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a b s t r a c t

In this paper, we consider two problems: the edge coloring and the strong edge coloring
problems on unit disk graphs (UDGs). Both problems have important applications in
wireless sensor networks as they can be used to model link scheduling problems in
such networks. It is well known that both problems are NP-complete, and approximation
algorithms for them have been extensively studied under the centralized model of
computation. Centralized algorithms, however, are not suitable for ad hoc wireless
sensor networks whose devices typically have limited resources, and lack the centralized
coordination.

We develop local distributed approximation algorithms for the edge coloring and the
strong edge coloring problems on unit disk graphs. For the edge coloring problem, our
local distributed algorithm has approximation ratio 2 and locality 50. For the strong edge
coloring problem on UDGs, we present two local distributed algorithms with different
tradeoffs between their approximation ratio and locality. The first algorithm has ratio 128
and locality 22, whereas the second algorithm has ratio 10 and locality 180.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The edge coloring problem is to color the edges of a given graph G using the minimum number of colors so that no two
edges of the same color are adjacent. The strong edge coloring problem is to color the edges of a given graph G with the
minimum number of colors so that no two edges with the same color are of distance less than 2. The edge coloring and
the strong edge coloring problems are known to be NP-complete even on restricted classes of graphs [4,9]. Since both
problems have numerous applications in networks, where theymodel channel assignments/scheduling problems (see [1–3,
7,11,12], among others), it is natural to seek approximation algorithms for them.

For the edge coloring problem, Vizing’s theorem [13] shows that every graph with maximum degree ∆ has an edge
coloring that uses at most∆+1 colors; however, his result is nonconstructive. Misra and Gries [10] gave a polynomial-time
constructive proof of Vizing’s theorem, thus showing that the problem can be approximated to within an additive constant
of 1. Ramanathan [11] gave a very simple centralized greedy algorithm for the problem of ratio 2. Under the distributive
model of computation, Gandham et al. [3] gave a distributed approximation algorithm based on Misra and Gries’ [10]
constructive proof of Vizing’s theorem, that approximates the problem to within an additive constant of 1. Kodialam and
Nandagopal [7] gave a simple distributive algorithm of ratio 2, which was based on the centralized greedy algorithm of
Ramanathan [11].

✩ A preliminary version of this paper appears in proceedings of the 35th International Workshop on Graph-Theoretic Concepts in Computer Science (WG),
volume 5911 of Lecture Notes in Computer Science, (2009), pages 202–213, Springer.
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For the strong edge coloring problem on planar graphs, Barrett et al. [1] gave a centralized algorithm that approximates
the strong edge coloring problem to ratio 17. This ratio has recently been improved to 2 by Ito et al. [5].

The assumed underlying graphmodel and the assumed computational model in the above results, however, do not seem
appropriate for ad hoc wireless sensor networks. In wireless sensor networks, devices can in principal communicate if they
are in each others transmission range. Therefore, a general graph model, or even a plane (embedded planar) graph model,
is too flexible in the sense that it does not reflect the restrictions on the connectivity of such networks. Moreover, the
topology of such networks undergoes constant change, and the devices in those ad hoc networks have limited energy/power.
Therefore, any assumed computational model should take into account the decentralized nature of such networks, and
should be sensitive to issues such as scalability, robustness, and fault tolerance. In terms of the underlying graph model,
when studying wireless sensor networks, it is natural to embed them in a Euclidean metric space. A common simple
embedding assumes that the space is two dimensional, and that the transmission range of all devices is the same. In
that case, the network is modeled as a Unit Disk Graph, abbreviated UDG henceforth, in the Euclidean plane: the nodes
of the UDG correspond to the mobile wireless devices, and its edges connect pairs of nodes whose corresponding devices
are in each others transmission range equal to one unit. While this model seems too ideal, it has the advantage of being
easier to work with. Meaningful theoretical and practical results can be derived under this model that, hopefully, will carry
(at least partially) to more general models. Moreover, there are real examples where such models make sense: boats on
water surfaces, vehicles in a relatively flat desert, etc.

In terms of the computational model, most of the above issues (scalability, robustness, fault tolerance) can be dealt with
under the local distributed computational model, as defined by Linial [8]. A distributed algorithm is said to be k-local (where
k ≥ 0 is an integer) if the computation at each node of the graph depends solely on the initial state (in our case the ID
and coordinates) of the nodes at distance (number of edges) at most k from the node (i.e., within k hops from the node).
An algorithm is called local if it is k-local for some integer constant k. Efficient local distributed algorithms are naturally
fault-tolerant and robust because faults and changes can be handled locally by such algorithms. These algorithms are also
scalable because the computation performed by a device is not affected by the total size of the network.

Local distributed algorithms for the edge coloring problems on UDGs have been considered in [2]. However, the results
in [2] deal only with a restricted subclass of UDGs called the ‘‘Yao-Like’’ subgraphs, and give an approximation algorithm
for the edge coloring problem within an additive constant of 1 from the optimal solution. For the strong edge coloring
problem on UDGs, we are aware only of the distributed approximation algorithm given by Barrett [1], which achieves an
O(1) ratio; however, this algorithm is distributed but not local.

In this paper, we develop local distributed approximation algorithms for the edge coloring and the strong edge
coloring problems on UDGs. For the edge coloring problem, we present a local distributed algorithm of approximation
ratio 2 and locality 50; this algorithm works for a generalization of UDGs, called quasi-UDGs. For the strong edge coloring
problem on UDGs, we present two local distributed algorithms with different tradeoffs between their approximation ratio
and locality. The first algorithm has approximation ratio 128 and locality 22, whereas the second algorithm has ratio 10 and
locality 180.

We simulated the algorithms in the current paper to get some data on how they perform in practice. The simulation
results we obtained indicate that, empirically, the upper bounds on the ratio and the locality of these algorithms are much
smaller than the theoretical upper bounds derived in the current paper. For example, for the edge coloring problem, the
simulations consistently showed an approximation ratio that is upper bounded by 1.2 and a locality that is upper bounded
by 11. For the strong edge coloring problem, the simulation results showed an approximation ratio that is upper bounded
by 7.5 and a locality that is upper bounded by 10.

