in 
conformal gravity [6] and the one presented in Einstein–Proca the-
ory [7] as well as dyonic black holes found in Kaluza–Klein (KK) 
gauge supergravity theory [8], the first law should be modified by 
extra hairs. It was found that in Ref. [6], the modification of the 
first law is due to the spin-2 hair, while in Ref. [7] the contribu-
tion comes from a massive spin-1 modes, rather than the massive 
spin-2 modes. In four-dimensional asymptotically AdS spacetimes, 
it was shown that a massless scalar with the large-r boundary be-
havior φ = φ1/r +φ2/r2 + · · · can break some of the boundary AdS 
symmetries unless one of the following three conditions is satis-
fied: (1) φ1 = 0, or (2) φ2 = 0, or (3) φ2/φ

2
1 is a fixed constant 

[4]. (See also Refs. [5] and [10].) However, it should be pointed out 
that if the mass squared of the four-dimensional scalar field is −2, 
the aforementioned cases are the ones preserving the full SO(2, 3) 
symmetry.

In this Letter, we will focus on the case where the modifi-
cation of the first law is due to the scalar hair of static dyonic 
AdS black holes [8,9] in (ω-deformed) KK gauged supergravity 
theory. In Ref. [8], a static dyonic AdS black hole solution in four-
dimensional KK gauged supergravity was constructed, for which 
the scalar boundary behavior violates the above-mentioned three 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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criteria [11]. It is proposed in Ref. [8] that the first law should be 
rescued via introducing a new pair of thermodynamical conjugate 
variables (X, Y ), so that the differential first law can be rewritten 
as dM = T dS +� d J +� dQ +� dP − X dY . On the contrary, Chow 
and Compere [9] presented general static AdS black hole solution 
in four-dimensional N = 2, STU gauged supergravity and insisted 
that the first law is unchanged while the mass is non-integrable 
due to the non-existence of a conserved symplectic structure in 
covariant phase space. Obviously, it deserves a deeper investigation 
of this issue, see Ref. [12] for a recent discussion on this subject.

On the other hand, the maximal N = 8, SO(8) gauged super-
gravity theory constructed in Ref. [13] has been regarded uniquely 
for a long time. But a recent evidence [14] demonstrates that 
there is a one-parameter family of inequivalent SO(8) gauged su-
pergravity theories characterized by an angular parameter ω. In 
recent years, there has been a lot of great interest to study various 
different consistent truncations [15–17] of the ω-deformed maxi-
mal N = 8, SO(8) gauged supergravity, especially the truncations 
of scalar fields. Some black hole solutions in ω-deformed gauged 
N = 8 supergravity was constructed recently in Ref. [18]. What 
most interested us here is the truncation to the ω-deformed KK 
gauged supergravity theory and exact solutions to it [17].

The aim of this Letter is to investigate thermodynamical prop-
erties of spherically symmetric static dyonic AdS black holes in 
four-dimensional ω-deformed KK gauged supergravity theory [17]. 
Similar to the analysis done in the un-deformed case [8], we find 
that the differential first law needs a modification by introducing 
a new pair of thermodynamical conjugate variables (X, Y ). To en-
sure such a modification, it is necessary to calculate the conserved 
charge via another different approach. Compared with the Wald’s 
formalism [19] adopted in Ref. [8], in this work we will apply the 
quasi-local ADT formalism [20] to derive the conserved charge and 
deduce that the new conjugate pair (X, Y ) is precisely that pre-
viously introduced [8] to modify the differential form of the first 
law.

The remaining part of this Letter is organized as follows. In Sec-
tion 2, we study the thermodynamics of static dyonic AdS black 
holes in the ω-deformed KK gauged supergravity theory. We check 
the differential first law and the Bekenstein–Smarr formula. In-
ferred from the modification given in [8], we obtain precisely the 
same modification of the differential first law. In Section 3, the 
conserved charge is calculated by using the quasi-local ADT for-
malism to identify the modification with the quantity introduced 
in Section 2. Finally, we present our conclusions with some com-
ments.

