Models for Noncommuting Operators

Arthur E. Frazho
School of Aeronautics and Astronautics, Purdue University, West Lafayette, Indiana 47907
Communicated by the Editors

Received January 1980; revised April 1982

Abstract

This paper develops a model theory for a pair of noncommuting operators. Using backward shift operators on a Fock space Rota's Theorem is generalized, i.e., it is shown that any two bounded operators on a Hilbert space are simultaneously similar to part of a pair of backward shift operators on a Fock space. These shift operators and the Fock space framework are also used to develop a dilation theory for two noncommuting operators.

1. Introduction

Rota [4] proved that any bounded operator A, on a Hilbert space \mathscr{E}, with spectral radius less than one, is similar to part of a backward shift operator. Another result along this line is given in $[1,3,5]$. It states that any contraction is unitarily equivalent to part of a co-isometry, i.e., if A on \mathscr{C} is a contraction then $H A=(V \mid \mathscr{W}) H$, where H is a unitary operator, from \mathscr{C} onto \mathscr{W}, V is a co-isometry, and \mathscr{W} is an invariant subspace for V. (An operator V on \mathscr{C} is an isometry if $V^{*} V=I$, the identity on \mathscr{C}. A coisometry is the adjoint of an isometry.) In this paper we generalize the above results to a pair of bounded operators, A, N on \mathscr{C}. First it is shown that A, N are simultaneously similar to part of two shift operators. Then this result is refined; if $A^{*} A+N^{*} N \leqslant I$, then it is shown that A, N are simultaneously unitarily equivalent to part of two co-isometries. We say that A, N are simultaneously similar to [unitarily equivalent to] part of R, T, if (1) R, T are operators on a Hilbert space \mathscr{F}, (2) there exists an invariant subspace \mathscr{W}, for both R and T, (3) there exists a similarity [unitary] transformation H mapping \mathscr{B} onto \mathscr{W} such that $H A=(R \mid \mathscr{W}) H$ and $H N=(T \mid \mathscr{W}) H$, respectively. It is emphasized that the same operator H is used to intertwine both A with $R \mid \mathscr{W}$ and N with $T \mid \mathscr{W}$. (Note: A, N is simultaneously similar to [unitarily equivalent to] R, T if (1) holds, and there exists a similarity [unitary] transformation H mapping \mathscr{C} onto \mathscr{V} such that $H A=R H$ and $H N=T H$, respectively.)

Our model theory for noncommuting operators is motivated by problems arising in nonlinear systems [2]. It can also be viewed as a representation theory for an operator A perturbed by N. The models obtained are shift operators defined on a Fock space. The result is a generalization of the existing dilation theory for one operator $[1,3-5]$, a deeper understanding of how noncommuting operators interact, and a solution to certain problems in mathematical systems theory [2].

2. The Shift Operators S and E

In this section we introduce several different shift operators on a Fock space. These operators will be used to develop a model theory.

First some notation is established. Throughout, all spaces are Hilbert spaces, and A, N are bounded linear operators on \mathscr{C}. The adjoint of an operator A, is denoted by A^{*}, the open unit disc by D, and the (n-fold) unit polydisc by $D^{n}=D \times D \times \cdots \times D$. The Hardy space, $\mathscr{Z}_{n}(\mathscr{O})$ is the space of all analytic functions, f in D^{n} with values in the Hilbert space \mathscr{C}, such that the Taylor coefficients are square summable. Each f in $\mathscr{H}_{n}(\mathscr{E})$ has a power series expansion given by

$$
\begin{equation*}
f\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)=\sum_{i_{1} \geqslant 0, \ldots, i_{n} \geqslant 0} f_{i_{1}, i_{2}, \ldots, i_{n}} \lambda_{1}^{i_{1}} \lambda_{2}^{i_{2}} \cdots \lambda_{n}^{i_{n}} \tag{2.1}
\end{equation*}
$$

where the series converges uniformly in D^{n}, all $f_{i_{1}, i_{2}, \ldots, i_{n}}$ are elements in \mathscr{K}, and the norm is

$$
\begin{equation*}
\|f\|_{\mathscr{F}_{n}}^{2} \doteq \sum_{i_{n}>0 \ldots, i_{n} \geqslant 0}\left\|f_{i_{1}, \ldots, i_{n}}\right\|^{2} \not{ }_{x} \tag{2.2}
\end{equation*}
$$