2. Definitions and notations

We assume familiarity with the basic graph-theoretic notations and terminologies.
Given a set of nodes S in the Euclidean plane, the Euclidean graph E on S is the complete graph whose node set is S. The

unit disk graph, shortly UDG, G on S is the subgraph of E with the same node set as E , and such that (u, v) is an edge of G if
and only if |(u, v)| ≤ 1, where |(u, v)| is the Euclidean length of edge (u, v).

Let 0 < r ≤ 1 be a constant. A quasi-UDG on S with parameter r is a subgraph G of E with the same node set as E , and
such that for any two nodes u and v in G: if |(u, v)| ≤ r then |(u, v)| is an edge of G, if r < |(u, v)| ≤ 1 then (u, v) may or
may not be an edge of G, and if |(u, v)| > 1 then (u, v) is not an edge of G. Clearly, a UDG is a quasi-UDG with r = 1.

Let H be a graph. We denote by V (H) and E(H) the set of nodes and the set of edges of H , respectively. The length of a
path P in H , denoted |P|, is the number of edges in P . A shortest path between two nodes u and v in H is a path between u
and v of minimum length. A node v is said to be an i-hop neighbor of u in H , if the length of a shortest path between u and v
in H is at most i. If u is an i-hop neighbor of v in H , we will also say that the hop distance between u and v in H is at most i.
For a node u ∈ H , and a natural number i, define Ni[u] to be the set of i-hop neighbors of u in H .

For two edges e and e′ inH , the distance between e and e′ is theminimum length of a path, among all paths inH connecting
an endpoint of e to an endpoint of e′. Two distinct edges are adjacent if their distance is 0, or equivalently, if they share an
endpoint. An edge coloring of H is an assignment of colors1 to the edges in E(H) such that no two adjacent edges in H are

1 Without loss of generality, we shall assume that the colors are natural numbers.
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assigned the same color. A strong edge coloring of a graph H is an assignment of colors to the edges in E(H) such that no two
edges of distance at most 1 are assigned the same color. A minimum edge coloring of H is an edge coloring of H that uses
the minimum number of colors. Similarly, a minimum strong edge coloring of H is a strong edge coloring of H that uses the
minimum number of colors.

An approximation algorithm for aminimization problemQ is an algorithm that for each instance ofQ computes a solution
to the instance. The ratio of an approximation algorithm for aminimization problem is themaximumvalue, over all instances
of the problem, of the size of the solution to the instance returned by the algorithm over the minimum-size solution to the
instance.

The algorithms designed in this paper are k-local distributed algorithms. Each node in these algorithms starts by
computing its k-hop neighbors, and performs only local computations afterward. (We assume that each node knows its
coordinates.) For a fixed k, it was shown in [6] that the k-hop neighborhoods of the nodes in a UDG (or a quasi-UDG) can be
computed by a local distributed algorithm in which the total number of messages sent by all the nodes in the UDG is O(n),
where n is the number of nodes in the UDG. Therefore, the message complexity of each of the presented local distributed
algorithms is O(n).

3. Preliminaries

Let α > 2 be a constant. Fix an infinite square tiling (i.e., a grid) T of the plane of tile dimensions α × α.
Let T1 be the translation with vector (0, 0) (the identity translation), T2 the translation of vector (α/2, 0) (horizontal

translation), T3 the translation of vector (0, α/2) (vertical translation), and T4 the translation of vector (α/2, α/2) (diagonal
translation). We have the following simple fact:

Fact 3.1. Let G be a quasi-UDG, and let (u, v) be any edge in G. There exists a translation T in {T1, T2, T3, T4} such that the
translations of the nodes u and v under T , i.e., T (u) and T (v), reside in the interior of the same tile of T .

Proof. Note that α > 2. If the edge (u, v) is interior to some tile in T then translation T1 serves the purpose. If (u, v) crosses
only the horizontal boundary of some tile in T then T2 serves the purpose. If (u, v) crosses only the vertical boundary of
some tile in T then T3 serves the purpose. Finally, if (u, v) crosses both the horizontal and the vertical boundary of some tile
in T then T4 serves the purpose. �

The proof of the following lemma uses a folklore packing argument to bound the length of a path between two nodes in
a UDG that reside within a region of bounded area of the plane:

Lemma 3.2. Let G be a quasi-UDG of parameter 0 < r ≤ 1. Let H be a connected induced subgraph of G residing in a region R
of the plane. Let R′ be a region of area a′ that contains R such that for any node p in R the disk centered at p and of radius r/2 is
contained in R′. Then for any two nodes u and v of H, there exists a path in H between u and v of length at most ⌊8a′/(πr2)⌋.

Proof. Since u and v are connected in H , there exists a shortest path Pmin = (u = p0, p1, . . . , pℓ = v) between u and v in
H . Let Dj, for j = 0, . . . , ℓ, be the disk centered at pj and of radius r/2. By the hypothesis, all the disks Dj are contained in
the region R′. Observe that by the minimality of Pmin, the disks Dj for even j are mutually disjoint. Therefore, the area a of
the region determined by the union of the disks Dj for even j is the sum of the areas determined by these individual disks.
The value of a is precisely (πr2/4) · ⌈ℓ/2⌉, and is at most the area of R′. It follows that (πr2/4) · ⌈ℓ/2⌉ ≤ a′. Solving for the
integer ℓ in the previous inequality we obtain ℓ ≤ ⌊8a′/(πr2)⌋. This completes the proof. �

4. Edge coloring

In this section we present a local distributed algorithm that approximates the edge coloring problem on quasi-UDGs
which are a super class of UDGs. The idea behind the algorithm is to tile the plane as discussed in Section 3, and then to
have the nodes residing in the same tile color the edges interior to their tile using the greedy algorithm given in [7,11]. This
is an edge coloring since two edges contained in the interior of two distinct tiles are not adjacent. However, not every edge
in the graph is interior to a tile because an edge may cross the horizontal or vertical (or both) boundary of a tile. To deal
with this issue, we affect an appropriate set of translations to the nodes so that, for any edge in the graph, its translation
under at least one of the translations is contained in some tile. This ensures that every edge of the graph will eventually be
colored appropriately. Implementing this algorithm under a centralizedmodel of computation is straightforward. However,
implementing this algorithm under a localized distributed model poses some potential issues since the effect of the color of
an edge over other edges needs to be limited, and some consensus issues need to be resolved.