2. Thermodynamics of static dyonic AdS black holes in 
ω-deformed KK gauged supergravity

In Ref. [17], the ω-deformed KK gauged supergravity theory is 
obtained via a series of consistent truncations of the ω-deformed 
maximal N = 8, SO(8) gauged supergravity. The Lagrangian for this 
theory is given by

e−1L = R + 6g2 cosh φ − 3

2
(∂φ)2

− 2Fμν F μν + sin 2ω sinh 3φεμνρσ Fμν Fρσ

8(e3φ cos2 ω + e−3φ sin2 ω)
,

(1)

in which g is the cosmological constant and ω is a deformed 
parameter. Note that in the un-deformed case where ω = 0, the 
above theory returns to the KK gauged supergravity theory. If we 
set g = 0 further, then it reduces to the standard KK supergrav-
ity theory obtained from the S1 reduction of the five-dimensional 
pure Einstein’s gravity theory.
A four-dimensional static dyonic AdS black hole solution is also 
presented there [17], for which the metric, the dilaton scalar, the 
U(1) gauge potential and its dual are given below:

ds2 = √
H1(r)H2(r)

[
− f (r)dt2

H1(r)H2(r)
+ dr2

f (r)

+ r2(dθ2 + sin2 θ dϕ2)
]
, (2)

φ = 1

2
ln

[ H2(r)

H1(r)

]
, f (r) = 1 − 2m

r
+ g2r2 H1(r)H2(r) , (3)

A =
[ h1(r)

H1(r)
cosω − h2(r)

H2(r)
sinω

]
dt

+ 4(P cosω + Q sinω) cos θ dϕ , (4)

Ã =
[ h1(r)

H1(r)
sinω + h2(r)

H2(r)
cosω

]
dt

+ 4(P sinω − Q cosω) cos θ dϕ , (5)

where

h1(r) = 4Q

q

( p

r
+ p + q

q − 2m

)
, h2(r) = 4P

p

(q

r
+ p + q

p − 2m

)
,

H1(r) = 1 + q − 2m

r
+ q(p − 2m)(q − 2m)

2(p + q)r2
, (6)

H2(r) = 1 + p − 2m

r
+ p(p − 2m)(q − 2m)

2(p + q)r2
,

in which

P =
√

p(p2 − 4m2)

4
√

p + q
, Q =

√
q(q2 − 4m2)

4
√

p + q
, (7)

are electric and magnetic charges of the static dyonic AdS black 
hole in the un-deformed KK gauged supergravity theory [8], ex-
pressed in terms of the parameters p ≥ 2m and q ≥ 2m. The rela-
tion between (p, q) and (β1, β2) used in Ref. [8] is

β1 = p(q − 2m)

q(p + 2m)
, β2 = q(p − 2m)

p(q + 2m)
. (8)

Compared with the solution given in Ref. [8], the only modifica-
tion is the U(1) gauge potentials obtained via a duality rotation of 
those in [8], while the metric and the dilaton scalar remain un-
changed. If we set ω = 0 and p = q, then the dilaton vanishes and 
the solution recovers to the dyonic Reissner–Nordström AdS black 
hole in four-dimensional Einstein–Maxwell theory.

The event horizon is defined through f (r+) = 0. The tempera-
ture and entropy of the horizon are easily calculated as

T = f ′(r+)

4π
√

H1(r+)H2(r+)
, S = πr2+

√
H1(r+)H2(r+) . (9)

The electro-static and magnetic potentials are given by

�ω = At
∣∣
r+ − At

∣∣∞ = � cosω − � sinω ,

�ω = Ãt
∣∣
r+ − Ãt

∣∣∞ = � sinω + � cosω ,
(10)

where

� = h1(r+)

H1(r+)
−

√
(q + 2m)(p + q)√

q(q − 2m)
,

� = h2(r+)

H2(r+)
−

√
(p + 2m)(p + q)√

p(p − 2m)
.

