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Abstract

This paper concerns the one-dimensional linear theory of swelling porous elastic soils in the case of )uid
saturation. The formulation belongs to the theory of mixtures for porous elastic solids 0lled with )uid. It
proposes some new mathematical di2culties. We prove the exponential stability for the initial-boundary value
problem determined by the homogeneous Dirichlet boundary conditions. c© 2002 Elsevier Science B.V. All
rights reserved.
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1. Introduction

It is accepted that the swelling of soils, drying of 0bers, wood, paper, plants, etc. are problems
concerning porous media theory. There have been, in fact, several recent articles introducing contin-
uum theories for )uids in0ltrating elastic porous media, see e.g. Payne et al. [5] and other references
therein. It is only by analysing such theories mathematically that we shall be in a position to assess
their suitability for use in a given physical problem. In this paper we concentrate on Eringen’s theory
presented in [3]. We recall that in the introduction Eringen pointed out that “I believe the present
theory can provide basis for the treatment of various practical problems in the 0eld of swelling, oil
explanations, slurred and consolidation problems by further simpli0cations and=or extensions of the
theory”. It is worth noting that the formulation belongs to the theory of mixtures for porous elastic
solids 0lled with )uid. Heat conduction was also included. In the present paper we are concerned
with the linear equations proposed in this theory. When swelling, consolidation and many other prob-
lems, such as motion of gas, liquid and solid are small then linear equations can be adequate for
the treatment of these problems. Some results concerning this problem have been obtained recently
[6,7].
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In this paper, we restrict our attention to the homogeneous displacement-boundary conditions
although other conditions could be also considered.

The purpose of this article is to obtain exponential stability for a one-dimensional linear problem
in Eringen’s theory [3]. Thus, it is worth recalling several results concerning exponential stability
in other theories [1,4]. We restrict our attention to the case of )uid saturation. Such studies are
important in view to assess whether a given theory is mathematically acceptable. It is worth noting
that in dimensions two or three the equations are more complicated. Thus, our approach cannot be
used in dimension ¿ 1.

In Section 2, we recall the problem we study in this paper. In Section 3, we use the energy
method to prove the exponential stability of solutions in the isothermal case. The extension of this
results to the nonisothermal case is sketched in Section 4. In the last section, we use the Hurtwitz
theorem to prove exponential stability of solutions when a2 �=0 and �= 0 (see (2.1), (2.2)).

2. Preliminaries

The 0eld equations of the linear theory of swelling porous elastic soils in the case of )uid
saturation are (see [3], p. 1345)

�z Hz = a1zxx + a2uxx + 	1Tx − �(ż − u̇) + �zżxx; (2.1)

�u Hu= a2zxx + �uxx + 	2Tx + �(ż − u̇); (2.2)

cṪ = 	1żx + 	2u̇ x + kTxx: (2.3)

Eqs. (2.1)–(2.3) constitute a system of three partial diKerential equations with three unknown
functions (z; u; T ) that represent the displacements of )uid and solid elastic material, respectively,
and the temperature. The constants �z; �u are the densities of each constituent and c is the heat
capacity. The parameters a1; a2; a3; 	1; 	2; �; �; �z and k are the constitutive constants in this
theory.

To de0ne a problem we need boundary and initial conditions. When the system (2.1)–(2.3) is
considered the initial conditions are

z(x; 0) = z0; u(x; 0) = u0; T (x; 0) = T 0; x∈ [0; L]; (2.4)

ż(x; 0) = y0; u̇(x; 0) = v0; x∈ [0; L]; (2.5)

and the homogeneous boundary conditions are

z(x; t) = u(x; t) = T (x; t) = 0; x = 0; L: (2.6)

It is worth noting that the existence of solutions of the problem determined by (2.1)–(2.6) can be
obtained directly by means of the semigroup theory.