Clearly $\mathscr{Z}_{n}(\mathscr{C})$ is a Hilbert space. The Fock space $\mathscr{F}_{1}(\mathscr{X})$ is the Hilbert space defined as the orthogonal direct sum of the \mathscr{H}_{n} 's:

$$
\begin{equation*}
\mathscr{F}_{1}(\mathscr{X}) \doteq \oplus_{n=1}^{\infty} \mathscr{H}_{n}(\mathscr{F}) \tag{2.3}
\end{equation*}
$$

For convenience elements in $\mathscr{F}_{1}(\mathscr{C})$ are represented by two different notations: both $\oplus_{1}^{\infty} f_{n}$ and $\left\{f_{1}, f_{2}, \ldots\right\}$ represent the same element in $\mathscr{F}_{1}(\mathscr{K})$.

The backward shift operator, S_{n} mapping $\mathscr{H}_{n}(\mathscr{K})$ into $\mathscr{H}_{n}(\mathscr{K})$ is the linear operator defined by

$$
\begin{equation*}
S_{n} f\left(\lambda_{1}, \ldots, \lambda_{n}\right) \doteq \frac{1}{\lambda_{1}}\left[f\left(\lambda_{1}, \ldots, \lambda_{n}\right)-f\left(0, \lambda_{2}, \lambda_{3}, \ldots, \lambda_{n}\right)\right] \tag{2.4}
\end{equation*}
$$

Note the operator S_{n} only acts on the Taylor coefficients of λ_{1} in the power
series expansion of f. The generalized backward shift operator $S_{\mathscr{Z}}$ mapping $\mathscr{F}_{1}(\mathscr{K})$ into $\mathscr{F}_{1}(\mathscr{E})$ is defined by:

$$
\begin{equation*}
S_{\mathscr{E}} \oplus_{1}^{\infty} f_{n} \doteq \oplus_{1}^{\infty} S_{n} f_{n} \quad\left(\oplus_{1}^{\infty} f_{n} \in \mathscr{F}_{1}(\mathscr{B})\right) . \tag{2.5}
\end{equation*}
$$

The adjoint $S_{\mathscr{F}}$ is

$$
\begin{equation*}
S_{\mathscr{B}}^{*} \oplus_{1}^{\infty} f_{n}=\oplus_{1}^{\infty} \lambda_{1} f_{n} \quad\left(\underset{1}{\infty} f_{n} \in \mathscr{F}_{1}(\mathscr{C})\right) . \tag{2.6}
\end{equation*}
$$

Clearly $S_{\mathscr{E}}^{*}$ is an isometry. Thus, $S_{\mathscr{E}}$ is a co-isometry.
The evaluation operator, E_{n} mapping $\mathscr{H}_{n}(\mathscr{X})$ into $\mathscr{H}_{n-1}(\mathscr{X})$ for $n \geqslant 1$ is given by

$$
\begin{equation*}
E_{n} f\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n-1}\right) \doteq f\left(0, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{n-1}\right) \quad\left(f \in \mathscr{P}_{n}(\mathscr{C})\right) . \tag{2.7}
\end{equation*}
$$

The E_{n} operator evaluates λ_{1} at zero and relabels the complex variables $\lambda_{i} \rightarrow \lambda_{i-1}$. By convention $\mathscr{H}_{0}(\mathscr{C}) \doteq \mathscr{C}$. Thus $E_{1} f\left(\lambda_{1}\right)=f(0) \in \mathscr{C}$ if $f \in \mathscr{H}_{1}(\mathscr{C})$. The generalized evaluation operator $E_{\mathscr{F}}$ mapping $\mathscr{F}_{1}(\mathscr{C})$ into $\mathscr{F}_{1}(\mathscr{C})$ is

$$
\begin{align*}
E_{\mathscr{F}}^{\oplus} \oplus_{1}^{\infty} f_{n} & \doteq \oplus_{n=1}^{\infty} E_{n+1} f_{n+1} \tag{2.8}\\
& \doteq\left\{f_{2}\left(0, \lambda_{1}\right), f_{3}\left(0, \lambda_{1}, \lambda_{2}\right), f_{4}\left(0, \lambda_{1}, \lambda_{2}, \lambda_{3}\right), f_{5}\left(0, \lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right) \ldots\right\}
\end{align*}
$$

