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Abstract

Consideration of categories of transition systems and related constructions leads to the study
of categories of F-coalgebras, where F is an endofunctor of the category of sets, or of some
more general ‘set-like’ category. It is fairly well known that if E is a topos and F :E → E

preserves pullbacks and generates a cofree comonad, then the category of F-coalgebras is a
topos. Unfortunately, in most of the examples of interest in computer science, the endofunctor F
does not preserve pullbacks, though it comes close to doing so. In this paper we investigate what
can be said about the category of coalgebras under various weakenings of the hypothesis that F
preserves pullbacks. It turns out that almost all the elementary properties of a topos, except for
e3ectiveness of equivalence relations, are still inherited by the category of coalgebras; and the
latter can be recovered by embedding the category in its e3ective completion. However, we also
show that, in the particular cases of greatest interest, the category of coalgebras is not itself a
topos. c© 2001 Elsevier Science B.V. All rights reserved.
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0. Introduction

A labelled transition system is traditionally taken to consist of a set S of states,
a set L of labels, and a ternary relation T ⊆ S ×L× S, the interpretation being that
(s; l; s′)∈T if and only if the system, when in state s, can make a transition labelled l
and arrive at state s′. However, in most contexts the appropriate notion of ‘morphism
of transition systems’, even if we assume a :xed set of labels, is not simply a function
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between the state-sets which preserves the transition relations. From this point of view,
it makes sense to replace the relation T ⊆ S ×L × S by its transpose t : S→P(L× S)
(where P denotes the covariant power-set functor); that is, we regard a transition system
as a coalgebra for the endofunctor P(L×−) of Set. Then a morphism (S; t)→ (S ′; t′)
becomes a function f : S→ S ′ such that, for any s∈ S, we have

(l; s′) ∈ t′(f(s))⇔ (∃ Cs ∈ S)(f( Cs) = s′ and (l; Cs) ∈ t(s)):

In other words, a morphism of L-labelled transition systems is what is usually called
a functional bisimulation.

Of course, functional bisimulations are not enough: we need to consider general
bisimulations, which are not functions but relations. A bisimulation from (S; t) to (S ′; t′)
is a relation R⊆ S × S ′ such that, if s1 is R-related to s′1 and s′1 can make an l-labelled
transition to s′2, then s1 can make an l-labelled transition to some state s2 which is
R-related to s′2, and conversely. Under these conditions, the instances of the relation
R can themselves be viewed as the states of a transition system (R; Ct) equipped with
a jointly monic pair of functional bisimulations to (S; t) and (S ′; t′), that is, we may
regard R as a relation in the category of functional bisimulations. This strategy (which
was exploited by Joyal et al. [18]; cf. also [2]) is the one which we shall adopt: that
is, we aim :rst to study the category of functional bisimulations, and once we have
a good enough understanding of it (in particular, once we know that it is regular,
and so admits a good calculus of relations [12]), we may then pass to the associated
category of relations in order to study general bisimulations. (This approach may be
contrasted with that of Rutten [33], who :rst passes from the category of sets – or
some other base category such as metric spaces – to its category of relations, and then
considers transition systems as coalgebras for a suitable endofunctor of the latter. The
two approaches are fairly obviously equivalent in some sense, but we shall not give a
detailed comparison here.)

It has been recognized in computer science for some time that it is fruitful to view
various other kinds of dynamical systems, besides labelled and unlabelled transition sys-
tems, as coalgebras for appropriate endofunctors. For instance, deterministic automata,
probabilistic transition systems, transducers, resumptions and objects (in the sense of
object oriented programming) can all be handled in this way. See [10, 29, 32, 34] for
further information and examples.

We are thus led to study categories of coalgebras for endofunctors of Set similar to
P(L×−). Actually, there is a technical reason why this particular endofunctor (even
in the case when L is a singleton) is a bad one to study: namely that the category of
P(L×−)-coalgebras has no terminal object, as a consequence of well-known results of
Cantor and Lambek (see Example 2:2), and it is therefore unlikely to have many other
good categorical properties. However, this diJculty is relatively easily circumvented.
In any particular context, it is usually easy to place a bound on the size of the set of
transitions which can be made from a given state, and so we may consider our transition
system as a coalgebra for the functor P(L×−), where  is a suitable (regular) cardinal
and P(A) denotes the set of subsets of A of cardinality less than . (This is not
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essentially di3erent from the approach of Aczel and Mendler [2], who considered P
as an endofunctor of the category of classes: their ‘sets’ are our ‘sets of cardinality
less than ’.) For any functor of this kind, it turns out that the category of coalgebras
not only has a terminal object, but also inherits many other good categorical properties
from Set; and these in turn lead to good categorical properties of its category of
relations.

In practice, in the present paper we shall mostly take  to be !, so that we are
concerned with :nitely branching transition systems. However, this is simply a matter
of convenience: we emphasize that our main results remain true, with the same proofs,
if we allow branching up to any :xed cardinality. We shall also simplify matters by
assuming, for most of the time, that the set L of labels is a singleton, so that we are
(in e3ect) dealing with unlabelled transition systems.

Our approach is axiomatic: that is, we work with endofunctors F :E→E of a gen-
eral category E, and see which properties of E and of F are required to deduce good
categorical properties of the category EF of F-coalgebras. Our reason for doing this
is the belief that, for a full understanding of categories of transition systems, it will
be necessary not only to consider endofunctors more general than P(L×−), but also
to consider systems whose states form not just abstract sets but objects of some more
general category (for example, a category of domains); cf. [34, 10]. Thus, we do not
wish to assume from the outset that our base category E is the classical category of
sets. On the other hand, we shall assume whenever we :nd it necessary that E has
any of the categorical properties of a topos: this assumption may be reconciled with
our domain-theoretic intentions by recalling the general philosophy of synthetic domain
theory (cf. [13]) that domains ought to be viewed as ‘variable sets’, that is as objects
of some topos.

We recall that, in any topos E, the construction of power-objects may be made into a
covariant functor P :E→E, and that this functor has a subfunctor, traditionally denoted
K , such that K(A) may be thought of as ‘the object of :nite subobjects of A’ [14,
9.13] – in particular, when E is the classical topos of sets, then K(A) is exactly P!(A)
as de:ned earlier. (The notion of :niteness encapsulated by this functor is commonly
called Kuratowski-5niteness, or K-:niteness for short.) Thus our leading example will
be the endofunctor K of an arbitrary topos.

However, there are two other endofunctors, closely related to K , which we shall also
be interested in studying; both of these, unlike K , require the assumption that E has a
natural number object (i.e. ‘satis:es the axiom of in:nity’). One is the list functor L:
for a set A, L(A) is the set of all :nite lists (a1; a2; : : : ; an) of elements of A (including
the empty list) – equivalently, it is the underlying set of the free monoid generated by
A. For the construction of the analogous endofunctor of an arbitrary topos with natural
number object, see [14, 6.41]. We may also form the free commutative monoid M (A)
as a quotient of L(A), in which we identify two lists if they contain the same elements
of A with the same multiplicities (but not necessarily in the same order); equivalently,
we may think of the elements of M (A) as :nite multisets of elements of A. (Of course
K(A) is in turn a quotient of M (A), in which we ‘forget’ the multiplicities with which
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elements appear in a list, as well as their order: as observed in [14, 9.16], it is the
free semilattice generated by A.)

When E is the topos of sets, we may think of M -coalgebras as ‘transition sys-
tems with multiplicities’, in which we may have several di3erent ways of making the
transition from one given state to another, and the corresponding notion of bisimu-
lation has to keep track of the number of possible transitions from each state (i.e.,
if f :A→A′ is a functional bisimulation and there are n possible transitions, counted
with multiplicities, from a state a, then there must be exactly n possible transitions
from f(a).) L-coalgebras are similar except that we also have a total ordering (which
we may think of as ‘preference’) on the set of possible transitions from each state,
and once again the notion of bisimulation must respect these orderings. (Note that
we do not assert that either of these notions of ‘transition system’ is computation-
ally signi:cant; merely that they give rise to mathematically interesting categories
of coalgebras, and that understanding how things work in these cases – which are
in some respects simpler – will help us to understand the case of K-
coalgebras.)

We may now brieMy describe the contents of this paper. The key to understand-
ing the structure of EF turns out to be the fact that, although the functors F under
consideration do not in general preserve :nite limits, they ‘come close’ to preserving
pullbacks – and these ‘near-preservation’ properties are essential for lifting proper-
ties of E to properties of EF . We therefore begin with a section in which we discuss
these weak preservation properties in general terms, and establish the relations between
them. The second essential ingredient of our results, and the one which distinguishes
the :nite-powerset functor K from the full-powerset functor P, is the fact that the for-
mer generates a cofree comonad, enabling us to transfer our attention from categories
of ‘mere’ coalgebras for an endofunctor to categories of Eilenberg–Moore coalgebras
for a comonad; we discuss this phenomenon, and give suJcient conditions for it to
happen, in Section 2. Section 3 contains our main positive results on the transfer of
properties from E to EF : we show that, provided F preserves weak pullbacks and
generates a cofree comonad, then EF inherits ‘almost all’ of the structure of a topos
from E. It does not inherit all the structure, unless F actually preserves pullbacks;
in particular, it fails to inherit cartesian closedness or e3ectiveness of equivalence re-
lations. However, there is a well-known ‘e3ectivization’ technique for repairing the
latter defect, which can be applied to EF ; we consider this in Section 4, and show
that for suitable functors F it yields a topos (in which EF is fully embedded). Finally,
Section 5 considers the relationships between categories of coalgebras and categories
obtained by Artin glueing; using results of Carboni and Johnstone [6], this enables
us to show that EF is not a topos in general (in particular, it is not a topos for our
leading example F = K), so that the e3ectivization process of Section 4 cannot be
omitted.