From a mathematical point of view system (2.1)–(2.3), propose new stimulating questions. For
instance, does the dissipation of the )uid imply the exponential stability even in the isothermal case?
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3. Isothermal case

The aim of this section is to obtain an exponential stability result in the isothermal case. To this
end we use the energy methods (see [2,4]). In this section, we assume that

�z ¿ 0; �u ¿ 0; �z ¿ 0; �¿ 0 (3.1)

and that the matrix(
a1 a2
a2 �

)
(3.2)

is de0nite positive.
The system of equations we consider here introduces new mathematical di2culties in order to use

the usual energy method.
If we de0ne the energy function

E1(t) =
1
2

∫ L

0
(�z(ż)2 + �u(u̇)2 + a1(zx)2 + 2a2zxux + �(ux)2) dl; (3.3)

the evolutionary equations and the boundary conditions imply that

dE1(t)
dt

=−
∫ L

0
(�(ż − u̇)2 + �z(żx)2) dl: (3.4)

In view of the arithmetic geometric inequality and the PoincarNe inequality, we may conclude the
existence of three positive constants m1; m2; m3 (see the appendix) such that

dE1(t)
dt

6−
∫ L

0
(m1(ż)2 + m2(u̇)2 + m3(żx)2) dl: (3.5)

Now, let us consider the functions

Wz(t) =
∫ L

0
�zżz dl; Wu(t) =

∫ L

0
�uu̇u dl: (3.6)

We have

dWz(t)
dt

=−
∫ L

0
(a1z2x + a2uxzx + �(ż − u̇)z + �zżxzx) dl+

∫ L

0
�z(ż)2 dl; (3.7)

and

dWu(t)
dt

=−
∫ L

0
(a2zxux + �u2x − �(ż − u̇)u) dl+

∫ L

0
�u(u̇)2 dl: (3.8)

Thus, if we denote

W (t) =Wz(t) +Wu(t) +
1
2

∫ L

0
(�(z − u)2 + �zz2x) dl; (3.9)

it follows that:

dW (t)
dt

=−
∫ L

0
(a1z2x + 2a2uxzx + �u2x − �z(ż)2 − �u(u̇)2) dl: (3.10)
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From the de0nition of the functions E1 and W and after a use of the PoincarNe inequality, we may
obtain the existence of a constant N0 such that for all N1¿N0 we may obtain two positive constants
N2(N1); N3(N1) (see the appendix) such that

N2E16N1E1 +W 6N3E1: (3.11)

From (3.5) and (3.10), we can always select M0 such that for all M1¿M0 we may obtain a positive
constant M2(M1) (see the appendix) such that

M1
dE1

dt
+

dW
dt
6−M2E1: (3.12)

The last two inequalities imply that we may always select two positive constants �; ’ such that

�
dE1

dt
+

dW
dt
6− ’(�E1 +W ): (3.13)

A quadrature implies that

(�E1 +W )(t)6 (�E1 +W )(0) exp(−’t): (3.14)

Using again inequality (3.11) we may obtain a constant R such that

E1(t)6RE1(0) exp(−’t) (3.15)

that is the result of exponential stability.

Remark. To obtain the exponential stability we have used the combination of two damping processes.
We have assumed that �z and � are strictly positive. Now; we see that if at least one of these
conditions is not satis0ed we can always 0nd solutions that are not damped.

For instance, if �z = 0 and
a1 + a2

�z
=

a2 + �
�u

;

we may select initial conditions such that z0 = u0 and y0 = v0. In this case, the solutions are z = u
and correspond to the solutions of the wave equation

�u Hu= (a2 + �)uxx:

It is worth recalling Ref. [1], where asymptotic stability is obtained for systems of this kind.
If we assume that �=0 and restrict our attention to the case a2=0, the system is composed of two

separated equations. The equation for u is again the undamped wave equation. Then the solutions
do not tend to zero. A natural question is to know if there exists exponential stability when a2 �=0.
This will be the aim of the last section.

4. Nonisothermal case

It is well known that the combination of the thermal eKects with the elastic eKects determines
exponential stability [4]. In the last section we have seen that the same thing holds in the kind of
mixture we consider. Thus, it is natural to expect the same behaviour when we consider the two
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eKects at the same time. We only sketch the proof in this case. It is worth noting that in this case,
we also assume that c¿ 0 and k ¿ 0.
If we de0ne the function

E1(t) =
1
2

∫ L

0
(�z(ż)2 + �u(u̇)2 + a1z2x + 2a2zxux + �u2x + cT 2) dl; (4.1)

we obtain

dE1(t)
dt

6−
∫ L

0
(m1(ż)2 + m2(u̇)2 + m3(żx)2 + m4T 2 + m5T 2

x ) dl; (4.2)

where m4 and m5 are also positive. If we de0ne W as in (3.9), it follows:

dW (t)
dt

=−
∫ L

0
(a1z2x + 2a2uxzx + �u2x − �z(ż)2 − �u(u̇)2 + 	1Txz + 	2Txu) dl: (4.3)

It is clear that in this situation, it is easy to reproduce the arguments to prove the exponential stability
of the solutions.