where $\oplus_{1}^{\infty} f_{n}=\left\{f_{1}\left(\lambda_{1}\right), f_{2}\left(\lambda_{1}, \lambda_{2}\right), \ldots\right\} \in \mathscr{F}_{1}(\mathscr{C})$. The adjoint of $E_{\mathscr{K}}$ is given by

$$
\begin{equation*}
E_{\forall}^{*} \oplus_{1}^{\infty} f_{n} \doteq\left\{0, f_{1}\left(\lambda_{2}\right), f_{2}\left(\lambda_{2}, \lambda_{3}\right), f_{4}\left(\lambda_{2}, \lambda_{3}, \lambda_{4}\right), \ldots\right\} . \tag{2.9}
\end{equation*}
$$

Clearly, $E_{\mathscr{E}}^{*}$ is an isometry and $E_{\mathscr{E}}$ is a co-isometry. The subscript \mathscr{X} is dropped from S and E when the underlying space is understood.

The operators S and E are the models we use. It turns out that "any" pair of operators A, N are simultaneously similar to part of S and E; see Proposition 1. Furthermore, these operators have several intercsting properties. The spectrum of S and E is the closed unit disc; the point spectrum of S and E is the open unit disc (Problem 67 of [3]). It is easy to verify that ran S^{*} is orthogonal to ran E^{*} (ran denotes the range). Furthermore, $\mathscr{F}_{1}(\mathscr{K})$ is the orthogonal direct sum of $\operatorname{ran} S^{*}, \operatorname{ran} E^{*}$ and \mathscr{G} (identifying \mathscr{G} with the obvious subspace of $\mathscr{B}_{1}(\mathscr{\mathscr { C }})$). Thus $S^{*} S+E^{*} E \leqslant I$. The dimension of \mathscr{C} is called the multiplicity of S and E, in accordance
with the usual definition for shift operators, since \mathscr{E}^{6} is cyclic for the algebra generated by S^{*} and E^{*}.

Finally, we introduce an operator Φ. Let A, N be two bounded linear operators on \mathscr{X} and let

$$
\begin{equation*}
F_{i} \doteq\left(I-\lambda_{i} A\right)^{-1}=\sum_{n=0}^{\infty} A^{n} \lambda_{i}^{n} \tag{2.10}
\end{equation*}
$$

Define a sequence of mappings $\Phi_{i}: \mathscr{E} \rightarrow \mathscr{H}_{i}(\mathscr{C})$ by $\Phi_{1}\left(\lambda_{1}\right) \doteq F_{1} ;$ $\Phi_{2}\left(\lambda_{1}, \lambda_{2}\right) \doteq F_{2} N F_{1}$ and generally

$$
\begin{equation*}
\Phi_{n}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) \doteq F_{n} N F_{n-1} N \cdots N F_{1}=F_{n} N \Phi_{n-1} \quad(n \geqslant 2) \tag{2.11}
\end{equation*}
$$

In the case that

$$
\begin{equation*}
\sum_{i=1}^{\infty}\left\|\Phi_{i} x\right\|^{2} \leqslant\left(\text { const.) }\|x\|^{2} \quad \text { (for all } x \in \mathscr{X}\right) \tag{2.12}
\end{equation*}
$$

define the bounded linear operator Φ from \mathscr{C} into $\mathscr{F}_{1}(\mathscr{K})$ by

$$
\begin{equation*}
\Phi x=\oplus_{n=1}^{\infty} \Phi_{n} x=\left\{\Phi_{1} x, \Phi_{2} x, \Phi_{3} x, \ldots\right\} \tag{2.13}
\end{equation*}
$$

Throughout, A and N are fixed, and Φ always refers to the above transformation. Clearly $\|\Phi x\| \geqslant\|x\|$ for all $x \in \mathscr{E}$. Hence $\dot{\Phi}$ (if defined) always has closed range and is a similarity transformation from \mathscr{K} onto its range.

3. Simultaneous Similarity

Proposition 1. Let A, N be operators on \mathscr{C} such that (2.12) holds. Then A and N are simultaneously similar to part of S and E on $F_{1}(\mathscr{C})$.