A few words should be said about the process which led to the :ve-author col-
laboration that produced this paper. An initial collaboration between JP, TT and HW,
during JP’s visit to Japan in late 1997, and building on the earlier work of TT and
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HW [35–37], resulted in a submission [28] to the CMCS ’98 workshop, which turned
out to have a considerable overlap with an independent submission [38] by JW. When
this was discovered, there began an extended electronic correspondence, which soon
came to involve PJ, in an attempt to :nd the best possible synthesis of the results.
By the time a clear picture began to emerge, our various contributions had become so
thoroughly intertwined that there was no alternative to writing them up as a :ve-author
paper. In addition to CMCS’98 (Lisbon, March 1998), versions of the material in the
paper were presented by one or other of the authors at the following meetings: PSSL 66
(Birmingham, March 1998), Seminar on Theory and Applications of Domains
(Dagstuhl, May 1998), MFPS 14 (London, May 1998) and LICS 13 (Indianapolis,
June 1998). The :ve-author extended abstract [16] was written for the last of these:
it may be regarded as a preliminary version, without detailed proofs, of the present
paper, but it also contains some material on monoidal closed structures which has been
omitted from the present version.

1. Weak preservation of pullbacks

We recall that a cone over a diagram in a category is said to be a weak limit if it
satis:es the ‘existence’ but not necessarily the ‘uniqueness’ clause in the de:nition of
a limit.

Lemma 1.1. Let E and F be categories with limits of some particular shape J . Then
the following conditions on a functor F :E→F are equivalent:

(i) F preserves weak limits of diagrams of shape J .
(ii) F sends limits of diagrams of shape J to weak limits.
(iii) For any diagram D of shape J in E; the canonical comparison map

F(lim← D)→ lim← F(D) is a split epimorphism.

Proof. The equivalence of (ii) and (iii) is immediate when we recall that, in a category
where limits exist, a cone over a diagram is a weak limit i3 its factorization through
the limiting cone is split epic. The equivalence of (i) and (ii) follows from the fact
that any functor preserves split epimorphisms.

We are also interested in a still weaker condition than preservation of weak limits.
Following [7], we shall say that a functor F :E→F nearly preserves limits of shape J
if, for every diagram D of shape J in E, the canonical morphism F(lim← D)→ lim← F(D)

is a cover (also called an extremal epimorphism); that is, it does not factor through
any proper subobject of lim← F(D). Since split epimorphisms are covers, it is clear that

‘F preserves weak limits’ implies ‘F nearly preserves limits’. (Of course, if F is a
category – such as Set, under the assumption of the axiom of choice – in which every
extremal epimorphism is split, then the converse holds.)
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Lemma 1.2. If F nearly preserves pullbacks; then it preserves pullbacks of
monomorphisms: that is; if

is a pullback square with h (and therefore g) monic; then the comparison map
FA→FB×FD FC is an isomorphism.

Proof. First we show that F preserves monomorphisms. Let f :A�B be a monomor-
phism; then

A
1−−−−−→ A





�

1






�

f

A
f−−−−−→ B

is a pullback, so its near-preservation implies that the diagonal map from FA to the
kernel-pair R�FA of Ff is epic. Hence the two projections R�FA are equal; so Ff
is monic.

Now consider the general pullback diagram in the statement. Since g is monic, so
is Fg, and so the canonical map FA→FB ×FD FC must be monic since Fg factors
through it. By assumption, it is a cover; so it must be an isomorphism.

We thus have the following hierarchy of conditions on a functor F :E→F between
categories with pullbacks:
(i) F preserves pullbacks;
(ii) F preserves weak pullbacks;
(iii) F nearly preserves pullbacks;
(iv) F preserves pullbacks of monomorphisms;
(v) F preserves monomorphisms.

Each of the conditions in this list implies the ones below it, but none of the im-
plications are reversible. In most of our work on coalgebras, we shall assume that F
satis:es condition (iv), but at some points we shall need to assume (iii) or (ii).

Examples 1.3. (a) Let F :Set→Set be the subfunctor of the covariant power-set func-
tor which sends a set A to the set of all subsets of A of cardinality at most three.
It is easy to see that F , like the power-set functor itself, preserves pullbacks of
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monomorphisms. But it does not nearly preserve the pullback

A = {a; b; c; d} f−−−−−→ B = {a; c; d}




�

g






�

h

C = {a; b; d} k−−−−−→ D = {a; d}

;

where f and k send b to a, g and h send c to d and all other elements are mapped
to themselves: the pair (B; C) is an element of FB×FD FC which is not in the image
of the comparison map from FA.

(b) Let G :Set→Set be the quotient of the functor Set (2;−) (where 2 denotes
a two-element set) by the equivalence relation which identi:es all non-injective maps
2→A, for each A. It is clear that G preserves monomorphisms, but it does not preserve
pullbacks of monomorphisms: for example, in the pullback

where f(c) = b and all other elements are mapped to themselves, the injection 2→A
sending 0 and 1 to b and c, respectively, and the unique map 2→B′ de:ne an element
of GA×GB GB′ which is not in the image of the comparison map from GA′.

Of rather more direct relevance to us is the following.

Example 1.4. In any Boolean topos E, the :nite-powerset functor K preserves weak
pullbacks. To see this, let

A
f−−−−−→ B





�

g






�

h

C
k−−−−−→ D

be a pullback square in E: we have to construct a splitting for the morphism KA→
KB ×KD KC which, in ‘elementwise’ terms, sends a K-:nite subobject A′⊆A to the
pair consisting of its images under f and g. But, given K-:nite subobjects B′⊆B and
C′⊆C with the same image D′ in D, the object B′ ×D′ C′ is K-:nite since it is a
subobject of B′×C′, and it is a subobject of A mapping onto B′ and C′. Applying
this construction to the generic element of KB×KD KC yields the required splitting.

The thing which makes the above argument work is the fact that, in a Boolean topos,
every subobject of a K-:nite object is K-:nite (cf. [15]). In a general topos, this is not
true; however, it is still the case that K nearly preserves pullbacks. To show this, one
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proves in the internal logic of E that “the set of subobjects C′⊆C such that, for all
K-:nite B′⊆B with Kh(B′) = Kk(C′), there exists a K-:nite A′⊆A with Kf(A′) = B′

and Kg(A′) = C′” contains singletons and is closed under :nite unions, so must be the
whole of KC. We omit the details.

Nevertheless, in a general topos the functor K does not preserve weak pullbacks.
To give a counterexample, we shall work in the Sierpi9nski topos whose objects are
morphisms (A0→A1) in Set and whose morphisms are commutative squares. For such
an object, we may identify K(A0→A1) with (KA0→KA1). Now consider the pullback
square

A
f−−−−−→ B





�

g






�

h

C
k−−−−−→ D

;

where D1 is a singleton, B1 and C1 are two-element sets {b1; b2} and {c1; c2}, respect-
ively, and A1, A0, B0, C0 and D0 are all copies of B1×C1 with identity maps between
them. Consider the :nite subsets {(b1; c1); (b2; c2)} and {(b1; c2); (b2; c1)} of A0; these
de:ne elements of KA0 with distinct images in KA1, KB0 and KC0, but the same image
in both KB1 and KC1. So the comparison map KA→KB×KDKC contains a copy of the
non-split epimorphism (2→ 2)→ (2→ 1); hence it is itself a non-split epimorphism.

Remark 1.5. By considering the :nite sets in the counterexample just given as :nite
multisets (in which each element has multiplicity 1), we may obtain the same conclu-
sion about the functor M : in general, it does not preserve weak pullbacks. However,
it does nearly preserve pullbacks (in any topos E): the proof is an easy exercise in
manipulating :nite cardinals. Hence, in a topos (such as Set) satisfying the axiom of
choice, it preserves weak pullbacks.

2. Coalgebras and coalgebras

As indicated in the Introduction, we are interested in studying the category of
F-coalgebras for certain functors F :E→E; that is, the category whose objects are
objects A of E equipped with a structure map � :A→FA, and whose morphisms
(A; �)→ (B;  ) are morphisms f :A→B of E such that

A
f−−−−−→ B





�

�






�

 

FA
Ff−−−−−→ FB

commutes. But there is another and older meaning of the word ‘coalgebra’, that of an
Eilenberg–Moore coalgebra for a comonad: if the functor F carries a comonad structure
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(F; !; "), then a morphism � :A→FA is called an Eilenberg–Moore coalgebra structure
if the diagrams

commute. Since we shall need to consider both types of coalgebra in what follows,
we shall adopt the convention of spelling ‘Coalgebra’ with a capital C when we mean
an Eilenberg–Moore coalgebra for a comonad, and with a small c when we refer to
a ‘mere’ coalgebra for an endofunctor. We write EF for the category of F-coalgebras
in E, and EF for the category of Coalgebras for a comonad F= (F; !; "); the use of
di3erent typefaces should suJce to distinguish between them.

