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kWh/m²/day and an average of 4.956 kWh/m²/day was measured as the most unfavorable month 
(December). The slope of 32° was chosen according to the optimization done for different fixed slopes, 
each one during a whole year [8]. 

2.2. Stand alone PV system 

The study of the PV system’s behavior required the input of three major parameters, solar irradiance 
(Ga), ambient temperature (Ta) and the power load (Pload). Fig. 2 shows the study SAPS with load 
management device (LMD).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Stand alone PV system with load management device 

The SAPS includes the PV array consists of polycrystalline modules (TE500), the storage batteries of 
the lead acid technology and the power conditioning device. The PV module characteristics at STC (1000 
W/m², 25°C) is given by Table 1.  

Table 1. The manufacturer characteristics of PV module 

TE500 module Pp ISC0 VOC0 Imax0 Vmax0 NS 

Values  55 3,5 21,7 3,142 17,5 36 

Units W A V A V - 

 
The nominal voltage of the battery element used was 2V. The power conditioning device is a set of 

controller and inverter. 

2.3. Weather data collection 

A data acquisition system was installed in order to ensure the data collection of the various climatic 
parameters. For irradiation measurement, a CM11 Pyranometer type with a sensitivity equal to 4.57 10-6 
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V/Wm-2 was used. The solar irradiation and the ambient temperature profiles measured are shows 
respectively by Fig. 3(a) and Fig. 3(b). The disparity of the temperature was noticed between the winter 
solstice and the summer solstice. This phenomenon really influenced the proper functioning of the PV 
array (Yielded reduction at high temperatures). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. (a) Solar irradiation on slope plane; (b) Ambient temperature 

2.4. Load Profile 

A real investigation was done on daily electricity consumption in the city of Tafilalt (Ghardaia) on a 
set of houses.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Daily load profile developed. For example, (a) Winter; (b) Summer 

After data treatment, the load profiles illustrated in Fig. 4(a) for winter season and Fig. 4(b) for 
summer season was defined. The used charges to obtain this profile are: Television (TV), radio, washing 
machine, refrigerator, fan and low consumption bulbs. 
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2.5. Principle of developed Load  management  

In This study, the load profile presented in Fig. 4 was used. According to the managerial strategy, the 
loads used in the habitat were divided into two types, as follows: 
 Non-controlled loads such as the refrigerator and lamps of rooms and toilets. 
 Controlled loads were washing machines, radios, lamps in kitchens and lounges, TV and fans. 

The main objective was to improve the efficiency of the SAPS and minimize the batteries replacement; 
of course, with the respect of house comfort. To achieve this aim, the management device used in the 
study is screened in Fig. 2. As the figure shows, the LMD is composed of three parts which correspond to 
three inputs which are: SOC, Ta and Ga. Each part was intended to control different types of loads such as 
of the washing machines, the fans and the light ...etc. 

From these three inputs, a load management plan was calculated to moderate the storage use. 
Consequently, the batteries charge during the sunshine period was favored; the strong current request was 
reduced from the storage. The means of improvements applied are presented below: 

The starting time of the washing machine in the day is decided at midnight of previous day, according 
to the SOC(t) measured at time of the deciding, which give an idea about the energy amount produced 
during the same day. The lamp functioning time was controlled without affecting visual comfort, 
according to the outside light which was compared to a reference of irradiance Ga,ref. Because these 
traditional habitats are usually illuminated by a large square opening towards the sky, which also permits 
aeration [7]. Likewise, the functioning time of the fan was controlled according to the ambient 
temperature which was compared to a reference temperature Ta_ref.      

3. System modeling 

3.1. PV module model 

The model of PV module described by the Eq. (1) is implicit [9,10]. This is the same electric 
equivalent model at one diode for a cell. The advantage of this model is that it can be established by the 
application of standard data given by the manufacturer [10]. Therefore, module current I relation with the 
tension V can be described in arbitrary functioning conditions as follows.  