Proof. First we show that $S \Phi=\Phi A$ and $E \Phi=\Phi N$. The former equality follows from $S_{1} F_{1}=F_{1} A$ (see (2.10)) and

$$
\begin{align*}
S \Phi & =\stackrel{\oplus}{\oplus}{ }_{1}^{\infty} S_{n} \Phi_{n}=\stackrel{\oplus}{1} \oplus_{n} F_{n-1} N F_{n-1} N \cdots S_{1} F_{1} \\
& =\underset{1}{\oplus} F_{n} N F_{n-1} N \cdots N F_{1} A \tag{3.1}\\
& =\oplus_{1}^{\infty} \Phi_{n} A=\Phi A .
\end{align*}
$$

The other equality follows from $F_{1}(0)=I$ and

$$
\begin{align*}
E \Phi & =\oplus_{1}^{\infty} E_{n+1} \Phi_{n+1} \\
& =\oplus_{n=1}^{\infty} E_{n+1} F_{n+1} N F_{n} N \cdots N F_{1} \tag{3.2}\\
& =\oplus^{\infty} F_{n} N F_{n-1} N \cdots N F_{1} N F_{1}(0)=\Phi N .
\end{align*}
$$

Since the ran Φ is invariant for both S and E, the proof is complete.
Clearly (2.12) does not hold for all A and N. For instance choose $A=I$ and $N=0$. However, there always exists a $\varepsilon>0$ such that the corresponding condition for εA and εN holds. Therefore our models S, E for A, N are perfectly general.

Corollary 1. If A, N are bounded operators on \mathscr{C}. and $A^{*} A+$ $N^{*} N \leqslant r I$, where $r<1$ then A, N are simultaneously similar to part of S, E on $\mathscr{F}_{1}(\mathscr{E})$.

Proof. We must verify that Φ is a bounded operator. Let P be any positive self-adjoint operator, and L be the transformation mapping positive operators into positive operators defined by $L P \doteq A^{*} P A+N^{*} P N$. Clearly $L I \leqslant r I$ and $L P \leqslant L Q$ if $P \leqslant Q$. Thus

$$
\begin{equation*}
L^{n} I=L L^{n-1} I \leqslant r L^{n-1} I \leqslant r^{n} I \tag{3.3}
\end{equation*}
$$

This implies that $\sum_{i=0}^{n} L^{i} I$ is an increasing sequence of positive operators bounded by $(1-r)^{-1}$. By Problem 94 of [3], this sequence has a limit

$$
\begin{align*}
R=\sum_{i=0}^{\infty} L^{i} I= & I+A^{*} A+N^{*} N+A^{*^{2}} A^{2}+A^{*} N^{*} N A \\
& +N^{*} A^{*} A N+N^{* 2} N^{2}+\cdots \tag{3.4}
\end{align*}
$$

in the strong operator topology.
The expansion for $\|\Phi x\|^{2}$ is

$$
\begin{align*}
\|\Phi x\|^{2}= & \|x\|^{2}+\sum_{i=1}^{\infty}\left(A^{* i} A^{i} x, x\right) \\
& +\sum_{i \geqslant 0, j \geqslant 0}\left(A^{* j} N^{*} A^{* i} A^{i} N A^{j} x, x\right)+\cdots \tag{3.5}
\end{align*}
$$

It is easy to show that (3.4) and (3.5) contain exactly the same terms, i.e., $(R x, x)=\|\Phi x\|^{2}$ for all $x \in \mathscr{R}$. Since R is bounded

$$
\begin{equation*}
\|\Phi x\|^{2}=\sum_{i=1}^{\infty}\left\|\Phi_{i} x\right\|^{2}=(R x, x) \leqslant M\|x\|^{2} \tag{3.6}
\end{equation*}
$$

and the proof is complete.
Equation (3.6) also proves
Corollary 2. If $A^{*} A+N^{*} N \leqslant r$ for some $r<1$, then (2.12) holds.
A converse to Corollary 2 is
Corollary 3. Let A, N be bounded operators on \mathscr{C}. If (2.12) holds, then there exists a Hilbert norm $\|\cdot\|_{0}$ on \mathscr{C} equivalent to $\|\cdot\|$ such that

$$
\begin{equation*}
\|A x\|_{0}^{2}+\|N x\|_{0}^{2} \leqslant r\|x\|_{0}^{2} \quad(x \in \mathscr{C}) \tag{3.7}
\end{equation*}
$$

for some $r<1$.
Proof. The proof is omitted. It is almost identical to problem 122 in [3]; the other norm on \mathscr{C} is defined by $\|x\|_{0}^{2} \doteq\|\Phi x\|_{\mathscr{F}}^{2}$.