Given a functor F :E→E, we say that a comonad G= (G; !; ") is cofree on F if
there is a natural transformation # :G→F such that, for any object A, composition with
#A induces a bijection from Coalgebra structure maps � :A→GA to ‘mere’ coalgebra
structures  = #A� :A→FA, and such that, given two G-Coalgebras (A; �) and (B;  ), a
morphism f :A→B is a Coalgebra homomorphism (that is, satis:es (Gf)�=  f) i3 it
is a coalgebra homomorphism (that is, satis:es (Ff)#A�= #B f). (This is a stronger
condition than merely demanding that (G; #) should be a universal arrow from the
forgetful functor (comonads on E) → (endofunctors of E) to F , which is what one
would ordinarily mean by saying that G is cofree on F ; however, the latter condition
seems too weak to be of much practical use. In [19, Section 22], Kelly discusses the
di3erence between the two notions (in the dual case of monads) in detail; his name for
what we have called a cofree comonad would be a ‘coalgebraically cofree comonad’.)

Proposition 2.1. The following conditions on a functor F :E→E are equivalent:
(i) There exists a cofree comonad on F .
(ii) The forgetful functor EF→E is comonadic.
(iii) The forgetful functor EF→E has a right adjoint.
(iv) For every object A of E; the category whose objects are F-coalgebras equipped

with a map to A has a terminal object.
(v) (if E has 5nite products) For every object A of E; the functor B 
→FB×A has

a terminal coalgebra.

Proof. (i) ⇒ (ii) holds since (i) contains the statement that there is a comonad G
such that EG ∼= EF , by an isomorphism identifying the two forgetful functors to E.
Conversely, if (ii) holds, then we obtain a natural transformation # :G→F as the
composite

GA
"A−−−−−→FGA

F!A−−−−−→FA;
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where "A is the coalgebra structure corresponding to the Coalgebra structure
"A :GA→GGA, and it is easy to verify that it has the universal property stated in
(i). (ii) ⇒ (iii) is trivial; (iii) ⇔ (iv) since (iv) is a well-known criterion for the
existence of a right adjoint to a given functor; and (iv) ⇔ (v) is a simple restatement
of the condition. So the only part requiring any work is (iii) ⇒ (ii). But even this
is easy, since the forgetful functor EF→E creates any limits which are preserved by
F : in particular, it creates equalizers for parallel pairs of morphisms whose images
in E have an absolute equalizer. So the result follows from the Precise Comonadicity
Theorem [24, p. 147].

Example 2.2. Not every endofunctor generates a cofree comonad. If P :E→E is the
covariant power-object functor on a topos E, then by a well-known result of Lambek
[22] a terminal P-coalgebra would have to be an isomorphism A→PA; but no such
isomorphism can exist in a non-degenerate topos (cf. [14, Exercise 5:7]).

So we need to restrict the class of functors we consider in such a way as to exclude
P. One way of doing this, in the context of a Grothendieck topos E, was exploited in
[4, 28]. Note that the category EF may be viewed as the inserter of the diagram

E

1

−−−−−→−−−−−→
F

E

in the meta-2-category of categories (that is, the universal solution to the problem of
:nding a functor U :D→E together with a natural transformation 1E ◦ U→F ◦ U ).
In particular, it is a weighted limit (cf. [20]). So by Theorem 5:1:6 of Makkai and
Pare [27], if E is an accessible category and F is an accessible functor (that is,
preserves -:ltered colimits for some cardinal ), then EF is also accessible. But
we also know that the forgetful functor EF→E creates all colimits which exist in
E: in particular, if E is cocomplete, then so is EF . Now a category is locally pre-
sentable i3 it is accessible and cocomplete [27, 6.1.4]; and any such category has a
generating set and is well-copowered [27, 6.1.3], so that the Special Adjoint Functor
Theorem [24, p. 125] may be used to construct right adjoints for colimit-preserving
functors between locally presentable categories. In particular, the forgetful functor
EF→E has a right adjoint. Thus we have veri:ed the following result, :rst noted
by Barr [4]:

Proposition 2.3. Let E be a locally presentable category. Then any accessible functor
F :E→E generates a cofree comonad.

In particular, Proposition 2.3 implies that the functor P(X×−) :Set→Set generates
a cofree comonad for any cardinal  and any :xed set X , as we claimed in the
Introduction.
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The following more elementary result is also of interest, though it covers a much
more restricted class of functors. We recall the notion of partial product studied in
[11]: given an object A of E and a morphism p :E→B, a partial product of p and
A is an object P(p; A) equipped with projections P(p; A)→B and P(p; A)×B E→A,
which is universal among such – that is, given any object C equipped with morphisms
C→B and C×BE→A, there is a unique morphism C→P(p; A) yielding commutative
diagrams

In a category with :nite limits, the partial product P(p; A) exists for all A i3 p is
exponentiable as an object of E=B; in this case it is readily seen to be functorial in A.
By a partial product functor, we shall mean a functor E→E of the form P(p;−) for
some p. Partial product functors were also studied in [6]: as observed there, the list
functor L is a partial product functor for any topos E with a natural number object, of
the form P(s+;−) where s + :N × N→N is the generic 5nite cardinal in the sense
of Johnstone and Wraith [17].

Lemma 2.4. Let E be a topos with a natural number object; and F :E→E a partial
product functor. Then the cofree comonad generated by F exists; and is also a partial
product functor.

Proof. For simplicity, we shall give the proof in the case when E is the classical
topos Set of constant sets: the recursion-theoretic techniques needed to formulate it in
a general topos with natural number object may be found, for example, in [17]. Suppose
F is the partial product functor induced by p :E→ I ; that is, an element of FA is a
pair (i; h) where i∈ I and h :p−1(i)→A. It is convenient to think of the elements of
I as ‘shapes’ or ‘templates’, and the elements of p−1(i) as ‘holes’ in the template i
which have to be ‘:lled’ or ‘labelled’ by elements of A to produce an element of FA.
(Thus E may be identi:ed with the set of pairs (i; x), where i is a template and x is
a distinguished hole in it.)

For each natural number n, the nth iterate Fn is also a partial product functor:
its templates are ‘trees of I -templates of height n’, that is (rooted) trees of height
n where every node is labelled by an element of I , together with, for each node at
height less than n, a bijection from its children to the holes in the template which
is its label. The holes in such a tree are the holes in the templates labelling nodes
at height n. Let Tn denote the set of all trees of templates of height n (equivalently,
the set Fn(1), where 1 is a singleton set); then we have a truncation map Tn→Tn−1,
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which makes T(−) into a diagram of shape N op. Let T∞ denote the inverse limit
of this diagram; we think of an element t of T∞ as an ‘in:nite tree of templates’
possessing truncations t|n of all possible heights n. We may regard such a tree t as
a single template whose holes are all its nodes (including the root): this de:nes a
map q :E∞→T∞, where E∞ is the set of pairs (t; x) with t an in:nite tree and x a
distinguished node of t. Let G denote the partial product functor associated with this
map.

Given an A-labelled in:nite tree (t; h) (that is, an element of GA), we have a distin-
guished element of A, namely the element labelling the root of t; this de:nes a natural
transformation ! :G→ 1Set. We also have an element of FA, namely the template at-
tached to the root of t together with the elements of A labelling the height-1 nodes:
this de:nes a natural transformation # :G→F . And we have a natural transformation
" :G→GG; "A sends an A-labelled tree (t; h) to the same tree t, with each node x
now labelled by the entire A-labelled tree tx of nodes above x in t. It is not hard to
see that G= (G; !; ") satis:es the equations for a comonad.

Moreover, given any F-coalgebra (A, :A→FA), there is a unique G-Coalgebra
structure map � :A→GA such that #A�=  . The equations for a Coalgebra imply that,
for any a∈A, the label at the root of �(a) must be a itself, and that for any node x
of �(a) the labelled tree �(a)x must coincide with �(b) where b is the label at x; thus
we see that the entire tree and its labelling can be reconstructed from the knowledge,
for all b∈A, of of the template at the root and the labels at height 1 in �(b) (that is,
of the labelled template #A�(b)). Thus we have shown that G is the cofree comonad
generated by F .

Remark 2.5. Although, as we stated earlier, Lemma 2.4 is much more special than
Proposition 2.3, they are actually not far apart in the case when E is the classical
category of sets. For any accessible functor F :Set→Set, being the left Kan extension
of its restriction to a small full subcategory of Set, may be expressed as a quotient
of a coproduct of representable functors: that is, we have an epimorphic natural trans-
formation � : F̃→F where F̃ is of the form

∑
i∈I (−)Ei , and is thus a partial product

functor. Assuming the axiom of choice, this epimorphism is pointwise split (that is, �A

has a splitting  A for each A; we do not assert that the  A form a natural transforma-
tion of functors). It now follows that, for any set A, a terminal F̃(−) × A-coalgebra
is a weakly terminal F(−)×A-coalgebra, and we may construct a terminal F(−)×A-
coalgebra by factoring it by a suitable congruence. Thus F inherits the property of
generating a cofree comonad from F̃ . (We are indebted to Gordon Plotkin for this
observation.)