 
 
 
 
Where, NS is the cell number in series and m is the ideality factor equal to 1,2 for the mono-crystalline 

and 1,3 for polycrystalline silicon [11]. The cell series resistance Rs, the short-circuit current ISC, the open 
circuit voltage VOC and the cell temperature Tc are calculated with the real weather data, such as the solar 
irradiance Ga and the ambient temperature Ta. As well as, the parameters given by the manufacturer [10].  

3.2. Battery model 

At present, the widespread SAPS storage technology is the Lead acid technology. This latter is treated 
on different literature [12,13,14], due to the compromise of its advantages: availability, cost and 
reliability. For the considered system simulation, the CIEMAT battery model was used, as it is described 
in several articles [15,16]. The battery modeling is necessary, particularly to establish instantaneous state 
of charge SOC(t) (Eq. (2)) in the optic to manage the energy within the system.  
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Where, CSto(t) is the battery instantaneous capacity and Cnom(t) is the battery nominal capacity at time t 
which is varying by the ageing effect against the referential nominal capacity Cnom0 [17].  

3.2.1. Battery  Charging 

In charge mode, the instantaneous stat of charge SOC(t) is described by Eq. (3). Where, Coul is the 
instantaneous charge efficiency and Ibat(t) is the instantaneous charge current of the battery [16]. 

)(
).().()()1(

tC
ttIttSOCtSOC

Sto

batCoul  (3)

t = 300 s   

3.2.2. Battery discharge 

In discharge process, the efficiency was considered unitary [16]. The Eq. (4) show the state of charge 
of battery. 

)(
).()()1(
tC

ttItSOCtSOC
Sto

bat  (4)

These equations described above are experimentally validated by [16]. 

3.2.3. Ageing model  

The models of assessing the health status of the batteries are illustrated by several authors [13,17]. The 
instantaneous state of health SOH (t) of battery is described by Eq. (5). The main objective for this work 
is to minimize the storage use or to extend the battery’s life cycle.   

0

)()(
nom

nom

C
tCtSOH  (5)

The method used in this study is dictated by [17]. This involves taking into account the instantaneous 
value of the battery nominal capacity, which degrades at each discharge. This phenomenon can monitor 
the health status of the battery in a precise manner. The nominal capacity degradation model Cnom(t) is 
presented in the Eq. (6) below : 

))()1(.(.)1()( 0 tSOCtSOCCtCtC xnomnomnom  (6)

Where x is the capacity loss coefficient, and for acid lead batteries x= 0.3 % [17]. 

3.3. Inverter model 

Usually in the world, the loads at alternative current are used for homes; this requires the use of a 
DC/AC inverter. The inverter energetic performance is not constant. Efficiency of inverters depends on 
their output powers. In this case, the polynomial performance model was used; it is illustrated down by 
Eq. (7) [17]. This model is experimentally validated by [18]. 

vsinLoadinvinv
vsinLoad

inv
inv

).t(P.
).t(P

1

1)t(  
(7)

Where, PLoad(t) is the instantaneous load power and sinv is described by Eq. (8), which is the ratio 
between the inverter reference power (Sinv,ref = 4,5 kVA) and the inverter nominal power (Sinv). The given 
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values for parameters inv, inv and inv are respectively, 43.09 [SI], 4.6x10-3 [SI] and 3.34x10-5 [SI]. 
According to [17], these parameters allow modeling inverters of different sizes.  

invref,invvsin SS                                                                                                                                 (8) 

3.4. Optimal sizing criteria for SAPS 

3.4.1. Reliability criterion 

In this study, the reliability is expressed in terms of LPSP. The loss of power supply probability for a 
considered period is expressed by Eq. (9) [19]; it is defined as the ratio of the sum of demanded energies 
but not consumed (LPS (t)) on the sum of energy demand during the year (ELd(t)). 

simsim t

i
Ld

t

i
tEtLPSLPSP

11

)()(                                                                                                                  (9) 

The deficit called loss power supply at time t (LPS (t)) is expressed below (Eq. (10)): 

LPS(t) = ELd(t) - ELc(t)                                                                                                                               (10) 

Where, ELc(t) is The consumed energy by the load at the time t. 