Corollaries 2 and 3 show that (2.12) holds if and only if A, N are simultaneously similar to a pair A_{0}, N_{0} such that for some $r<1$ and all $x \in \mathscr{K}$,

$$
\left\|A_{0} x\right\|^{2}+\left\|N_{0} x\right\|^{2} \leqslant r\|x\|^{2}
$$

If $N=0$ the above reduces to the following standard result (Problem 122 in [3]): A on \mathscr{C} is similar to a strict contraction if and only if

$$
\begin{equation*}
\sum_{i=0}^{\infty}\left\|A^{i} x\right\|^{2} \leqslant M\|x\|^{2} \quad(x \in \mathscr{C}) \tag{3.8}
\end{equation*}
$$

(T is a strict contraction if $\|T\|<1$.) In other words, the spectral radius of A is strictly less than one if and only if (3.8) holds.

Remark. In Proposition 1 and Corollaries 2, 3 the condition (2.12) plays an important role. One can express this condition through a Lyapunov equation. We claim that (2.12) holds if and only if there exists a positive operator P such that $0<P<\infty$ and

$$
\begin{equation*}
P-A^{*} P A-N^{*} P N=I \quad(0<P<\infty) \tag{3.9}
\end{equation*}
$$

Assume (2.12). Then $P \doteq \Phi^{*} \Phi$ satisfies (3.9). This follows from the expansion of $\Phi^{*} \Phi$:

$$
\begin{align*}
\Phi * \Phi \doteq & \sum_{i \geqslant 0} A^{* i} A+\sum_{j \geqslant 0, i \geqslant 0} A^{* j} N^{*} A^{* i} A^{i} N A^{j} \\
& +\sum_{k \geqslant 0, j \geqslant 0, i \geqslant 0} A^{* k} N^{*} A^{* j} N^{*} A^{* i} A^{i} N A^{j} N A^{k}+\cdots \tag{3.10}
\end{align*}
$$

Assume P satisfies (3.9). Let \mathscr{C}_{0} be the Hilbert space \mathscr{C} equipped with the following inner product $(x, x)_{0} \doteq(P x, x)$. Clearly $\|\cdot\|$ and $\|\cdot\|_{0}$ are equivalent norms. Set $Q=A^{*} P A+N^{*} P N$. Using (3.9) and $P=I+Q$ a simple calculation gives

$$
\begin{align*}
\frac{\|A x\|_{0}^{2}+\|N x\|_{0}^{2}}{\|x\|_{0}^{2}} & =\frac{\left(A^{*} P A+N^{*} P N x, x\right)}{(P x, x)} \\
& =\frac{(Q x, x)}{(x, x)+(Q x, x)} \tag{3.11}\\
& =\frac{\frac{(Q x, x)}{(x, x)}}{1+\frac{(Q x, x)}{(x, x)}} \leqslant \frac{\|Q\|}{1+\|Q\|}<1
\end{align*}
$$

Hence (3.7) holds. Corollary 2 gives (2.12). In many applications, obtaining a solution P to (3.9) is easier than proving that (2.12) holds. Finally, it is noted that the solution to (3.9) (if it exists) is unique.

4. Unitary Equivalence

If $N=0$ then Proposition 1 reduces to Rota's Theorem [4]. Problem 121 of [3] is a refinement of Rota's Theorem. In our more general setting, this refinement becomes

Proposition 2. Let A, N be bounded operators on \mathscr{K}, such that $A^{*} A+N^{*} N \leqslant I$, and let Φ_{n} for $n \geqslant 1$ be defined by (2.11). If $A^{n} \rightarrow 0$
 simultaneously unitarily equivalent to part of the shifts $S_{\mathscr{O}}, E_{\mathscr{D}}$ on $\mathscr{F}_{1}(\mathscr{D})$, for some closed linear subspace \mathscr{D} of \mathscr{C}.