Example 2.6. As mentioned in the Introduction, we are mainly interested in the end-
ofunctors K , L and M of an arbitrary topos with natural number object, whose coal-
gebras correspond to various notions of :nitary transition systems, and with the func-
tors K(X × −), L(X × −) and M (X × −) (where X is a :xed ‘object of labels’)
which correspond to labelled transition systems. Since the list functor L is a partial
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product functor, we may read o3 the description of its cofree comonad from the proof
of Lemma 2.4: in the set-theoretic notation employed there, an element of GL(1) is
a :nitely branching tree (not necessarily well-founded, but with each node at :nite
height), together with a total ordering of the children of each node. An element of
GL(A) is a tree as above, together with a labelling of its nodes by elements of A (that
is, a mapping h from the set of nodes to A). For the functor L(X × −), the cofree
comonad may be similarly described, except that each edge of the tree must be labelled
by an element of X .

The :nite-multiset functor M is naturally a quotient of L, and its cofree comonad
GM may similarly be described as a quotient of GL: GM (A) is the object we obtain
by ‘forgetting the ordering’ on the nodes of the trees in GL(A), or more formally by
identifying two trees if one can be obtained from the other by a (height- and label-
preserving) permutation of its nodes.

For the :nite-powerset functor K , the cofree comonad GK may again be obtained as
a quotient of GM . In order to de:ne it, let us :rst de:ne an equivalence relation R on
(the nodes of) an A-labelled tree (t; h) to be a congruence if it satis:es the following
three properties:
(i) if (x; y)∈R, then x and y are at the same height and have the same label;
(ii) if (x; y)∈R, then (x′; y′)∈R, where x′ and y′ are the parents of x and y;
(iii) if (x; y)∈R, then for every child x′′ of x there exists a child y′′ of y such that

(x′′; y′′)∈R.
Clearly, if these three properties are satis:ed, then the quotient t=R can be given the
structure of an A-labelled tree. We say two A-labelled trees (t; h) and (t′; h′) are bisim-
ilar if there exist congruences R and R′ such that (t=R; h=R) ∼= (t′=R′; h′=R′); this coin-
cides with the relation de:ned (for unlabelled trees) by Barr [4], though his description
of it was di3erent from ours. We then take GK (A) to be the set of bisimilarity classes
of A-labelled trees.

However, it is also useful to think of GK (A) as a subset rather than a quotient of
GM (A) (although GK is not a subfunctor of GM ). We may do this because, for any
A-labelled tree (t; h), the set of congruences on (t; h) has a greatest member: it is clear
that if (Ri | i∈ I) is a family of congruences, then the transitive closure of

⋃
i∈I Ri

is again a congruence. If we form the quotient of t by this largest congruence, we
obtain a minimal representative for its bisimilarity class: that is, a tree (Ct; Ch) which
is bisimilar to (t; h) and whose only congruence is the identity. We call an A-labelled
tree strongly extensional if it has the latter property: we may now identify GK (A) with
the set of strongly extensional A-labelled trees. (In this identi:cation, the action of GK

on morphisms is as follows: given f :A→B and a strongly extensional A-labelled tree
(t; h), we de:ne GKf(t; h) to be the quotient of the B-labelled tree (t; fh) by its largest
congruence.)

Remark 2.7. An A-labelled tree (t; h) is called extensional if, for any two children
x and y of any node of t, the information that the subtrees rooted at x and y are
isomorphic (as labelled trees) forces x=y. (An equivalent condition is that the only
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label-preserving automorphism of (t; h) is the identity.) It is clear that a strongly ex-
tensional tree is extensional, since if we are given two nodes x and y as above we
can :nd a congruence which identi:es them; but the converse is false for non-well-
founded trees – a counterexample (with trivial labelling) is given in [4]. Any labelled
tree has a largest extensional quotient, obtained by identifying a pair of nodes i3 there
is a label-preserving automorphism sending the :rst to the second; thus the assign-
ment

A 
→ {extensional A-labelled trees}

can be made into a functor H , which is a quotient of GM and has GK as a quo-
tient: given f :A→B, Hf(t; h) is the largest extensional quotient of the B-labelled tree
(t; fh). This functor again carries a comonad structure similar to those on GK;GL and
GM , although it is not cofree on any endofunctor.

Given a functor F :E→E, we have already noted that the forgetful functor EF→E

creates any types of limits which are preserved by F . If F generates a cofree comonad,
then the functor part G of the latter is the composite of this forgetful functor with its
right adjoint (which of course preserves limits); so it inherits all the limit-preservation
properties enjoyed by F . However, the weak limit preservation properties studied in
Section 1 are rather more delicate. In the :rst place, knowing that F preserves pullbacks
of monomorphisms is not enough to deduce that the forgetful functor U :EF→E does
so, for the simple reason that it need not preserve monomorphisms. If U does preserve
monomorphisms, then it inherits the preservation of their pullbacks from F , and hence
so does the cofree comonad generated by F if it exists.

Rather less obviously, we have

Lemma 2.8. If E has pullbacks and F preserves weak pullbacks; then U :EF→E

preserves weak pullbacks.

Proof. Given two morphisms f : (A; �)→ (C; 0) and g : (B;  )→ (C; 0) which possess a
weak pullback in EF , we may form the pullback

P
p−−−−−→ A





�

q






�

f

B
g−−−−−→ C

in E. Since F sends this to a weak pullback, it is clear that P inherits an F-coalgebra
structure map 1 :P→FP making p and q into coalgebra homomorphisms. So we get
a comparison map h : (P; 1)→ (Q;  ), where (Q;  ) is the weak pullback of f and g
in EF . But we also have a comparison map k :Q→P since P is a pullback in E; and
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the composite kh :P→P is the identity for the same reason. Thus P is a retract of Q,
and the latter is a weak pullback in E.

Remark 2.9. Under the hypotheses of Lemma 2.8, if we also know that F generates
a cofree comonad G, then we may conclude that G preserves weak pullbacks, since
the right adjoint of the forgetful functor certainly does so. It follows that G preserves
pullbacks of monomorphisms, and hence (by Proposition 3.4 below) that EF

∼= EG
actually has pullbacks in this case.

It is also worth remarking that if, in the situation of Lemma 2.8, F itself carries a
(not necessarily cofree) comonad structure and the coalgebras (A; �), (B;  ) and (C; 0)
appearing in the proof are actually Coalgebras, then so is (P; 1) where 1 is constructed
as above. So we may conclude that the forgetful functor EF→E also preserves weak
pullbacks in this situation.

It seems unlikely that the property of nearly preserving pullbacks is inherited by G
from F , but we do not have an explicit counterexample.

3. Transfer of properties to Coalgebras

From now on, we shall assume that the functors F :E→E in which we are interested
generate cofree comonads, in the sense of Proposition 2.1, and so we are able to work
with categories of Coalgebras rather than of coalgebras. One of the oldest theorems
of elementary topos theory is the result that, if E is a topos and G is a comonad on
E whose functor part G preserves :nite limits, then EG is a topos: the proof of this
theorem occupies a whole chapter of the earliest published account [21] of elementary
topos theory, and it can also be found as Theorem 2:32 in [14], as Theorem V 8:4
in [25], and so on. (In [40, Theorem 50:5], the corresponding result is proved for
quasitoposes.)

However, it seems to be less well known that the hypothesis ‘G preserves :nite
limits’ of this theorem can be weakened to ‘G preserves pullbacks’. For the particular
case of Artin glueing (see Section 5 below), this weakening was noticed quite early
(cf. [6, p. 451]), but the fact that the same weakening can be made in general was
apparently :rst observed by Rosebrugh and Wood [30]. We give a proof here which
is essentially the same as theirs, because we shall need it in order to obtain a slightly
more general result.

Proposition 3.1. Let G= (G; !; ") be a comonad on a category E with 5nite limits;
such that the functor G preserves pullbacks of monomorphisms; and let (A; �) be a
particular G-Coalgebra. Then there is a comonad G′= (G′; !′; "′) on E=A; such that
G′ preserves the terminal object; and such that the category of Coalgebras (E=A)G′ is
isomorphic to (EG)=(A; �). Moreover; if G preserves all pullbacks; then G′ preserves
all 5nite limits.
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Proof. To de:ne G′ at an object f :B→A of E=A, we form the pullback

G′B
h−−−−−→ GB





�

G′f






�

Gf

A
�−−−−−→ GA

this is clearly functorial. Moreover, since !A�= 1A, the composite !Bh :G′B→GB→B
is a morphism over A, and thus de:nes a natural transformation !′ from G′ to the iden-
tity. And since G preserves the pullback square above (because � is a split monomor-
phism), G′G′B is the pullback of GGB along the composite (G�)� :A→GGA; but this
composite equals "A�, and so the morphism "B induces a morphism "′f :G′B→G′G′B
over A, which is also natural in f. It is straightforward to verify that !′ and "′ form a
comonad structure on G′. Moreover, G′ preserves the terminal object by construction;
and it preserves pullbacks if G does, since the pullback functor �∗ :E=GA→E=A pre-
serves them, so in the latter case it preserves all :nite limits. Finally, for any f :B→A,
there is a bijective correspondence between morphisms f→G′f in E=A and morphisms
 :B→GB satisfying (Gf) = �f; and it is again easy to see that this restricts to a
correspondence between G′-Coalgebra structures on f and G-Coalgebra structures on
B which make f a Coalgebra homomorphism.