We use the tiling T described in Section 3. Let G be a quasi-UDG with parameter r , where 0 < r ≤ 1. Each node p ∈ G
executes the algorithm EdgeColoring-APX given in Fig. 1. We intuitively describe the main steps performed by a node p in
the algorithm. First, p starts by collecting the coordinates of its k-hop neighbors, where k = ⌊(22α2

+ 8r2 + 32αr)/(πr2)⌋;
those are all the nodes that can contribute to the computation performed by p. Then p iterates over the four different
translations described in the previous section; this ensures that all edges incident to p will be considered (by Fact 3.1). For
each translation Ti, p considers a copy Gi of the subgraph consisting of the uncolored edges in its k-hop neighborhoodwhose
endpoints reside in the same tile under the current translation. Since p has all the information of its k-hop neighborhood,
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1: p collects the coordinates of the nodes in Nk[p] in G, where k = ⌊(22α2
+ 8r2 + 32αr)/(πr2)⌋

2: for round i = 1, 2, 3, 4 do
3: let Gi(p) be a copy of the subgraph of G consisting of the set Ei(p) of uncolored edges whose endpoints are in Nk[p], and such that,

for any edge (u, v) ∈ Ei(p), Ti(u) and Ti(v) are in the same tile of T
4: let C1

i (p), . . . , Cℓ
i (p), where ℓ ≥ 1, be the connected components of Gi(p)

5: for j = 1, . . . , ℓ do
6: p orders all the edges in C j

i (p) using the lexicographic order into the sequence of edges E j
i (p)

7: for each edge e in E j
i (p) do

8: color e in Gi(p) with the smallest available color, i.e., the smallest color that has not been used in the previous rounds to color
any of the edges adjacent to e

9: end for
10: end for
11: for each edge e ∈ Gi(p) incident on p do
12: p colors e in G with the same color in Gi(p)
13: end for
14: end for

Fig. 1. The algorithm EdgeColoring-APX.

p applies a standard greedy (centralized) algorithm to color the uncolored edges in Gi. Finally, p ‘‘copies’’ only the coloring
of its incident edges in Gi that it computed back to the original graph G. The correctness of the algorithm and its properties
are proved below.

Lemma 4.1. The algorithm EdgeColoring-APX is a k-local distributed algorithm, where k = ⌊(22α2
+ 8r2 + 32αr)/(πr2)⌋.

Proof. It is clear that the computation at each node depends solely on the coordinates of its k-hop neighbors, where
k = ⌊(22α2

+ 8r2 + 32αr)/(πr2)⌋. �

For each i ∈ {1, 2, 3, 4}, let Gi be the subgraph of G consisting of the edges (u, v) ∈ G such that Ti(u) and Ti(v) are in
the same tile of T ; we call each connected component C in Gi an i-cluster, and we say that i is the label of C . Note that, by
definition, any two distinct i-clusters are disjoint. A cluster is an i-cluster for some i ∈ {1, 2, 3, 4}. A sequence of clusters is
said to be a potential affecting sequence, if the labels of the clusters on this sequence are strictly increasing, and every two
consecutive clusters in the sequence share at least one node in G. Note that a potential affecting sequence of clusters has
length at most 4. The notion of a potential affecting sequence will be used to confine the ‘‘effect’’ of the color of an edge on
the color of another edge.

Lemma 4.2. Let S = (C1, C2, C3, C4) be a potential affecting sequence of clusters (we allow Ci, i ∈ {1, 2, 3, 4}, to be empty). Then
for any two nodes u and v in S, u is a k-hop neighbor of v in G, where k = ⌊(22α2

+ 8r2 + 32αr)/(πr2)⌋ and r is the parameter
of the quasi-UDG G.

Proof. Consider the case when Ci ≠ ∅, for i = {1, 2, 3, 4}, and note that the subgraph of G consisting of the edges in the
sequence of clusters S forms a connected subgraph of G.

By definition, the edges in C1 reside in some tile, say tile A depicted in Fig. 2. The edges in C2 must reside in either the
region R1 = A∪B∪C , or the region R2 = A∪E∪F . This is true because an edge in C2 must cross a horizontal boundary of tile
A (and only a horizontal boundary). Since the horizontal dimension of the tile is α, and the shift of the horizontal translation
is α/2, an edge in C2 must reside in either R1 or R2. Note that, because each i-cluster, for i = {1, 2, 3, 4}, is contained in a
single tile under translation Ti, if an edge e ∈ C2 is in one of the two regions R1, R2, then all the edges in C2 have to be in the
same region. Therefore, by symmetry, we can assume that all the edges of C2 reside in one of these two regions, say R1. By
the same token, the edges in C3 are either contained in the region R3 = B∪O∪M ∪N , or in the region R4 = C ∪D∪ I ∪ J , or
in the region R5 = A ∪ K ∪ L, or in the region R6 = A ∪ G ∪ H . For each of the regions R3, R4, R5, and R6, we can check all the
possible regions in which C4 is contained. It can be easily verified that the worst case (region of maximum area) happens
when C3 is contained in R4, and C4 is contained in the region D ∪ J ∪ P ∪ Q .

Therefore, when all the clusters Ci, i ∈ {1, 2, 3, 4}, are non-empty, we can assume, without loss of generality, that
all the edges in the potential affecting sequence S are contained in a region whose shape is identical to the region R =

A ∪ B ∪ C ∪ D ∪ I ∪ J ∪ P ∪ Q , which is depicted as the blue region (light gray) in Fig. 2. This case (all the clusters are
non-empty), as we argue a little bit later, corresponds to the worst upper bound on the value of k. We analyze this case next.