The proof depends on the following
Lemma 1. Let A and N be bounded operators on \mathscr{C} such that
$A^{*} A+N^{*} N \leqslant I$, and D be the positive square root of $I-A^{*} A-N^{*} N$. Let \mathscr{D} be the closure of the range of D. Then
(i) $A^{* n} A^{n}$ strongly converges to the positive operator A_{∞}^{2}, as $n \rightarrow \infty$.
(ii) For each $x \in \mathscr{C}$ the sequence $\left\|N \Phi_{n} x\right\|_{*_{n}}$ is decreasing.
(iii)

$$
\sum_{n=1}^{\infty}\left\|D \Phi_{n} x\right\|^{2} \leqslant\|x\|^{2} \quad(\text { for all } x \in \mathscr{C})
$$

so that the operator $D \Phi$ mapping \mathscr{O} into $\mathscr{F}_{1}(\mathscr{D})$ defined by $D \Phi x=$ $\oplus_{1}^{\infty} D \Phi_{n} x$, is well defined. In fact
$\|D \Phi x\|_{F_{1}}^{2}+\left\|A_{\infty} x\right\|_{\mathscr{C}}^{2}+\sum_{1}^{\infty}\left\|A_{\infty} N \Phi_{n} x\right\|_{\mathscr{E}_{n}}^{2}+\lim _{n \rightarrow \infty}\left\|N \Phi_{n} x\right\|_{\mathscr{F}_{n}}^{2}=\|x\|^{2}$
for all $x \in \mathscr{K}$.
Proof. Part (i) follows because A is a contraction, i.e., $A^{* n} A^{n}$ is a sequence of decreasing positive operators.

Consulting (2.11) gives

$$
\begin{align*}
\left\|D \Phi_{1} x\right\|_{\mathscr{R}_{1}}^{2} & =\lim _{k \rightarrow \infty} \sum_{i=0}^{k}\left\|D A^{i} x\right\|_{\mathscr{X}}^{2} \\
& =\lim _{k \rightarrow \infty} \sum_{i=0}^{k}\left(A^{* i}\left(I-A^{*} A-N^{*} N\right) A^{i} x, x\right) \tag{4.2}\\
& =\|x\|^{2}-\lim _{k \rightarrow \infty}\left\|A^{k} x\right\|^{2}-\left\|N \Phi_{1} x\right\|_{Z_{1}}^{2}
\end{align*}
$$

Therefore,

$$
\begin{equation*}
\left\|D \Phi_{1} x\right\|^{2}=\|x\|^{2}-\left\|A_{\infty} x\right\|^{2}-\left\|N \Phi_{1} x\right\|^{2} \tag{4.3}
\end{equation*}
$$

Following the same procedure on the general term $n>1$ gives

$$
\begin{equation*}
\left\|D \Phi_{n} x\right\|^{2}=\left\|N \Phi_{n-1} x\right\|^{2}-\left\|A_{\infty} N \Phi_{n-1} x\right\|^{2}-\left\|N \Phi_{n} x\right\|^{2} \tag{4.4}
\end{equation*}
$$

summing to n on (4.3), (4.4) and rearranging terms:

$$
\begin{align*}
& \sum_{i=1}^{n}\left\|D \Phi_{i} x\right\|^{2}+\left\|A_{\infty} x\right\|^{2}+\sum_{i=1}^{n-1}\left\|A_{\infty} N \Phi_{i} x\right\|^{2} \\
& =\|x\|-\left\|N \Phi_{n} x\right\|^{2} . \tag{4.5}
\end{align*}
$$

Since the left-hand side is positive and increasing in n, the $\left\|N \Phi_{n} x\right\|^{2}$ are decreasing. Part (iii) follows by taking limits in (4.5).

Proof of Proposition 2. Let $D \Phi$ be the operator given in the lemma. Following (3.1), (3.2), it is easy to verify that

$$
\begin{equation*}
S_{\mathscr{P}} D \Phi=D \Phi A \quad \text { and } \quad E_{\mathscr{Q}} D \Phi=D \Phi N . \tag{4.6}
\end{equation*}
$$

The hypothesis of the Proposition and (4.1) guarantees that $D \Phi$ is an isometry. Since the ran $D \Phi$ is invariant under $S_{\mathscr{O}}$ and $E_{\mathscr{D}}$, the proof is complete.

Corollary 4. If A, N are bounded operators on \mathscr{X} and $A^{*} A+$ $N^{*} N \leqslant r I$ where $r<1$ then A nd N are simultaneously unitarily equivalent to part of S and E on $\mathscr{F}_{1}(\mathscr{G})$.