Taking (A; �) to be the terminal G-Coalgebra (G1; "1), we immediately obtain

Corollary 3.2. If E is a topos and G is a comonad on E whose functor part preserves
pullbacks; then EG is a topos.

Corollary 3.3. Let E be a topos and F :E→E a functor which preserves pullbacks
and generates a cofree comonad ( for example; a partial product functor). Then EF

is a topos.

Corollary 3.3 tells us, in particular, that for any topos E with a natural number
object the category of coalgebras for the list functor L :E→E is a topos. How-
ever, we are also interested in K-coalgebras and M -coalgebras, and these functors
do not preserve pullbacks. So our main task in this section is to investigate how
much of Corollary 3.3 remains true under the weaker hypotheses on F considered in
Section 1.

Proposition 3.4. Let E be a category with 5nite limits, and G= (G; !; ") a comonad
on E whose functor part G preserves pullbacks of monomorphisms. Then EG has
5nite limits.
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Proof. The functor G preserves equalizers of coreMexive pairs, since these can be
seen as a special case of pullbacks of monomorphisms; so the forgetful functor EG→E

creates them, and in particular EG has them. But, by Linton’s theorem [23], the
existence of such equalizers suJces to ‘lift’ :nite products from E to EG; and
then we may construct all :nite limits from products and coreMexive
equalizers.

In fact, we may give an explicit construction of products in EG, as follows: given
Coalgebras (A; �) and (B;  ), form the diagram

in which all the squares are pullbacks. Since � and  are (split) monic, these pullbacks
are all preserved by G; moreover, since the named morphisms are all Coalgebra ho-
momorphisms (where GA; GB and G(A×B) are regarded as cofree Coalgebras), we
may equip P; Q and R uniquely with Coalgebra structures so that the squares become
pullbacks in EG. We claim that P, with this structure, is a product of (A; �) and (B;  )
in EG.

To see this, let (C; 0) be a third Coalgebra, and f : (C; 0)→ (A; �) and g : (C; 0)
→ (B;  ) two Coalgebra homomorphisms. Then the diagram

commutes, and so the triple (f;G(f; g)0; g) induces a morphism C→P, which is
moreover a Coalgebra homomorphism since each of f, g and G(f; g)0 is. On the
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other hand, if h :C→G(A×B) is any Coalgebra homomorphism making the above
diagram commute, then

11!A×Bh = !A(G11)h = !A�f = f

and similarly 12!A×Bh= g, so

!A×Bh = (f; g) = (f; g)!C0 = !A×BG(f; g)0;

but a Coalgebra homomorphism into G(A×B) is uniquely determined by its com-
posite with !A× B. So the pair (f; g) factors uniquely through the pair of projections
(P→A; P→B).

We remark in passing that the pullback of a diagram

(A; �) −→ (C; 0)←− (B;  )

in EG may be constructed in exactly the same way, replacing the object G(A×B) by
G(A×CB).

Example 3.5. We give an explicit description of binary products in SetG, where G
is the cofree comonad generated by the :nite-multiset functor M (cf. 2:6). Following
the prescription above, let (A; �) and (B;  ) be two G-Coalgebras; then an element of
(the underlying set of) the product (A; �)× (B;  ) is a triple (a; b; t), where a∈A and
b∈B are elements such that the labelled trees �a and  b have the same underlying
unlabelled tree, and t ∈G(A×B) is an (A×B)-labelled tree which ‘specializes’ to �a
and to  b when the two projections are applied to its labels. Equivalently, we may
think of it as a triple (a; b; [h]), where a and b are as before and [h] is an equivalence
class of bijections h from the underlying unlabelled tree of �a to that of  b (the notion
of equivalence being induced by composition with label-preserving automorphisms,
i.e. h ≡ ghf whenever f and g are label-preserving automorphisms of �a and  b,
respectively). Equivalently again, we may think of [h] as a double coset of the pair of
subgroups (Aut( b);Aut(�a)) in the automorphism group of the unlabelled tree. The
M -coalgebra structure map on this set sends (a; b; [h]) to the multiset of all triples
(a′; b′; [h′]), where a′ and b′ are labels attached to children of the roots of �a and  b
which are identi:ed by h, and h′ is the restriction of h to the subtrees rooted at these
nodes – it is easy to see that this description is independent of the choice of h within
the double coset [h].

Proposition 3.6. In addition to the hypotheses of Proposition 3:4; suppose that E

has a subobject classi5er; and that the forgetful functor EG→E preserves monomor-
phisms. Then EG has a subobject classi5er.

Proof. Let � : 1→4 be a subobject classi:er in E. The construction of a subobject
classi:er in EG is a direct transcription of that in the case when G preserves all :nite
limits (see, for example, [14, 2.32]); we simply have to observe that the construction
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given there, and the proof that it works, uses only pullbacks of monomorphisms and
their preservation by G. Explicitly, let 5 :G4→4 classify G� :G1�G4, and form
the pullback

We note that G6 is monic since 6 is split monic, so E inherits a coalgebra structure
making it a subcoalgebra of (G4; "4).

Now let (A; �) be a Coalgebra. Since the forgetful functor EG→E preserves
monomorphisms (and also reMects them, because it is faithful), the subobjects of (A; �)
in EG are exactly the subobjects A′ � A in E for which the composite A′ � A→GA
factors through GA′ � GA. But any subobject A′ � A corresponds to a morphism
f :A→4 in E and hence to a Coalgebra morphism Cf= (Gf)� : (A; �)→ (G4; "4).
We claim that Cf factors through the subcoalgebra E i3 A′ has a (necessarily unique)
Coalgebra structure making it into a subCoalgebra of A, i.e. i3 A′6�∗(GA′ � GA)
in Sub(A). Note that, by naturality of !, we always have GA′6!∗A(A

′) in Sub(GA)
and hence �∗(GA′)6�∗!∗A(A

′) =A′; so the inequality above is equivalent to the
equality A′= �∗(GA′). Next, observing that the composite G(5; !4)"4 Cf is determined
by its composite with !4×4, we see that it factors through G6 i3 5!G4"4 Cf= !4!G4"4 Cf.
But the right-hand side of this equation reduces to !4 Cf=f, which classi:es A′ � A,
and the left-hand side to 5 Cf= 5(Gf)�, which classi:es �∗(GA′). So the result is
established.

The existence of a subobject classi:er for the category of F-coalgebras was proved,
under some additional non-elementary hypotheses (local presentability, etc.) besides
those of Proposition 3.6, in [28] (and see also [38]). That proof is now superseded by
the one above.

In passing, we note that, even in the absence of cartesian closedness, the existence
of a subobject classi:er may be used to derive certain topos-like properties of EG: for
example, the fact that all its monomorphisms are regular (cf. [14, Lemma 1:21]), and
hence that every epimorphism is a cover.

Example 3.7. Once again, we give an explicit description of the subobject classi:er
for SetM , where M is the :nite-multiset functor. As in Example 3.5, we write G for
the cofree comonad generated by M ; then the proof of Proposition 3.6 tells us that
the subobject classi:er should be a subCoalgebra of the cofree Coalgebra (G4; "4),
where 4= {⊥;�} is the subobject classi:er for Set. It is not hard to verify that, in
this case, the bottom edge of the pullback square de:ning E in the proof of Proposition
3.6 sends an 4-labelled tree to the same tree with each node labelled by the pair of
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truth-values (p;p′), where p is its original label and p′ is the in:mum of the labels
of all the nodes above the one under consideration. Thus an 4-labelled tree belongs
to E i3 its labelling is increasing, in the sense that the label of any node is less than
or equal to the labels of all its children. Of course, given a subCoalgebra (A′; �′) of a
Coalgebra (A; �), the corresponding classifying map A→E sends an element a to the
4-labelled tree obtained from the underlying unlabelled tree of �a by labelling each
node with the truth-value of the assertion that the element of A labelling it belongs
to A′.

Lemma 3.8. In addition to the hypotheses of Proposition 3:4; suppose E has 5nite
(resp. arbitrary set-indexed) disjoint coproducts which are stable under pullback.
Then so has EG.

Proof. Existence of coproducts in EG follows from the fact that the forgetful functor
creates them. Their disjointness is immediate from the fact that it also creates intersec-
tions of subobjects. So we need only verify pullback-stability. Suppose A=A1 + A2,
where A1 and A2 have G-coalgebra structures �1 and �2; then the Coalgebra structure
� on A factors through GA1 + GA2 � G(A1 + A2) (which is monic, because GA1 and
GA2 are subobjects of G(A1 + A2), which must be disjoint since the initial object 0
of E is strict initial and so G(0)∼= 0). Now suppose we are given a Coalgebra map
f : (A; �)→ (C; 0) and we wish to form the pullback of f along g : (B;  )→ (C; 0). The
construction of pullbacks in the proof of Proposition 3.4 tells us :rst to form the pull-
back in E of � along G11 :G(A×CB)→GA; but we may factor this pullback square
as

and then if we compose the top edge with G12 :G(A×CB)→GB and pull back along
 , we get a similar coproduct decomposition of the pullback (A; �)×(C;0)(B;  ). The
argument for in:nite coproducts is similar.