Let u and v be any two nodes in S. Since the subgraph G′ of G induced by the edges in S is connected, u, v are connected
within region R. Observe that, for any point in R, the disk centered at the point and of radius r/2 is contained within the
region R′ consisting of R plus a bounding frame of thickness r/2, depicted as the green (dark gray) region in Fig. 3. It is
straightforward to verify that the area a′ of R′ is 11α2/4 + r2 + 4αr . By Lemma 3.2, the hop distance between u and v is at
most (22α2

+ 8r2 + 32αr)/(πr2).
The case considered above (all Ci’s are non-empty) corresponds to the worst upper bound on k. We list below the regions

obtained for all other cases.
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Fig. 2. Illustration for the worst-case region containing an affecting sequence.

Fig. 3. Illustration for the bounding frame.

If exactly three of the clusters Ci (i ∈ {1, 2, 3, 4}) are empty, then S is contained within a region that is identical to
region A in Fig. 2. If only C1 and C2 are empty, then the region obtained is identical to region A ∪ B ∪ C . If only C1 and C3 are
empty, then the region is identical to region A ∪ G ∪ H . If only C1 and C4 are empty, then the region is identical to region
O ∪ S ∪ D ∪ Q ∪ I ∪ J . If only C2 and C3 are empty, then the region is identical to region A ∪ I ∪ C ∪ H . If only C2 and C4 are
empty, then the region is identical to region A ∪ G ∪ H . If only C3 and C4 are empty, then the region is identical to region
A∪ B∪ C . If only C1 is empty, then the region is identical to region A∪ B∪ C ∪D∪ I ∪ J ∪ P ∪Q . If only C2 is empty, then the
region is identical to region A ∪ G ∪ C ∪ H ∪ I . If only C3 is empty, then the region is identical to region A ∪ B ∪ C ∪ H ∪ I . If
only C4 is empty, then the region is identical to region A ∪ B ∪ C ∪ D ∪ I ∪ J .

Each of the above listed cases corresponds to an area R′ that is not larger than that when all the sequences are non-empty,
and hence, to a value of k that is not larger than (22α2

+ 8r2 + 32αr)/(πr2). This completes the proof. �

Lemma 4.3. The algorithm EdgeColoring-APX is an approximation algorithm of ratio 2 for the edge coloring problem on
quasi-UDGs.

Proof. We first show that the algorithm computes an edge coloring of a given quasi-UDG G.
Let u be a node in G. By Fact 3.1, every edge incident on u belongs to one of the subgraphs Gi(u), i ∈ {1, 2, 3, 4}, defined

in line 3 of algorithm. Since u applies the greedy algorithm to the edges of Gi(u) coloring an edge in Gi(u) with a color that
has not been used so far by an edge incident on it, node uwill color its incident edges properly. Therefore, it suffices to show
that for any edge (u, v), both u and v assign the same color to edge (u, v) to conclude that the coloring of G by the algorithm
is consistent, and hence is an edge coloring of G.

For an edge e ∈ G, define label(e) to be the minimum i ∈ {1, 2, 3, 4} such that e is contained in an i-cluster. We say that
an edge e directly affects another edge e′ if e and e′ are adjacent and either label(e) < label(e′) or label(e) = label(e′) and
e comes before e′ in the lexicographic order. We say that an edge e affects an edge e′ if there exists an affecting sequence
of edges (e = e0, e1, . . . , ej = e′) such that for ℓ = 0, . . . , j − 1, eℓ directly affects eℓ+1. Observe that the labels of
the edges in any affecting sequence must be non-decreasing. Therefore, all the edges with the same label i in an affecting
sequence form a connected subgraph of G, and hence are contained within a single i-cluster. It follows that, for any edge
e ∈ G, any affecting sequence of edges containing emust be contained in some potential affecting sequence of clusters that
contains e.

By looking at how the algorithmworks, if the color of an edge e influences the color of an edge e′, then edge e affects e′. For
a potential affecting sequence S and an edge (u, v) in some cluster in S, both u and v in the algorithm collect the coordinates
of all their k-hop neighbors, where k = ⌊(22α2

+8r2 +32αr)/(πr2)⌋. Therefore, by Lemma 4.2, both u and v have collected
the coordinates of every node in S. It follows that both u and v must assign edge (u, v) the same color because both u and
v have the coordinates of the endpoints of all edges affecting (u, v) and will color these edges in the same order using the
same algorithm.

This shows that the algorithm computes a proper edge coloring of G.
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To prove that the algorithm has approximation ratio 2, let apxG be the number of colors used by the algorithm to color
the edges of G, and let optG be the number of colors in a minimum edge coloring of G. Note that optG ≥ ∆, where ∆ is the
maximum degree of G. Let e = (u, v) be the edge with the highest color number, i.e., color(e) = maxe′∈E(G) color(e′). Let ∆u
and ∆v be the degrees of nodes u and v. Since color(e) is the smallest color number that is not used by any edge incident on
u or v, it follows that color(e) ≤ (∆u − 1) + (∆v − 1) + 1. Since e has the highest color number among all edges in G, we
have apxG ≤ (∆u − 1) + (∆v − 1) + 1 ≤ 2 · ∆ − 1 ≤ 2 · optG − 1. �

The theorem below follows from Lemmas 4.1–4.3 above:
Theorem 4.4. The algorithm EdgeColoring-APX is a k-local distributed approximation algorithm for the edge coloring
problem on quasi-UDGs, where k = ⌊(22α2

+ 8r2 + 32αr)/(πr2)⌋, 0 < r ≤ 1 is the quasi-UDG parameter, and α > 2 is
a constant. For a UDG (r = 1), and by choosing α to be slightly larger than 2, the algorithm EdgeColoring-APX is a 50-local
distributed approximation algorithm for edge coloring of ratio 2.