(11)

The electric and magnetic charges can be computed as
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Q ω = Q cosω − P sinω , Pω = Q sinω + P cosω . (12)

Note that the above expressions are expressed in terms of their 
counterparts in the un-deformed case [8] after considering the re-
lation (8).

Using the conformal Weyl tensor method [21], it is not difficult 
to calculate the mass

M = p + q

4
. (13)

Now let’s check the differential first law of thermodynamics. 
The first law does hold for g = 0, and is written as dM = T dS +
�ω dQ ω + �ω dPω . For g �= 0, it is apparent that the first law still 
holds true in the cases: (1) p = 2m, or (2) q = 2m, or (3) p = q if g
is not viewed as a thermodynamical viable. In other case, the dif-
ferential first law no longer holds true and must be compensated 
via introducing a new conjugate pair (X, Y )

dM = T dS + �ω dQ ω + �ω dPω − X dY , (14)

where

X = g2 (p − q)(p2 − 4m2)3/2(q2 − 4m2)1/2

16(p + q)2
, Y =

√
q2 − 4m2

p2 − 4m2
,

(15)

are the same expressions as those given in Ref. [8]. This is easily 
verified by using (8), and it can be proved that

−X dY = dM − T dS − �ω dQ ω − �ω dPω

= dM − T dS − �dQ − � dP ,
(16)

which means that ω doesn’t change the first law of thermodynam-
ics.

One can further treat the cosmological constant as a generalized 
“pressure” P = 3g2/(8π), its conjugate quantity V as a thermody-
namical volume [22], then the differential first law reads

dM = T dS + �ω dQ ω + �ω dPω − X dY + V dP

= T dS + �dQ + � dP − X dY + V dP ,
(17)

where

V = 4π

3

[
r3+ + 3

4
(p + q − 4m)r2+

+ 1

4
(p − 2m)(q − 2m)

(
3r+ − m + pq

p + q

)]
. (18)

One can also verify that the Bekenstein–Smarr formula is given by

M = 2T S + �ω Q ω + �ω Pω − 2V P

= 2T S + � Q + � P − 2V P ,
(19)

and is independent of the deformation parameter ω. Moreover, the 
(X, Y ) pair doesn’t appear in the integral first law.

3. Quasi-local conserved charge

In the last section, we have approved the viewpoint proposed 
in Ref. [8] and followed the same recipe to modify the differential 
first law by introducing a new pair of thermodynamical variables 
(X, Y ). However, the precise physics origin of (X, Y ) still remains 
a mystery. In order to make an in-depth analysis of the (X, Y ) pair, 
we shall adopt the quasi-local ADT formalism [20] rather than the 
covariant phase space approach [19] used in [8] to calculate the 
conserved charge and study the fall-off behavior of the scalar field 
at infinity.

As far as the conserved charge of AdS black hole is concerned, 
up to date there are many different methods available to calcu-
late it, such as the covariant phase space approach [19], cohomol-
ogy method [23], Ashtekar–Magnon–Das formalism [24], Abbott–
Deser–Tekin (ADT) formalism [25], and quasi-local ADT formalism 
[20]. For an earlier review on the quasi-local conserved charge, see 
Ref. [26]. The quasi-local ADT formalism [20] is a novel way to 
calculate the conserved charge at finite spacetime domains and re-
ceives a lot of recent attention [27,28]. Speaking roughly, one can 
establish a one-to-one correspondence between the ADT potential 
and the off-shell linear Noether potential by considering an appro-
priate variation of metric. From the off-shell ADT potential, one can 
easily construct the quasi-local charge. Note that the same result 
can be arrived at by varying Bianchi identity [28].