As we indicated in the Introduction, we are ultimately interested in studying the
category Rel(EG) of relations in EG; so it is important for us to know that EG is a
regular category, since the latter is a necessary condition for composition of relations to



P. Johnstone et al. / Theoretical Computer Science 260 (2001) 87–117 107

be associative [12, 1.569]. Fortunately, this is not diJcult to establish under appropriate
hypotheses.

Lemma 3.9. In addition to the hypotheses of Proposition 3:4; suppose that E is
regular; that the forgetful functor EG→E preserves monomorphisms; and that G
nearly preserves pullbacks. Then EG is regular; moreover the forgetful functor EG→E

preserves image factorizations.

Proof. Let f : (A; �)→ (B;  ) be a morphism of EG, and write A→C � B for the
image factorization of f in E. Since G preserves monomorphisms, there is a unique
morphism 0 :C→GC making

commute; it is straightforward to verify that 0 is a G-Coalgebra structure, and that
(C; 0) is the image of f in EG. Thus we need only show that covers are stable under
pullback in EG.

Suppose given a diagram

(A; �)
f−→(C; 0)

g←−(B;  )

in EG, where f is a cover. To form the pullback of f along g, we need to form the
diagram

P −−−−−→ Q −−−−−→ B




�






�






�

 

R −−−−−→ G(A×C B) −−−−−→ GB




�






�

A
�−−−−−→ GA

;
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where the three squares are pullbacks in E. But we may enlarge this to

where all faces of the cube, and the square faces of the two triangular prisms, are
pullbacks; hence the morphism P→A×GCB is a cover because it is a pullback of the
comparison map G(A×BC)→GA×GCGB. Moreover, we may identify the codomain
of this morphism with A×CB, since the composites A→GC and B→GC both factor
through the monomorphism 0 :C�GC; and hence the morphism A×GCB→B is also
a cover, because it is a pullback of f. So the composite P→B is a cover (in E, and
hence in EG), as required.

Remark 3.10. If we make the stronger assumption that G preserves weak pullbacks,
then we may simplify the proof of Lemma 3.9 considerably. For in this case we
know by Remark 2.9 that the forgetful functor U :EG→E also preserves weak pull-
backs; and it preserves and reMects covers by the :rst part of the proof of Lemma 3.9.
So, given a cover f : (A; �)→ (C; 0) in EG, the image under U of its pullback along
g : (B;  )→ (C; 0) is the composite of the comparison map U ((A; �)×(C;0)(B;  ))→
A×CB (which is split epic, and hence a cover) with the pullback of Uf along Ug
(which is a cover, since E is regular).

Putting together the last few results, we have:

Proposition 3.11. Let E be a Grothendieck topos; and let F :E→E be an accessi-
ble functor which preserves weak pullbacks. Then the category EF of F-coalgebras
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satis5es all the hypotheses of Giraud’s theorem [14, 0.45; 25, p. 575] except possibly
for e<ectiveness of equivalence relations.

Proof. By Proposition 2.3, F generates a cofree comonad G, which preserves weak
pullbacks by Lemma 2:9. So by Proposition 3.4 the category EF

∼= EG has :nite limits;
by Lemma 3.8 it has arbitrary disjoint coproducts which are stable under pullback, and
by Lemma 3.9 it is regular and all its epimorphisms are covers. It is clearly locally
small since E is; and it is accessible by Proposition 2.3, so it has a set of generators.
Thus we have veri:ed all but one of the Giraud hypotheses as stated in [14].

Nevertheless, under the hypotheses of Proposition 3.11, the category EF need not be
a topos. We shall give counterexamples in Example 5:6 below.

4. E+ectivization

We have seen that, under suitable hypotheses on F , the category EF inherits from E

all the exactness properties of a topos except for e3ectiveness of equivalence relations.
For any regular category C, there is a standard way of remedying this defect, which
is described in detail in [12] (and see also [26, Section 25]): we follow Freyd and
Scedrov in using the name e<ective regular category for a regular category in which
all equivalence relations are e3ective (other authors commonly call this an exact or
Barr-exact category, cf. [3]).

Theorem 4.1. For any regular category C; there is an e<ective regular category
E+(C) and a full embedding C→E+(C) which is universal among regular functors
from C to e<ective regular categories.

Proof. The standard construction of E+(C) begins by embedding C in its allegory of
relations Rel(C), then splitting the equivalence relations (which appear as idempotents
in this category), and :nally cutting back to the category of maps in the resulting
allegory. More explicitly, an object of E+(C) is a pair (A; R) where A is an object of
C and R� A×A is an equivalence relation on A, and a morphism (A; R)→ (B; S) is
a relation F :A#B which is ‘functional relative to R and S’, in the sense that

SFR = F; R6F◦F and FF◦6S:

Composition in E+(C) is the usual composition of relations; the identity morphism on
(A; R) is R itself. The embedding I :C→E+(C) sends an object A to (A; 6) where 6
denotes the diagonal relation on A, and a morphism f :A→B to the graph of f. For
the remaining details, see [12] or [26].

The above construction should not be confused with the exact completion of a cat-
egory with :nite limits, as studied in works such as [8]: the question of when the
latter is cartesian closed has been studied by RosickTy [31] and Birkedal et al. [5]. The
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exact completion freely adjoins images as well as quotients, in such a way that existing
image factorizations are not necessarily preserved. See also [9] for a comparison of
the two constructions.

As is shown in [12, 2.213], the passage from C to E+(C) preserves the property of
having disjoint pullback-stable coproducts; and it also clearly preserves local smallness
and the possession of a set of generators (the image under I of any set of generators
for C serves as a set of generators for E+(C)). Thus we may immediately conclude
from Corollary 3:11.

Corollary 4.2. Let E be a Grothendieck topos; and let F :E→E be an accessible
functor which preserves weak pullbacks. Then the category E+(EF) is a Grothendieck
topos.

In particular, this corollary applies when F is the :nite-powerset functor on any
Boolean Grothendieck topos, by Example 1.4. However, it would clearly be desirable
to have an ‘elementary’ version of the result, not making use of the set-theoretic
hypotheses in Giraud’s theorem. Although we have not yet succeeded in proving such
an elementary result, we devote the rest of this section to discussing how it might be
proved. The next few results may also be found in [26, 25.21, 25.23, 25.25].

Lemma 4.3. Every subobject of an object of the form IA in E+(C) is (isomorphic to
one) in the image of I .

Proof. Suppose F : (B; R)→ IA is a monomorphism in E+(C). (The assertion that F is
monic is equivalent to saying that the inequality R6F◦F is an equality.) Let A′ � A
be the image of the composite F � B×A→A; then F still de:nes a relation B#A′,
which is an isomorphism (B; R) ∼= IA′ in E+(C).

Corollary 4.4. If 4 is a subobject classi5er in a regular category C; then I4 is a
subobject classi5er in E+(C).

Proof. By Lemma 4.3 and the fact that I is full and faithful, we know that morphisms
IA→ I4 in E+(C) correspond to subobjects of IA. For a general object (A; R), a
morphism (A; R)→ I4 in E+(C) corresponds to a morphism A→4 in C having equal
composites with the projections R�A; that is, to a subobject A′ � A for which we
have a diagram
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in which both squares are pullbacks. But R′ is then an equivalence relation on A′, and
(A′; R′) de:nes a subobject of (A; R) in E+(C) (the monomorphism (A′; R′) � (A; R)
being R′ regarded as a relation A′#A); and every subobject of (A; R) arises in this
way, since we have a pullback-stable coequalizer diagram

in E+(C).

In much the same way, we may prove

Lemma 4.5. Let C be a regular category; and A an object of C. Suppose there
exists an object PA of E+(C) such that; for any B∈ ob C; subobjects of B×A in C

correspond; naturally in B; to morphisms IB→PA in E+(C). Then PA is a power-
object for IA in E+(C); that is; for any C ∈ ob E+(C); morphisms C→PA correspond
to subobjects of C × IA.

Proof. Suppose C = (B; S); then subobjects of C × IA in E+(C) correspond to sub-
objects of IB× IA ∼= I(B×A) in E+(C) (equivalently, by Lemma 4.3, to subobjects
of B×A in C) whose pullbacks along the two projections I(S ×A)� I(B×A) are
isomorphic. So this again follows from the fact that IS� IB→ (B; S) is a coequalizer
diagram in E+(C).

Proposition 4.6. Let C be a regular category; and suppose that for each object A of
C there exists an object PA of E+(C) with the property indicated in Lemma 4:5.
Then E+(C) is a topos.

Proof. After Lemma 4.5, we have to show that the possession of power-objects is
inherited by arbitrary objects of E+(C) from objects of the form IA. But, once again,
it follows from the fact that IR� IA→ (A; R) is a pullback-stable coequalizer diagram
that we may de:ne P(A; R) to be the equalizer of

PA
Pa

−−−−−→−−−−−→
Pb

PR;

where Pa :PA→PR is, as usual, the morphism corresponding to the subobject obtained
by pulling back the universal subobject of PA× IA along 1PA× Ia :PA× IR→PA× IA.