3.4.2. Economic criterion 

For an SAPS, the energetic cost (EC) expressed by Eq. (11) is mainly linked to three sizes, which are 
the peak power of the PV array (Ppv), the nominal capacity of storage (Cnom) and the apparent power of 
the inverter (Sinv) [6]. 

EC = ECpv · Ppv + nsto · ECsto · Cnom + ninv · ECinv · Sinv                                                                             (11) 

Where, nsto and ninv  are respectively the number of lead-acid battery replacements and inverter over 
the SAPS life cycle. In this paper, a period of 25 years (the estimated PV module lifetime) was chosen. 
The life cycle of inverter is estimated at 10 years. The energetic cost parameters ECpv, ECsto and ECinv are 
given respectively 8,9 kWh/WC , 359 kWh/kWh and 0,3kWh/VA  [20,21]. 

3.5. System Programming in Matlab-Simulink 
 
 
 
 
 
 

 
 
 
 
 
 
 

 

 

Fig. 5. Matlab-Simulink program of SAPS 
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The elaborated Matlab-Simulink program is shown in Fig. 5. This program contains the models of the 
PV sub-systems with the device of load management. The simulation was performed with a real yearly 
profile of data from Ghardaia site. The step time ( t) of this simulation was 5 minutes depending on data 
acquisition process; the simulation time (tsim) was added up from 1 to 25 years. 

4. Simulation results and discussion 

1.  

2.  

3.  

4.  

 
 
 
 
 
 
 
 
 
 
 

Fig. 6. System configurations with load management for different life cycle of storage (LCS) 

 
 
 
 
 
 
 
 
 
 
 

Fig. 7. System configurations, (a) Without load management; (b) With load management 
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Fig. 8. Energetic cost of system configurations with load management 
Considering the main constraints LPSP   1 % and SOH (t)  80 %, The simulation results are 

presented by the hereinafter figures. Fig. 6 shows the system configurations with load management for 
different LCS. The Fig. 7 shows that the load management minimizes the nominal capacity of storage at 
powers of Ppv less than 1100 W. Consequently, the relative cost to the storage is minimized. The energetic 
costs of the system configurations presented in Fig. 8 was calculated for 25 years of PV system life cycle. 
The optimal size (PV array and capacity storage) is given at the system configurations with LCS = 9 
years. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9. Energetic cost, (a) Without load management; (b) With load management 

According to the results, the load management reduced really the energetic cost of PV system. For 
example, the Fig. 9 shows that the interest of management takes effect at Ppv less than 1100 W. Beyond 
this value, the effect of the load management is neutral. 
 
5. Conclusion 

In this paper, an optimal sizing model is developed to optimize the capacity sizes of PV array and 
storage capacity of a stand-alone photovoltaic system (SAPS) with load management and without extra. 
The recommended model consists of three parts: the model of the SAPS, the developed model of load 
management and the models of optimization criteria according to the loss of power supply probability 
(LPSP) concept for system reliability evaluation and the energetic cost for system economic evaluation. 
Considering the desired LPSP, a set of configurations can be obtained by using the LPSP technique. The 
configuration with of low EC gives the optimal one.  

A case study was conducted to optimize the size of an SAPS, which is intended to remote and 
scattered housings in Ghardaia site, Algeria. The input data set consists of solar irradiation on the sloped 
plane at 32°, the developed load profile, as well as ambient temperature recorded with a step of 5 minutes. 
The stand-alone PV system with load management is simulated by running the developed program. The 
relations between system reliability and system configurations have been studied. The optimal 
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configurations of the SAPS are determined in terms of desired system reliability requirements (LPSP) and 
the energetic cost (EC).  

The suggested load management strategy contributes really to the reduction of storage use. 
Consequently, this strategy has resulted in the minimization of the number of the batteries replacements 
and the improvement the performance of SAPS, such as the minimization of the loss of power supply 
probability (LPSP). As a result, this load management offered a double advantage: reducing the energetic 
cost and enhancing the reliability of PV system. 
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