5. Strong edge coloring

In this section we present local distributed algorithms that approximate the strong edge coloring problem on UDGs.
Although the same approach used for the edge coloring problem – in the previous section – works for the strong edge
coloring problem, this approach does not lead to good bounds on the locality of the algorithm. Therefore, we will adopt a
different approach. We note that the techniques in this section can be extended to quasi-UDGs; however, for simplicity, we
restrict our attention to UDGs.

The local distributed algorithm that we present uses a centralized algorithm as a building block. We start by presenting
this centralized algorithm.

5.1. The centralized algorithm

Barrett et al. [1] proposed a centralized greedy algorithm for approximating the strong edge coloring problem on UDGs
that works as follows. The nodes are first ordered using a lexicographic order. This lexicographic order on the nodes is used
to induce a certain order on the edges (a bottom-up order). The edges are then considered with respect to this order, and
an edge e is colored with the smallest color that has not been used to color any edge of distance at most 1 from e. If optG is
the number of colors in a minimum strong edge coloring of G, then it was proved in [1] that the greedy algorithm computes
a strong edge coloring of G that uses at most 8optG + 1 colors. We will refer to the algorithm in [1] as the Centralized-
StrongEdgeColoring algorithm.

We will show next that, irrespective of the ordering in which the edges in G are considered, the algorithm Centralized-
StrongEdgeColoring produces a strong edge coloring of G that uses at most 10optG colors. This property will be essential
to bounding the approximation ratio of the algorithm we present in Section 5.3. The proof of this upper bound on the ratio
is very similar to the proof given in [1] that the algorithm Centralized-StrongEdgeColoring has ratio 8optG + 1 when the
specific bottom-up ordering is used.
Theorem 5.1. For any orderingO of the edges in G, the algorithm Centralized-StrongEdgeColoring, when it considers the edges
in G with respect to the ordering O, has approximation ratio 10.
Proof. Consider the algorithm Centralized-StrongEdgeColoringwith respect to an arbitrary ordering on the edges of G. Let
e = (u, v) be the edge inGwith themaximum color number. LetDu andDv be the disks centered at u and v, respectively, and
of radius 1. The region Du ∪ Dv can be partitioned in the worst case (when |(u, v)| = 1) into at most 10 sectors/triangles, as
shown in Fig. 4, each of diameter (i.e., longest distance between any two points in the sectors/triangles) at most 1. Therefore,
the nodes inG in any of the sectors/triangles form a clique. Note that any edge inGwithin distance 1 from emust have at least
one endpoint in one of these sectors/triangles. Moreover, all edges with at least one endpoint in the same sector/triangle
must all be colored differently in any strong edge coloring of G. If the color of e is equal to the value apxG, then apxG many
colors were used by the algorithm to color the edges of distance at most 1 from e. At least apxG/10 of these edges have
one of their endpoints in the same sector/triangle, and hence must receive different colors in any strong edge coloring of
G. In particular, a minimum strong edge coloring of G must use at least apxG/10 many colors. It follows that the algorithm
Centralized-StrongEdgeColoring computes a strong edge coloring of G that uses at most 10optG many colors. �

5.2. The local distributed algorithm

In this subsection we present a local distributed algorithm that approximates the strong edge coloring problem on
UDGs. The approach is similar in flavor to the one used in Section 4. Using a different approach in Section 5.3, we shall
improve on the approximation ratio significantly at the expense of worsening the locality.

Consider the same rectilinear tiling T of the plane discussed in Section 4 whose tiles are α × α squares, where α > 2.
We label the tiles in T with the labels 1, 2, 3, 4, so that any two tiles with the same label are separated by at least one tile;
see Fig. 5 for an illustration. We denote by label(t) the label of a tile t ∈ T .
Fact 5.2. Let G be a UDG, and let e and e′ be two edges in G such that the endpoints of e reside in the interior of a tile t, and the
endpoints of e′ reside in the interior of a tile t ′, where t ≠ t ′, and such that label(t) = label(t ′). Then the distance between e and
e′ is at least 2.
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Fig. 4. Illustration of the disks Du and Dv and their worst-case partitioning into 10 sectors.

Fig. 5. Illustration of the tiling T .

1: p collects the coordinates of the nodes in Nk[p] in G, where k = ⌊8(α + 1)2/π⌋

2: for round i = 1, 2, 3, 4 do
3: p applies translation Ti and computes its virtual coordinates under Ti
4: if Ti(p) is interior to some tile t0 with label ℓ0 ∈ T , where ℓ0 ∈ {1, 2, 3, 4}, p determines the set Si(p) of all the nodes in Nk[p]

whose translations under Ti reside in the same connected component as Ti(p) in the interior of tile t0; Let Hi(p) be the subgraph of
G induced by Si(p)

5: p applies the algorithm A to the subgraph Hi(p) to compute a strong edge coloring of Hi(p), using only colors from the color class
C i

ℓ0
, and starting with the smallest color in C i

ℓ0
; if an edge e ∈ Hi(p) has already been colored in a previous round, p overwrites the

previous color of e
6: end for

Fig. 6. The algorithm Strong-Edge-Coloring-APX.

Proof. The statement follows from the facts that: (1) any two different tiles with the same label are separated by at least
one tile, and (2) the dimension of a tile is greater than 2. �

Let T1, T2, T3, and T4, be the translations described in Section 4, and note that since α > 2, Lemma 3.1 still holds true. Let
C1
i , C

2
i , C

3
i , and C4

i , for i = 1, 2, 3, 4, be 16 mutually disjoint color classes. We assume that each of the color classes contains
enough colors to color the edges of G, and that the colors in each class are ordered from smallest to largest.

Suppose that A is a centralized approximation algorithm of ratio ρA for the strong edge coloring problem on UDGs.
Intuitively, the algorithm can be summarized as follows. The algorithm runs in 4 rounds, each round corresponds to one of
the above translations. Different color classes are used in different rounds to ensure that edges that are colored in different
rounds do not conflict. In a given round i, translation Ti is applied to all the edges, and only the edges whose translations
are interior to the tiles in T are colored as follows: the edges whose translations are in the same connected component
of a tile of label j are colored with colors from class C j

i , using the centralized algorithm A. This ensures that edges whose
translations end up in tiles of different labels are colored differently. Since different tiles of the same label are far enough
from each other, and the centralized algorithm A is used to color the edges within the same tile, edges that are colored in
the same round are colored properly.