Thus, to give an elementary proof that E+(EF) is a topos, it would suJce to con-
struct for each F-coalgebra A a ‘pre-power object’ PA equipped with an equivalence
relation R :PA#PA and a relation PA#A having a suitable universal property. Sadly,
we have not yet been able to :nd such a construction for a general F . However,
we conclude this section by giving an explicit description of how PA and R may be
constructed for the :nite-multiset functor M :Set→Set.
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Example 4.7. As in Example 3.5, we write G for the cofree comonad generated by
M ; given a G-Coalgebra (A; �), we shall write �0 :A→MA for the corresponding
M -coalgebra (so �0a is the multiset of labels of height-1 nodes in the labelled tree
�a), and [�a] for the underlying unlabelled tree of �a.

In order to de:ne the ‘pre-power-object’ of a Coalgebra (A; �), we need a method of
‘removing the multiplicities’ from A by labelling its nodes with ‘memories of how they
were reached’. We do this by means of the notion of a ‘good N∗-labelled tree’ (where
N∗ denotes the set of :nite sequences of natural numbers): we call an N∗-labelled
tree good if, whenever a node x is labelled by a sequence s, there exists a natural
number n such that the children of x are labelled by the sequences s:0; s:1; : : : ; s:(n−1)
(without repetitions). Note that we do not require the root of the tree to be labelled
by the empty sequence. We identify a good N∗-labelled tree T with the set of labels
of its nodes (note that these suJce to reconstruct the tree up to isomorphism), and
regard it as an M -coalgebra (T; 5) by setting 5(s) to be the set of all sequences s:n
which occur in T . (Thus (T; 5) is in fact a K-coalgebra, although this is not relevant
for our present purposes.)

Given (A; �), we de:ne its ‘pre-power-object’ to be the Coalgebra (P; 1), where
elements of P are pairs (T; f) such that T is a good N∗-labelled tree and f is an
increasing function from the underlying set of the product M -coalgebra (T; 5)× (A; �0)
to 2 = {⊥;�}. (By ‘increasing’, we mean that if x and y are in the domain of f and
x makes a transition to y then f(x)6f(y).) The transition map is de:ned as follows:
if s is the sequence labelling the root of T , then

10(T; f) = {(T=s:n; f|T=s:n×A) | s:n ∈ T};

where T=s:n denotes the subtree of T rooted at s:n. (Note once again that this is a set
rather than a multiset, i.e., none of its elements has multiplicity greater than 1.)

Elements of the product (P; 1)×(P; 1) may be identi:ed with quintuples (T; f; T ′; f′;
h) where h : [T ]→ [T ′] is an isomorphism of unlabelled trees. (We do not have
to worry about double cosets here, because (T; 5) and (T ′; 5′) have no non-identity
automorphisms as labelled trees.) We de:ne R to be the set of such quintuples for
which f=f′(h× 1A); it is straightforward to verify that this is a subCoalgebra of
(P; 1) × (P; 1), and that it is an equivalence relation on (P; 1) in the category of
G-coalgebras, so we may regard ((P; 1); R) as an object of E+(SetM ).

Now suppose given another Coalgebra (B;  ) and a subCoalgebra (C; 0) of (B;  )×
(A; �). We de:ne a new subCoalgebra (F; 7) of (B;  )× (P; 1), as follows: F consists
of those quadruples (b; T; f; [g]) (where b ∈ B, (T; f) ∈ P and g : [ b]→ [T ] is an
isomorphism of unlabelled trees) for which, whenever a ∈ A and u : [�a]→ [ b] is an
embedding, we have

(b′; a; [u−1]) ∈ C ⇔ f(a; s; gu) = �;

where b′ is the label attached to the node of [ b] which is the image of the root of
[�a] under u, and s is the sequence labelling the corresponding node of T . It is easy to
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verify that F is a subCoalgebra of (B;  )× (P; 1), that is, a morphism (B;  )#(P; 1)
in Rel(SetM ).

Moreover, if (b; T; f; [g]) ∈ (B;  )× (P; 1) and (T; f; T ′; f′; h) ∈ R, we have

(b; T; f; [g]) ∈ F⇔f(a; s; gv−1) = � for all (b′; a; [v]) ∈ C

⇔f′(a; hgv−1) = � for all (b′; a; [v]) ∈ C

⇔ (b; T ′; f′; [hg]) ∈ F;

from which it follows that FF◦ = R. Also, given b ∈ B, we can choose a good
N∗-labelled tree T and a particular isomorphism g : [ b]→ [T ], and then de:ne f by

f(a; s; u) = <(b′; a; [u−1g]) ∈ C=

(where b′ is the label attached to the node of [ b] mapped by g to s); then it is clear
that (T; f) ∈ P, and that (b; T; f; [g]) ∈ F , so 6B6F◦F . Thus we see that F de:nes a
morphism I(B;  )→ ((P; 1); R) in E+(SetM ).

Conversely, suppose given a relation F : (B;  )#(P; 1) with F◦ = R and 6B6F◦F .
We de:ne C ⊆(B;  )× (A; �) by

(b; a; [h]) ∈ C ⇔ whenever (b; T; f; [g]) ∈ F; we have f(a; s0; gh−1) = �
(⇔ there exists (b; T; f; [g]) ∈ F with f(a; s0; gh−1) = �);

where s0 denotes the label attached to the root of T . Once again, it is easy to
verify that C is a subCoalgebra of (B;  )× (A; �), and that the two constructions
given above are inverse to each other. Thus we have a bijection between subCoalge-
bras of (B;  )× (A; �) and morphisms I(B;  )→ ((P; 1); R) in E+(SetM ), and this bijec-
tion is also easily seen to be natural in (B;  ). So ((P; 1); R) satis:es the hypothesis of
Lemma 4.5.

5. Coalgebras and Artin glueing

Let F :E→F be a functor. We recall that the category Gl(F) obtained by Artin
glueing along F is simply the comma category (F ↓F); in other words, it is the
category whose objects are triples (A; B; f) with f :B→FA, and whose morphisms are
pairs (A→A′; B→B′) giving rise to commutative squares

B −−−−−→ B′




�

f






�

f′

FA −−−−−→ FA′

in F. We further recall from [39] that it may be identi:ed with the category of
Coalgebras (E × F)G, where the functor G is de:ned by G(A; B) = (A; B×FA),
and its counit and comultiplication are induced by the projection B×FA→B and the
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diagonal map FA→FA×FA, respectively. Note that the functor G inherits any limit-
preservation property enjoyed by F .

In [6], the question of when Gl(F) is a topos was investigated: the answer turns out
to be simple.

Proposition 5.1. Gl(F) is a topos if and only if E and F=F1 are toposes; and F
preserves pullbacks.

Proof. See [6, Theorem 4:3].

If we consider the case when E = F, there is an obvious similarity between Gl(F)
and the category of F-coalgebras EF . However, the latter is not a full subcategory of
the former, and its topos structure (if it possesses one!) is substantially di3erent. We
shall :nd it more pro:table to compare Gl(F) not with EF but with E(1+F), where
1 + F denotes the coproduct of F and the constant functor with value 1. In what
follows we shall assume that E is a topos: this is more than enough to ensure that F
and 1+F share the same connected-limit-preservation properties. We shall also assume
that F preserves pullbacks of monomorphisms.

We may de:ne a functor U :Gl(F)→E(1+F) by U (A; B; f) = (A + B; g), where g
is the composite

A + B→ 1 + FA→ 1 + F(A + B):

Lemma 5.2. The functor U just de5ned has a right adjoint.

Proof. Given a (1+F)-coalgebra (C; 0), we de:ne R(C; 0) to be (C0; C1; 0|C1 ), where

are pullbacks. It is easy to verify that a coalgebra homomorphism U (A; B; f)→ (C; 0)
must map A into C0 and B into C1, and hence that R is right adjoint to U .

Lemma 5.3. The image of U is a sieve in E(1+F) : that is; if a morphism of E(1+F)

has its codomain in the image; then the morphism itself (and its domain) lies in the
image.

Proof. Suppose given a coalgebra morphism h : (C; 0)→U (A; B; f). Then C decom-
poses as a coproduct C0 + C1, where C0 = h∗(A) and C1 = h∗(B); and the
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commutativity of

C
0−−−−−−−−−−→ 1 + FC





�

h






�

1+Fh

A + B −−−−−−−−→ 1 + F(A + B)

ensures that 0 maps C0 into the :rst summand of 1+FC, and C1 into FC0 (which we
may identify with (Fh)∗(FA � F(A + B)), since F preserves pullbacks of monomor-
phisms). So we have C ∼= U (C0; C1; 0|C1 ), by an isomorphism identifying h with
U (h|C0 ; h|C1 ).

Since U is clearly full and faithful, it follows immediately that it preserves limits
of arbitrary non-empty diagrams. (In fact it is not hard to see that it identi:es Gl(F)
with the slice category (E(1+F))=U (1).) We may now conclude

Corollary 5.4. If E(1+F) is cartesian closed; then so is Gl(F).

Proof. From the last two lemmas, we know that U is full and faithful, preserves binary
products and has a right adjoint R. It follows immediately that the object R(UAUB) has
the universal property of an exponential AB, for any two objects A and B of Gl(F).