5. Isothermal problem: limiting case �= 0 and a2 �=0

The aim of this section is to prove the exponential stability of the solutions of the isothermal
problem in the particular case that � = 0 and a2 �=0. To make the calculations easier, we assume
that L= �.
The solutions in this case will be combinations of functions of the form

z = A exp(!t) sin nx; u= B exp(!t) sin nx: (5.1)

Imposing (5.1) as a solution of Eqs. (2.1) and (2.2) we obtain the following homogeneous system
with the unknowns A; B:

A�z!2 =−Aa1n2 − Ba2n2 − A�z!n2; B�u!2 =−Aa2n2 − B�n2: (5.2)

Our aim is to obtain a nontrivial solution. We impose that the determinant of the system is equal
to zero. Here, ! is a solution of the equation

(�zx2 + a1n2 + �zn2x)(�ux2 + �n2)− a22n
4 = 0: (5.3)

We can write this equation in the form

�u�zx4 + �z�un2x3 + (a1�u + ��z)n2x2 + �z�n4x + (a1� − a22)n
4 = 0: (5.4)

In order to prove the exponential stability, it will be su2cient to prove that all the solutions of Eq.
(5.4) have negative real part that is less or equal than −", where " is a positive number. This is
equivalent to prove that all the solutions of the equation

�u�z(x − ")4 + �z�un2(x − ")3 + (a1�u + ��z)n2(x − ")2 + �z�n4(x − ")

+ (a1� − a22)n
4 = 0 (5.5)

have a negative real part.
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To show it, we use the Hurwitz theorem that says that the necessary and su2cient condition to
guarantee that the solutions of the equation

l4x4 + l3x3 + l2x2 + l1x + l0 = 0 (5.6)

have a negative real part given by

#0 = l0 ¿ 0; #1 = l1 ¿ 0; #2 = det
(
l1 l3
l0 l2

)
¿ 0; #3 = det


 l1 l3 0

l0 l2 l4
0 l1 l3


¿ 0 (5.7)

and

#4 = det




l1 l3 0 0
l0 l2 l4 0
0 l1 l3 0
0 l0 l2 l4


¿ 0: (5.8)

In our case we can write Eq. (5.5) as

�u�zx4 + (�z�un2 + P3("))x3 + [(a1�u + ��z)n2 + P2("; n2)]x2

+ [�z�n4 + P1("; n2)]x + (a1� − a22)n
4 + P0("; n4) = 0; (5.9)

where

P3 =−4�u�z"; P2 = 6�u�z"2 − 3"�z�un2;

P1 =−4"3�u�z + 3"2�z�un2 − 2"(a1�u + ��z)n2;

P0 = �u�z"4 − �z�n2"3 + (a1�u + ��z)n2"2 − �z�"n4:

Our intention is to obtain the existence of " uniformly for every n¿ 1. We have

#0 = (a1� − a22)n
4 + P0¿ (a1� − a22)n

4 − �u�z"4 − �z�n2"3 − (a1�u + ��z)n2"2 − �z�"n4

¿ n4[(a1� − a22)− �u�z"4 − �z�"3 − (a1�u + ��z)"2 − �z�"]: (5.10)

It is clear that we can select "1 such that

(a1� − a22)− �u�z"41 − �z�"31 − (a1�u + ��z)"21 − �z�"1 ¿ 0: (5.11)

In a similar way

#1¿ �z�n4 − 4"3�u�z − 3"2�z�un2 − 2"(a1�u + ��z)n2

¿ n4[�z� − 4"3�u�z − 3"2�z�u − 2"(a1�u + ��z)]: (5.12)

We can select "2 such that

�z� − 4"32�u�z − 3"22�z�u − 2"2(a1�u + ��z)¿ 0: (5.13)