Taking the variation of the action, we get

δS = 1

16π

∫
d4x

√−g
(

E�δ� + ∇μ�μ
)
, (20)

where E�δ� = E(g)μνδgμν + Eφδφ + Eν
AδAν and �μ = �

μ
(g) +

�
μ
φ + �

μ
A denote the equation of motion and the surface term, 

respectively. Considering the infinitesimal diffeomorphism xμ →
xμ + ξμ , one can deduce the off-shell Noether current J μ through 
equating the diffeomorphism to the general variation as

J μ = 2Eμνξν + ξμL− �μ , (21)

where we have used the off-shell identity 2ξν∇μEμν
(g) + Eφδξφ +

E Aδξ A = ∇μ(Zμνξν), and denoted Eμν = Eμν
(g) − Zμν/2. Then one 

can introduce the off-shell Noether potential K μν by using J μ =
∇ν K μν , in which

K μν = 2∇[μξν] + [
k(φ)F μν − 4k̂(φ)εμνρσ Fρσ

]
Aλξ

λ , (22)

where

k(φ) = 1

e3φ cos2 ω + e−3φ sin2 ω
,

k̂(φ) = − sin 2ω sinh 3φ

2(e3φ cos2 ω + e−3φ sin2 ω)
.

Now let’s define the ADT current J μ
ADT which reads

J μ
ADT = ξνδEμν + 1

2
gαβEμνξνδgαβ + Eμνξρδgνρ + 1

2
ξμE�δ� ,

(23)

and write it in a compact form: 
√−gJ μ

ADT = δ(
√−gEμνξν) +√−gξμE�δ�/2. The corresponding off-shell ADT potential Qμν

ADT
is introduced by J μ

ADT = ∇νQμν
ADT . To find out the relationship be-

tween the off-shell Noether current for the infinitesimal diffeomor-
phism and the linearized conserved current for a Killing vector, we 
now take ξμ = (∂t)

μ and consider the change in the Noether po-
tential K μν , then we can get

Qμν
ADT = 1

2
δK μν + 1

4
K μν gαβδgαβ − ξ [μ�ν] , (24)

from which the off-shell ADT potential Qμν
ADT is rewritten as [23]

Qμν
ADT = Qμν

(g) +Qμν
φ +Qμν

F +Qμν
CS , (25)

where
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Qμν
(g) = 1

2
h∇[μξν] + ξ [μ∇ν]h + ξα∇[μhν]α

− hα[μ∇αξν] − ξ [μ∇αhν]α , (26a)

Qμν
F = 1

2

[
F μν ∂k(φ)

∂φa
δφa + k(φ)δF μν + h

2
k(φ)F μν

− 2k(φ)hμλ F ν
λ

]
(Aλξ

λ + Cst)

+ k(φ)
(
ξλ F μν + ξ [μ∇α F ν]α)

δAλ , (26b)

Qμν
CS = −2εμνρσ

[
Fρσ

∂k̂(φ)

∂φa
δφa + k̂(φ)δFρσ

]
(Aλξ

λ + Cst)

− 2
[
εμνρσ ξλ + 2ξ [μεν]λρσ

]
k̂(φ)Fρσ δAλ , (26c)

Qμν
φ = 3ξ [μ∇ν]φ δφ , (26d)

in which hμν = δgμν , hμν = −δgμν , h = gμνδgμν , δF μν =
gμα gνβδFαβ .

One can choose the gauge δAμ = Lξ Aμ = 0 so that d(Aμξμ)

is gauge invariant. For our aim to calculate the conserved mass, 
a convenient choice for the gauge constant Cst that makes 
(Aμξμ + Cst)|∞ = 0 yields

Cst =
√

(q + 2m)(p + q)√
q(q − 2m)

cosω −
√

(p + 2m)(p + q)√
p(p − 2m)

sinω , (27)

which is equivalent to making a gauge transformation on Aμ so 
that the electro-static potential or the t-component of the shifted 
potential vanishes at infinity.