Putting everything together, we have

Corollary 5.5. Let E be a topos; and F :E→E a functor which preserves pullbacks of
monomorphisms; and such that 1+F generates a cofree comonad. Then the following
conditions are equivalent.

(i) F preserves pullbacks.
(ii) Gl(F) is a topos.
(iii) Gl(F) is cartesian closed.
(iv) E(1+F) is a topos.
(v) E(1+F) is cartesian closed.

Proof. Clearly, the functors (1 + F) and (A; B) 
→ (A; B×FA) both preserve pullbacks
of monomorphisms; and they preserve arbitrary pullbacks i3 F does. So by Proposi-
tions 3.4 and 3.6, we know that both Gl(F) and E(1+F) have :nite limits and subobject
classi:ers, and the equivalences (ii) ⇔ (iii) and (iv) ⇔ (v) are immediate. (i) ⇔ (ii)
is Proposition 5:5 above; and (i) ⇒ (iv) follows from Corollary 3.3 since (1 + F)
generates a cofree comonad. Finally, (v)⇒ (iii) is Corollary 5.4.

Example 5.6. On any topos E, the Kuratowski functor K :E→E admits a coproduct
decomposition K ∼= 1 + K+, where K+ is the ‘non-empty :nite subobjects’ functor.
Similarly, M admits a decomposition as 1 + M+. Since neither K+ nor M+ preserves
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pullbacks (unless E is degenerate), it follows that the categories EK and EM cannot
be toposes, in contrast to EL.

For functors F which do not admit a coproduct decomposition as 1+F+, the question
whether EF can be cartesian closed without F preserving pullbacks remains open.
Another case in which we may compare EF with a category obtained by glueing
occurs when F is a pointed endofunctor in the sense of Kelly [19]; that is, when there
is a natural transformation : from the identity functor to F (for example, the singleton
map for the functor K+). Then we may de:ne U :Gl(F)→EF by

U (A; B; f:B→ FA) = (A + B; A + B→ FA→ F(A + B));

where the :rst component of the structure map is induced by :A and f. As in
Lemma 5.2 above, we may prove that this functor has a right adjoint R if F pre-
serves pullbacks of monomorphisms: R(C; 0) = (C0; C1; 0|C1 ) where C0 � C is the
equalizer of 0 and :C , and C1 � C is the pullback of FC0 � FC along 0. However,
U is not full in this case, and it need not preserve binary products, so it does not seem
possible to deduce that Gl(F) inherits cartesian closedness from EF .

References

[1] P. Aczel, Non-well-founded sets, CSLI Lecture Notes, vol. 14, Stanford University, 1988.
[2] P. Aczel, P.F. Mendler, A :nal coalgebra theorem, in: Category Theory and Computer Science, Lecture

Notes in Computer Science, vol. 389, Springer, Berlin, 1989, pp. 357–365.
[3] M. Barr, Exact categories, in: Exact Categories and Categories of Sheaves, Lecture Notes in Math.,

vol. 236, Springer, Berlin, 1971, pp. 1–120.
[4] M. Barr, Terminal coalgebras in well-founded set theory, Theoret. Comput. Sci. 114 (1993) 299–315.
[5] L. Birkedal, A. Carboni, G. Rosolini, D.S. Scott, Type theory via exact categories, Proc. 13th IEEE

Symp. on Logic in Computer Science, IEEE Computer Soc. Press, Silver Springs, MD, 1998.
[6] A. Carboni, P.T. Johnstone, Connected limits, familial representability and Artin glueing, Math. Struct.

Comput. Sci. 5 (1995) 441–459.
[7] A. Carboni, G.M. Kelly, R.J. Wood, A 2-categorical approach to change of base and geometric

morphisms I, Cahiers Topologie GTeom. Di3erentiable CatTegoriques 32 (1991) 47–95.
[8] A. Carboni, R.C. Magno, The free exact category on a left exact one, J. Austral. Math. Soc., Series A

33 (1982) 295–301.
[9] A. Carboni, E.M. Vitale, Regular and exact completions, J. Pure Appl. Algebra 125 (1998) 79–116.

[10] E. De Vink, J.J.M.M. Rutten, Bisimulation for probabilistic transition systems: a coalgebraic approach,
Theoret. Comput. Sci., to appear; extended abstract in Proc. ICALP ’97, Lecture Notes in Computer
Science, vol. 1256, Springer, Berlin, 1997, pp. 460–470.

[11] R. Dyckho3, W. Tholen, Exponentiable morphisms, partial products and pullback complements, J. Pure
Appl. Algebra 49 (1987) 103–116.

[12] P. Freyd, A. Scedrov, Categories, Allegories, North-Holland Mathematical Library, vol. 39, Elsevier,
1990.

[13] J.M.E. Hyland, First steps in synthetic domain theory, in: Category Theory, Lecture Notes in Math.,
vol. 1488, Springer, Berlin, 1991, pp. 131–156.

[14] P.T. Johnstone, Topos Theory, LMS Mathematical Monographs, vol. 10, Academic Press, New York,
1977.

[15] P.T. Johnstone, F.E.J. Linton, Finiteness and decidability: II, Math. Proc. Cambridge Philos. Soc. 84
(1978) 207–218.



P. Johnstone et al. / Theoretical Computer Science 260 (2001) 87–117 117

[16] P.T. Johnstone, A.J. Power, T. Tsujishita, H. Watanabe, J. Worrell, An axiomatics for categories of
transition systems as coalgebras, in Proc. 13th IEEE Symp. on Logic in Computer Science, IEEE
Computer Soc. Press, Silver Spring, MD, 1998.

[17] P.T. Johnstone, G.C. Wraith, Algebraic theories in toposes, in: Indexed Categories and their Applications,
Lecture Notes in Math., vol. 661, Springer, Berlin, 1978, pp. 141–242.

[18] A. Joyal, M. Nielsen, G. Winskel, Bisimulation and open maps, Inform and Comput. 127 (1996) 164–
185.

[19] G.M. Kelly, A uni:ed treatment of trans:nite constructions for free algebras, free monoids, colimits,
associated sheaves, and so on, Bull. Austral. Math. Soc. 22 (1980) 1–83.

[20] G.M. Kelly, Elementary observations on 2-categorical limits, Bull. Austral. Math. Soc. 39 (1989) 301–
317.

[21] A. Kock, G.C. Wraith, Elementary Toposes, Aarhus Universitet Lecture Notes Series, vol. 30, 1971.
[22] J. Lambek, Subequalizers, Canad. Math. Bull. 13 (1970) 337–349.
[23] F.E.J. Linton, Coequalizers in categories of algebras, in: Seminar on Triples and Categorical Homology

Theory, Lecture Notes in Math., vol. 80, Springer, Berlin, 1969, pp. 75–90.
[24] S. Mac Lane, Categories for the Working Mathematician, Graduate Texts in Mathematics, vol. 5,

Springer, Berlin, 1971.
[25] S. Mac Lane, I. Moerdijk, Sheaves in Geometry and Logic, Springer, Berlin, 1992.
[26] C. McLarty, Elementary Categories, Elementary Toposes, Oxford Logic Guides, vol. 21, Oxford

University Press, Oxford, 1992.
[27] M. Makkai, R. ParTe, Accessible Categories: the Foundations of Categorical Model Theory, Contemporary

Mathematics, vol. 104, Amer. Math. Soc., Providence, RI, 1989.
[28] A.J. Power, H. Watanabe, An axiomatics for categories of coalgebras, Electron. Notes Theoret. Comput.

Sci. 11 (1998).
[29] H. Reichel, An approach to object semantics based on terminal co-algebras, Math. Struct. Comput. Sci.

5 (1995) 129–152.
[30] R.D. Rosebrugh, R.J. Wood, Pullback preserving functors, J. Pure Appl. Algebra 73 (1991) 73–90.
[31] J. RosickTy, Cartesian closed exact completions, J. Pure Appl. Algebra 142 (1999) 261–270.
[32] J.J.M.M. Rutten, Universal coalgebra: a theory of systems, Theoret. Comput. Sci. 249 (2000) 3–80.
[33] J.J.M.M. Rutten, Relators and metric bisimulations, Electron. Notes Theoret. Comput. Sci. 11 (1998)

1–7.
[34] J.J.M.M. Rutten, D. Turi, On the foundations of :nal semantics: non-standard sets, metric spaces,

partial orders, in: Semantics: Foundations and Applications, Lecture Notes in Computer Science, vol.
666, Springer, Berlin, 1993, pp. 477–530.

[35] T. Tsujishita, H. Watanabe, Monoidal closedness of the category of simulations, Hokkaido Univ. Preprint
Series in Mathematics, vol. 392, 1997.

[36] H. Watanabe, A criterion for the existence of subobject classi:ers, Hokkaido Math. J. 28 (1999) 117–
132.

[37] H. Watanabe, The subobject classi:er of the category of functional bisimulations, Hokkaido Math. J.
28 (1999) 301–314.

[38] J. Worrell, Toposes of coalgebras and hidden algebras, Electron. Notes Theoret. Comput. Sci. 11 (1998).
[39] G.C. Wraith, Artin glueing, J. Pure Appl. Algebra 4 (1974) 345–348.
[40] O. Wyler, Lecture Notes on Topoi and Quasitopoi, World Scienti:c, Singapore, 1991.