Each node p in G applies the algorithm Strong-Edge-Coloring-APX given in Fig. 6. We intuitively describe the steps per-
formed by the algorithm. Recall that the plane is tiled with tiles of labels {1, 2, 3, 4}, and that different tiles with the same
label are of distance at least 2. Note also that the sixteen color classes C j

i , i, j = 1, 2, 3, 4, are pairwise disjoint. Thiswill ensure
that the coloring is a proper coloring. Each node p starts by collecting the coordinates of its k-hop neighborhood, where k =

⌊8(α+1)2/π⌋. Node p then iterates over the four different translations. For each translation Ti, p computes its translation un-
der Ti, Ti(p). Suppose that Ti(p) resides in a tile of label ℓ0. Node p considers all nodes in its k-hop neighborhoodwhose trans-
lations under Ti reside in the same tile as Ti(p), and applies a centralized algorithm to color the edges of the graph induced by
those points using the color class C i

ℓ0
; this ensures that for different translations and different tile labels, disjoint color classes

are used, and thus guarantees that the coloring is proper. The correctness and properties of the algorithm are proved below.
Lemma 5.3. The algorithm Strong-Edge-Coloring-APX is a k-local distributed algorithm, where k = ⌊8(α + 1)2/π⌋.

Proof. This follows from the fact that the computation at each node in the algorithm depends only on the coordinates of its
k-hop neighbors, where k = ⌊8(α + 1)2/π⌋. �
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Lemma 5.4. The algorithm Strong-Edge-Coloring-APX computes a valid strong edge coloring of G.

Proof. Let p be a node in G, and consider the set Γi(p) of all nodes in Gwhose translations under Ti reside in the same tile as
Ti(p) (note that p ∈ Γi(p)). Since a translation is isometric, there exists a square R in the plane of dimensionsα×α containing
all the nodes inΓi(p). Let R′ be the squarewhose center coincideswith that of R and of dimensions (α+1)×(α+1). Then the
area a′ of R′ is (α+1)2, and for any point in R, the disk centered at the point and of radius 1/2 is contained in R′. By Lemma3.2,
any two nodes in Γi(p) are k = ⌊8(α + 1)2/π⌋-hop neighbors in G. This shows that for any node p and a translation Ti, all
nodes in Si(p) will apply the same centralized algorithm to the edges in Hi(p), and hence each edge in Hi(p) will be assigned
the same color by all the nodes in Si(p). Since in round i, only the nodes in Si(p) can color the edges of Hi(p), every edge in
Hi(p) will be colored in round i. By Lemma 3.1, every edge of Gwill be colored in some round. It suffices, therefore, to show
that the algorithm colors the edges of G properly. Let e and e′ be two edges in G of distance at most 1. We will show that e
and e′ are colored with different colors at the end of the algorithm.

Proceed by contradiction. Assume that e and e′ are assigned the same color at the end of the algorithm. Since for any
two rounds j and j′, where j ≠ j′, the color classes used in round j are mutually disjoint from those used in round j′, edges
e and e′ must have been assigned their color in the same round; let this round be round j. In addition, the translations of
the endpoints of e in round j must reside in the interior of a tile with the same label as that in which the translations of the
endpoints of e′ reside. Since a translation is isometric, and since the distance between e and e′ is at most 1 in G, by Fact 5.2, it
follows that the translations of the endpoints of e and e′ reside in the same tile t . Since the distance between e and e′ in G is
at most 1, the translations of the endpoints of e and e′ reside in the same connected component in tile t . This, however, is a
contradiction because the algorithm A, applied in round j in the algorithm Strong-Edge-Coloring-APX, computes a strong
edge coloring of the edges whose translations reside in the same connected component of tile t that contains e and e′. �

Lemma 5.5. The algorithm Strong-Edge-Coloring-APX approximates the strong edge coloring problem on UDGs to a ratio
16 · ρA, where ρA is the approximation ratio of A.

Proof. Let j be the round among the 4 rounds of the algorithm in which the maximum number of colors, apxj, is used. It
follows from the choice of j that the total number of colors used by the algorithm, call it apxG, is at most 4 · apxj. Let ℓj be the
label of the color class fromwhich themaximumnumber of colors, apxjℓj is used in round j. Since there are 4 labels, it follows

that apxjℓj ≤ 4 · apxj, and hence, apxG ≤ 16 · apxjℓj . Let optG be the number of colors in a minimum strong edge coloring of G.
From the way the algorithm works, in round j, every set of nodes S in G whose translations are in the same connected

component in the interior of some tile with label ℓj, apply the algorithm A to compute a strong edge coloring of the edges of
the subgraph of G induced by S, using the same set of colors C j

ℓj
, and in the same order (all starting with the smallest color in

C j
ℓj
). Therefore, there exists a set of nodes Sj in G, whose translations reside in the same connected component in the interior

of some tile, such that algorithm A uses apxjℓj colors to properly color the edges of the subgraph Hj induced by Sj. Since A

has approximation ratio ρA, a minimum strong edge coloring of Hj requires at least apx
j
ℓj
/ρA colors. Since Hj is an induced

subgraph of G, a minimum strong edge coloring of G requires at least apxjℓj/ρA colors. It follows that optG ≥ apxjℓj/ρA, and
16 · apxj ≤ 16 · ρA · optG. This shows that the algorithm properly colors the edges of G using no more than 16 · ρA · optG
colors, and hence has ratio 16 · ρA. �

Theorem 5.6. There exists a 22-local distributed algorithm that, given a UDG G, computes a strong edge coloring of G using at
most 128 · optG + 16 colors, where optG is the number of colors in a minimum strong edge coloring of G.