According to Ref. [23], for a class of one-parameter path in the 
solution space, one can define a path-independent quasi-local con-
served charge as

Q = 1

8π

∫ √−gQμν
ADTd�μν . (28)

For our final aim to obtain the conserved charge, we can in-
troduce a new radial coordinate ρ which is convenient for us to 
study the asymptotic fall-off behaviors of the metric and the mat-
ter fields. Then the line element becomes

ds2 = − f (ρ)dt2 + dρ2

h(ρ) f (ρ)
+ ρ2(dθ2 + sin2 θ dϕ2) . (29)

For large ρ , we get

f (ρ) = g2ρ2 + 1 − p + q

2ρ
+ p2 + q2 − pq − 4m2

4ρ2
+ · · · ,

h(ρ) = 1 + 3(p − q)2

16ρ2
+ (p − q)2(8m2 − p2 − q2)

8(p + q)ρ3
+ · · · , (30)

φ = p − q

2ρ
+ (p − q)(8m2 − p2 − q2)

8(p + q)ρ2
+ · · · ,

and choose an infinitesimal parametrization of a one-parameter 
path in the solution space by letting

m → m + dm , p → p + dp , q → q + dq . (31)

After some tedious algebra manipulations and using the gauge 
choice (27), we can obtain the infinitesimal charge

dQ = 1

4
(dp + dq) − g2(p − q)2

4(p + q)
m dm

+ g2(p − q)

16(p + q)2

[
(p2 − 4m2)q dq − (q2 − 4m2)p dp

]
.

(32)

Using Eq. (13), we finally get
X dY = dQ− dM

= g2(p − q)

32(p + q)2

[
(p2 − 4m2)d(q2 − 4m2)

− (q2 − 4m2)d(p2 − 4m2)
]
. (33)

In the general cases, Q is not integrable because d2Q =
dX ∧ dY �= 0 unless one of the following conditions is satisfied:
(1) g = 0, or (2) p = 2m, or (3) q = 2m, or (4) p = q, or 
(5) p2 − 4m2 = c(q2 − 4m2) for an arbitrary constant c. Note that 
in the above analysis, we have treated the cosmological constant 
g as a true constant (dg = 0). If g is viewed as a variable, then Q
is still not integrable and one must add a counter-term V dP to 
cancel the corresponding divergent term in the expression of dQ. 
Therefore it is reasonable to infer that the differential first law of 
thermodynamics needs a modification via the (X, Y ) pair.

At last, we would like to check that X dY is the exact modifi-
cation given before. According to the analysis made in Ref. [8], we 
have

h(ρ) f (ρ) − f (ρ) = 1

4
g2φ2

1 + 2

3ρ
g2φ1φ2 + · · · ,

φ = φ1

ρ
+ φ2

ρ2
+ · · · , (34)

where

φ1 = p − q

2
, φ2 = (p − q)(8m2 − p2 − q2)

8(p + q)
, (35)

so we can re-express [8]

X dY = 1

12
g2(2φ2δφ1 − φ1δφ2) , (36)

which vanishes when (1) φ1 = 0, or (2) φ2 = 0, or (3) φ2 = cφ2
1 .

4. Conclusion

In this Letter, we have studied thermodynamical properties of 
static dyonic AdS black hole in four-dimensional ω-deformed KK 
gauged theory, and obtained the expression of the modified term 
for the differential first law. Although the similar problem in the 
un-deformed theory has been tackled previously in Ref. [8] by 
using the Wald’s procedure, here we have adopted a different 
method based on the quasi-local ADT formalism to compute the 
conserved charge. We approve the proposal in Ref. [8] to modify 
the differential first law by adding a new term X dY . Furthermore, 
we find that the deformation parameter ω doesn’t change the first 
law.

Although the differential first law can be satisfactorily restored 
via the introduction of the (X, Y ) pair, this is somehow by heart. 
Do these two quantities have a general universal definition, and 
what is the genuine physics hidden behind them?
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