Some easy calculations allow us to see that

#2 = �2�z�zn6 + a22�z�un
6 − Q2("; n6); (5.14)
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where

Q2 = P1(a1�u + ��z)n2 + P2�z�n4 + P2P1 − P3P0 − (a1� − a22)n
4P3 − �z�un2P0:

We can repeat the previous argument to prove that there exists "3 such that #2 ¿ 0. Similar arguments
give

#3 = n8�2
z �

2
ua

2
2 − Q3("; n8) (5.15)

and

#4 = n8�2
z �

3
u�za

2
2 − Q4("; n8): (5.16)

Here, Q3 and Q4 are two polynomials that can be treated in a way similar to that used in the study
of #0; #1 and #2, but we do not include the total expression to save cumbersome calculations.
Nevertheless, it is important to note that we can do that because a2 �=0. The relevant thing is to
see that we can repeat the previous arguments and that we can 0nd " su2ciently small to guarantee
that conditions (5.7) and (5.8) are satis0ed. Thus, for " su2ciently small #i ¿ 0; i=0; : : : ; 4; n¿ 1.
Thus, the solutions of Eq. (5.4) lie on the left of the line Re{z}=−". This implies the exponential
stability of solutions.

From the analysis, we can conclude that the condition L= � is not restrictive. We can adapt the
same method in the general case. Thus, we can obtain exponential stability in the general case.

It is natural to expect exponential stability for the nonisothermal case.
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Appendix

The aim of this appendix is to obtain numerical values for the parameters mi; Mi and Ni. From
equality (3.4) and PoincarNe’s inequality, we have

dE1

dt
6−

∫ L

0

(
�(ż)2 + �(u̇)2 − 2�u̇ż +

�z�2

2L2 (ż)
2 +

�z
2
(żx)2

)
dl

= −
∫ L

0

((
�+

�z�2

2L2

)
(ż)2 + �(u̇)2 − 2�u̇ż +

�z
2
(żx)2

)
dl

= −
∫ L

0

((√
�+

�z�2

4L2 ż − �u̇√
�+ (�z�2=4L2)

)2

+
�z�2

4L2 (ż)
2

+

(
�− �2

�+ �z�2

4L2

)
(u̇)2 +

�z
2
(żx)2

)
dl
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6−
∫ L

0

(
�z�2

4L2 (ż)
2 +

(
�− �2

�+ (�z�2=4L2)

)
(u̇)2 +

�z
2
(żx)2

)
dl:

Thus, we can take

m1 =
�z�2

4L2 ; m2 = �− �2

�+ (�z�2=4L2)
; m3 =

�z
2
:

In order to 0nd some values for the parameters Ni, it is convenient to bound |W | by means of E1.
We have

|W |6
∫ L

0

(
1
2
�zz2 +

1
2
�z(ż)2 +

1
2
�uu2 +

1
2
�u(u̇)2 + �z2 + �u2 +

1
2
�zz2x

)
dl

6
∫ L

0

(
L2

2�2 �zz
2
x +

1
2
�z(ż)2 +

L2

2�2 �uu
2
x +

1
2
�u(u̇)2 +

L2

�2 �z
2
x +

L2

�2 �u
2
x +

1
2
�zz2x

)
dl

6max
(
1; m−1

(
�z

L2

�2 + 2�
L2

�2 + �z

)
; m−1

(
�u

L2

�2 + 2�
L2

�2

))
E1(t);

where m is the smallest eigenvalue of the matrix (3.2). If we take

N1 = 2max
(
1; m−1

(
�z

L2

�2 + 2�
L2

�2 + �z

)
; m−1

(
�u

L2

�2 + 2�
L2

�2

))
;

we can take

N2 = N1=2; N3 = 3N1=2:

To obtain the values for the parameters M1 and M2, we can consider

M1
dE1

dt
+

dW
dt
6−

∫ L

0
(a1z2x + 2a2uxzx + �u2x + m3M1(żx)2

+ (M1m1 − �z)(ż)2 + (M1m2 − �u)(u̇)2) dl:

Thus, we can take

M1 = max
(
�z
m1

;
�u
m2

)
+ 1

and

M2 = min
(
2;
2(M1m1 − �z)

�z
;
2(M1m2 − �u)

�u

)
:
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