Proof. Since a node p in the algorithm Strong-Edge-Coloring-APX can consider the edges in Hp in any order, p can order
these edges according to the bottom-up ordering used in [1]. Under this specific ordering, as was mentioned before,
the algorithm Centralized-StrongEdgeColoring computes a strong edge coloring of Hp using at most 8 · optHp + 1
colors, where optHp is the number of colors in a minimum strong edge coloring of Hp. Using the algorithm Centralized-
StrongEdgeColoring as the subroutine A in the algorithm Strong-Edge-Coloring-APX, and setting α to a value slightly
larger than 2, the statement follows from Lemmas 5.3–5.5. �

5.3. The improved algorithm

In this subsectionwe present a local distributed algorithm for the strong edge coloring problemonUDGswith a smaller
approximation ratio, but larger locality, than the algorithm presented in Section 5.2. The algorithm uses the same tiling T ,
but we require that α > 3. The tiles are labeled with the labels 1, 2, 3, 4 as in Section 5.2 (see Fig. 5).

Each node is assigned to the tile which contains it. Ambiguities caused by nodes on the boundaries of tiles are resolved
by assigning them to the tile with the smallest label which contains them (any other resolving method works as well). We
observe that two tiles of the same label have a Euclidean distance more than 3. Therefore, if we place a bounding square
box of dimensions (α + 1) × (α + 1) centered at each tile, two bounding boxes of two tiles with the same label have a
Euclidean distance larger than 1. Consequently, two edges contained in different bounding boxes of two tiles with the same
label have distance at least 2, and can be colored in the same round. The improved algorithm is given in Fig. 7. The algorithm
is somehow similar to the algorithm EdgeColoring-APX, except that the current algorithm uses bounding boxes instead of
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1: p collects the coordinates of the nodes in Nk[p] in G, where k = ⌊(32α2
+ 80α + 40)/π⌋

2: for round i = 1, 2, 3, 4 do
3: let Gi(p) be a copy of the subgraph of G consisting of the set Ei(p) of uncolored edges whose endpoints are in Nk[p], and such that,

for any edge (u, v) ∈ Ei(p), u and v are in the bounding box of some tile of label i
4: p colors all the uncolored edges in Gi(p) using the algorithm Centralized-StrongEdgeColoring
5: for each edge e ∈ Gi(p) incident on p do
6: p colors e in Gwith the same color in Gi(p)
7: end for
8: end for

Fig. 7. The algorithm Improved-StrongEdgeColoring-APX.

Fig. 8. In the worst case an affecting sequence starts from a type-1 tile, goes through a type-2 tile, then a type-3 tile, and finally ends up in a type-4 tile.
Therefore, in the worst case, an affecting sequence is contained within one of the two regions depicted above.

translations to ensure coordination. We intuitively describe the main steps performed by a node p in the algorithm. First, p
starts by collecting the coordinates of its k-hop neighbors, where k = ⌊(32α2

+ 80α + 40)/π⌋; those are all the nodes that
can contribute to the computation performed by p. Then p iterates for four iterations i = 1, 2, 3, 4. For each iteration i, p
considers a copy Gi of the subgraph consisting of the uncolored edges in its k-hop neighborhood whose endpoints reside in
the bounding box of some tile of label i. Node p applies a centralized algorithm to color the uncolored edges in Gi. Finally,
p ‘‘copies’’ only the coloring of its incident edges in Gi that it computed back to the original graph G. The correctness of the
algorithm and its properties are proved below.

Lemma 5.7. The algorithm is a k-local distributed algorithm, where k = ⌊(32α2
+ 80α + 40)/π⌋, that computes a strong edge

coloring of a given UDG.

Proof. Let G be a UDG. First, since the computation at each node in the algorithm Improved-StrongEdgeColoring-APX
depends only on the coordinates of its k-hop neighbors, where k = ⌊(32α2

+ 80α + 40)/π⌋, the algorithm is a k-local
distributed algorithm for the aforementioned value of k. Therefore, it suffices to show that the algorithm computes a strong
edge coloring of G.

For each i ∈ {1, 2, 3, 4}, let Gi be the subgraph of G consisting of all the edges (u, v) ∈ G such that u and v are in the
bounding box of the same tile of label i in T ; we call each connected component C in Gi an i-cluster, and we say that i is the
label of C . Note that, by definition, any two distinct i-clusters are of distance at least 2, that is, are disjoint and there is no edge
connecting a node in the first i-cluster to a node in the second i-cluster. A cluster is an i-cluster, for some i ∈ {1, 2, 3, 4}.
A sequence of clusters is said to be a potential affecting sequence, if the labels of the clusters on this sequence are strictly
increasing, and each two consecutive clusters in the sequence are of distance at most 1, i.e., either they share at least one
node in G or there exists a node in the first cluster that is adjacent to a node in the second cluster. Note that a potential
affecting sequence has length at most 4.

For an edge e = (u, v), we define label(e) to be the smallest i ∈ {1, 2, 3, 4} such that u or v (or both) resides in a tile of
label i. Now that the notion of the label of an edge has been defined, we can define the notion of the affecting sequence of
edges, and subsequently, of an edge affecting another edge, in a similar fashion to that in the proof of Lemma 4.3. The only
difference now is that the distance between two consecutive edges in the sequence can be at most 1. Similarly, it can be
proved that any affecting sequence of edges is contained in some potential affecting sequence of clusters.

Nowwe show that any two nodes u and v in a potential affecting sequence of clusters are at most k hops away from each
other, where k = ⌊(32α2

+ 80α + 40)/π⌋. Let S = (C1, C2, C3, C4) be a potential affecting sequence of clusters. Similarly
to the proof of the Lemma 4.2, it can be shown that the worst upper bound on k corresponds to the case where all the Ci’s
are non-empty. Note that in round 1, all edges within the blue bounding boxes around any type-1 tile are colored, i.e., any
edge with at least one vertex in a type-1 tile has been colored in round 1. Hence, in an affecting sequence, the blue bounding
boxes around a type-2 tile do not extend to the neighboring type-1 tiles. Similarly the blue bounding boxes around a type-3
tile in an affecting sequence do not extend to the neighboring type-1 or type-2 tiles, and a bounding box for a type-4 tile
does not extend to any of the neighboring tiles.