Proof. We verify that the hypothesis of the proposition are satisfied. Clearly $A^{n} \rightarrow 0$. Equation (3.6) and Corollary 2 guarantees that $\left\|N \Phi_{n} x\right\|_{\mathscr{P}_{n}}^{2} \rightarrow 0$ as $n \rightarrow \infty$ for all $x \in \mathscr{C}$. Since $r<1$ we have $\mathscr{D}=\mathscr{C}$ and the proof is complete.

By employing a trick found in [1,5] the hypothesis $A^{n} \rightarrow 0$ and $N \Phi_{n} \rightarrow 0$ strongly as $n \rightarrow \infty$ in Proposition 2 are removed. This begins with

Proposition 3. Let A, N be operators on \mathscr{C}, and $A^{*} A+N^{*} N \leqslant I$. If $\left\|N \Phi_{n} x\right\| \rightarrow 0$ as $n \rightarrow \infty$ for all $x \in \mathscr{C}$, then A, N are simultaneously unitarily equivalent to part of a pair of co-isometries.

Proof. Throughout the notation of Lemma 1 is used. Let \mathscr{A} be the closure of the ran A_{∞} and W the operator mapping \mathscr{A} into \mathscr{A} defined by $W A_{\infty} x \doteq A_{\infty} \Lambda x$. It is easy to show that W is an isometry (see p .51 of [1] or p. 39 of [5]). By Proposition (2.3), p. 6 of [5], W can be extended to a unitary operator S_{0} on some larger Hilbert space \mathscr{Y}, i.e., \mathscr{A} is a subspace of \mathscr{F} and $W=S_{0} \mid \mathscr{A}$. Further, $S_{0} A_{\infty}=A_{\infty} A$.

Let $\mathscr{F}_{0}(\mathscr{Y})$ be the following Fock space

$$
\begin{equation*}
\mathscr{F}_{0}(\mathscr{Y}) \doteq \oplus_{n=0}^{\infty} \mathscr{H}_{n}(\mathscr{Y}) . \tag{4.7}
\end{equation*}
$$

(Recall $\mathscr{H}_{0}(\mathscr{Y}) \doteq \mathscr{F}$.) Define the co-isometry $S_{\mathscr{F}}$ on $\mathscr{F}_{0}(\mathscr{Y})$ by

$$
\begin{equation*}
S_{\mathscr{y}}{\underset{0}{\oplus} f_{n}}_{\infty}^{\oplus} \oplus_{0}^{\infty} S_{n} f_{n}=\left\{S_{0} f_{0}, S_{1} f_{1}, S_{2} f_{2}, \ldots\right\}, \tag{4.8}
\end{equation*}
$$

where S_{0} is the above unitary operator and S_{n} is the usual backward shift operator on $\mathscr{Z}_{n}(\mathscr{Y})$ for $n \geqslant 1$, (see (2.4)). The co-isometry $E_{\mathscr{F}}$ on $\mathscr{F}_{0}(\mathscr{Y})$ is defined by

$$
\begin{equation*}
E_{\mathscr{Y}} \oplus_{0}^{\infty} f_{n} \doteq \bigoplus_{n=0}^{\infty} E_{n+1} f_{n+1}=\left\{E_{1} f_{1}, E_{2} f_{2}, E_{3} f_{3}, \ldots\right\} \tag{4.9}
\end{equation*}
$$

where E_{n} for $n \geqslant 1$ is the evaluation operator mapping $\mathscr{P}_{n}(\mathscr{Y})$ into $\mathscr{H}_{n-1}(\mathscr{Y})$, (see (2.7)).

Consider the operator Φ_{0} mapping \mathscr{E} into $\mathscr{F}_{0}(\mathscr{Y})$ defined by

$$
\begin{align*}
\Phi_{\infty} x & \doteq A_{\infty} x \oplus A_{\infty} N \Phi x \tag{4.10}\\
& =\left\{A_{\infty} x, A_{\infty} N \Phi \Phi_{1} x, A_{\infty} N \Phi_{2} x, \ldots\right\} \quad(x \in \mathscr{C})
\end{align*}
$$

By following the calculations in (3.1), (3.2) with the definition of S_{0} it is easy to verify that

$$
\begin{equation*}
S_{\mathscr{y}} \Phi_{\infty}=\Phi_{\infty} A \quad \text { and } \quad E_{\mathscr{H}} \Phi_{\infty}=\Phi_{\infty} N \tag{4.11}
\end{equation*}
$$