Assuming the worst case, there are two possible regions for the bounding box of an affecting sequence; they are depicted
in Fig. 8. The case when the shape contains tiles {A, B,D, E} is the worst case because the area is larger. In that case the



I.A. Kanj et al. / Theoretical Computer Science 412 (2011) 4704–4714 4713

affecting sequence must reside in a region R whose shape is depicted as the blue (dark gray) region in the right figure of
Fig. 8.

By placing R within a frame of thickness 1/2, we obtain a region R′ depicted as the green (dark gray) plus the blue (light
gray) regions in the right figure of Fig. 8 of area a′

= 4α2
+ 10α + 5. Using Lemma 3.2, any two nodes in R are at most

k = ⌊(32α2
+ 80α + 40)/π⌋ hops away from each other.

To prove that the algorithm computes a strong edge coloring of G, observe that every edge of G must be contained in at
least one bounding box, and hence will be considered by the algorithm. Let e = (u, v) and e′

= (u′, v′) be two edges in G,
and assume, without loss of generality, that e′ affects e. Since e′ affects e, any potential affecting sequence of clusters for e′ is
contained in some potential affecting sequence of clusters for e. Since every node in the algorithm collects the coordinates
of all its k-hop neighbors where k = ⌊(32α2

+ 80α + 40)/π⌋, from the above discussion it follows that both nodes u and v
know the coordinates of all nodes in any potential affecting sequence of clusters of both e′ and e. Consequently, nodes u and
v will assign the edge e′ the same color assigned by its endpoints u′ and v′. It follows from the previous argument that, when
u and v color the edge e, both u and v will assign e the same color, and will assign it a color that does not conflict with the
color of any edge within distance at most 1 from e. This shows that the algorithm computes a strong edge coloring of G. �

Lemma 5.8. The algorithm is an approximation algorithm of ratio 10 for the strong edge coloring problem on UDGs.

Proof. By Lemma 5.7, the algorithm Improved-StrongEdgeColoring-APX is an approximation algorithm for the strong
edge coloring problem on UDGs. To prove that the algorithm has ratio 10, note that the algorithm Improved-
StrongEdgeColoring-APX is equivalent to the algorithm Centralized-StrongEdgeColoring applied to the edges of G in
the order they were colored by the algorithm Improved-StrongEdgeColoring-APX. It follows from Theorem 5.1 that the
algorithm Improved-StrongEdgeColoring-APX has ratio 10. �

The theorem below follows directly from the above two lemmas:

Theorem 5.9. Given a UDG G and a constant α > 3, the algorithm Improved-StrongEdgeColoring-APX is a k-local distributed
algorithm, where k = ⌊(32α2

+ 80α + 40)/π⌋, that computes a strong edge coloring of G which uses at most 10optG colors,
where optG is the number of colors in a minimum strong edge coloring of G. In particular, by choosing α to be slightly larger than
3, the algorithm Improved-StrongEdgeColoring-APX is a 180-local distributed algorithm of ratio 10.

6. Empirical results and discussions

We conducted extensive simulations to study the behavior of the presented algorithms empirically.
We randomly deployed N UDG nodes in a square sensor field. The average degree d of the networks generated is ranged

over the set of values {5, 7, 9, 11, 13}. In order to achieve the expected average degree, we adjusted the area of the sensor
field appropriately. For each configuration (N, d), we generated 100 networks and ran the algorithms on them. For each run
of the algorithms, we measured the maximum locality bound, and we upper bounded the approximation ratio. Then we
averaged these values over the 100 generated networks.

For the edge coloring problem, note that themaximumnode degree of the network G is a lower bound on the number of
colors in a minimum edge coloring of G. We upper bounded the actual approximation ratio of the algorithm EdgeColoring-
APX by dividing the number of colors used by the algorithm by the maximum node degree in G. For the strong edge
coloring problem, observe that the number of edges adjacent to an edge in G, denoted by ne, is a lower bound on the
number of colors in a minimum strong edge coloring of G. Therefore, we can use the valuemax{ne | e ∈ G} as a lower bound
on the number of colors in a minimum strong edge coloring of G. By dividing the number of colors used in the algorithms
for the strong edge coloring problem by max{ne | e ∈ G}, we obtain an upper bound on the approximation ratio of the
algorithms.

Fig. 9 shows a typical set of simulation results for the approximation ratio and the locality of the algorithms. The curves
in these two figures correspond to the results whenN = 5000.We remark that we did not noticemuch change in the results
for different values of N . This is possibly due to the fact that the algorithm are local.

For the EdgeColoring-APX algorithm, the theoretical upper bound on the approximation ratio derived in the current
paper is 2, whereas in the empirical results the ratio was always upper bounded by 1.2. On the other hand, the theoretical
upper bound on the locality of the algorithm is 50, whereas the simulations showed that this number is smaller than 11,
even when the diameter of the network is as large as 136.

For the ImprovedStrongEdgeColoring-APX algorithm, the theoretical upper bounds on the locality seem to be
impractical (180). However, the simulation results show that the locality of the algorithm is almost always upper bounded
by 37. On the other hand, the approximation ratio in the simulation results was always upper bounded by 4.5, which is also
much smaller than the derived theoretical upper bound of 10.

Surprisingly, the StrongEdgeColoring-APX algorithm performed very well empirically. Although the theoretical upper
bound on the approximation ratio is as large as 128, the empirical results showed that the approximation ratio of the
algorithm is smaller than 7.5. The locality of the algorithm is always less than 9.5, in spite of the obtained theoretical
upper bound of 22. This suggests that the StrongEdgeColoring-APX algorithm may be more suitable for practical use
when compared to the ImprovedStrongEdgeColoring-APX algorithm, as the trade off between its approximation ratio
and locality is more reasonable and favorable.
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Fig. 9. The simulation results.

We conclude that the algorithms we presented in the current paper are not only of theoretical importance, but are also
of practical relevance.
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