To complete the proof we combine the above with the proof of Proposition 2. Consider the operator $D \Phi \oplus \Phi_{\infty}$ mapping \mathscr{X} into $\mathscr{F}_{1}(\mathscr{D}) \oplus \mathscr{F}_{0}(\mathscr{Y})$ defined by $D \Phi_{x} \oplus \Phi_{\infty} x$ when $x \in \mathscr{X}$. This operator is an isometry, by (4.1) and (4.10). Clearly the operators $S_{\mathscr{O}} \oplus S_{\mathscr{y}}$ and $E_{\mathscr{O}} \oplus E_{\mathscr{y}}$ on $\mathscr{F}_{1}(\mathscr{D}) \oplus \mathscr{F}_{0}(\mathscr{H})$ are co-isometries. Further (4.6), (4.11) give $\left(S_{\mathscr{O}} \oplus S_{y}\right)$ $\left(D \Phi x \oplus \Phi_{\infty} x\right)=D \Phi A x \oplus \Phi_{\infty} A x \quad$ and $\quad\left(E_{\mathscr{D}} \oplus E_{\mathscr{Y}}\right) \quad\left(D \Phi_{x} \oplus \Phi_{\infty} x\right)=$ $D \Phi N x \oplus \Phi_{\infty} N x$, where $x \in \mathscr{K}$. Since the range of $D \Phi \oplus \Phi_{\infty}$ is an invariant subspace for both $S_{\mathscr{Z}} \oplus S_{\mathscr{Z}}$ and $E_{\mathscr{Z}} \oplus E_{\mathscr{Z}}$ the proof is complete.

Finally we are ready to prove
Proposition 4. If A, N are operators on \mathscr{E} such that $A^{*} A+N^{*} N \leqslant I$, then A, N are simultaneously unitarily equivalent to part of a pair of coisometries.

Proof. Since $\left\|N \Phi_{n} x\right\|^{2}$ is a decreasing sequence (see Lemma 1), there exists a positive operator P on \mathscr{C} such that

$$
\left(P^{2} x, x\right)=\|P x\|^{2}=\lim _{n \rightarrow \infty}\left(\Phi_{n}^{*} N^{*} N \Phi_{n} x, x\right)=\lim _{n \rightarrow \infty}\left\|N \Phi_{n} x\right\|_{\mathscr{P}_{n}}^{2}
$$

By the definitions (2.2) and (2.11) we have

$$
\begin{equation*}
\|P x\|^{2}=\lim _{n \rightarrow \infty} \sum_{i_{1} \geqslant 0, \ldots, i_{n} \geqslant 0}\left\|N A^{i_{n}} N A^{i_{n-1}} N \cdots N A^{i_{1}} x\right\|_{\geqslant}^{2} \tag{4.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\|P x\|_{\mathscr{C}}^{2}-\left\|P N \Phi_{1} x\right\|_{x_{1}}^{2} \tag{4.13}
\end{equation*}
$$

for all $x \in \mathscr{C}$. Let \mathscr{Z} be the closure of the range of P, and let Z be any unitary operator on the Fock space $\mathscr{F}_{0}(\mathscr{F})$ such that

$$
\begin{equation*}
Z\{P x, 0,0,0, \ldots\}=\left\{0, P N \Phi_{1} x, 0,0, \ldots\right\} \tag{4.14}
\end{equation*}
$$

Such an operator exists by (4.13).

Let S_{z} be the co-isometry on $\mathscr{F}_{0}(\mathscr{F})$ defined by

$$
\begin{equation*}
S_{\mathcal{Z}} \oplus_{0}^{\infty} f_{n} \doteq \oplus_{0}^{\infty} S_{n} f_{n} \quad\left(\oplus_{0}^{\infty} f_{n} \in \mathscr{F}_{0}(\mathscr{Z})\right) \tag{4.15}
\end{equation*}
$$

where S_{n} is the backward shift operator in $\mathscr{E}_{n}(\mathscr{E})$, for $n>0$, and $S_{0} \doteq I$. Define $\widetilde{E}_{\mathcal{E}}$ to be the co-isometry on $\mathscr{F}_{0}(Z)$ given by $\tilde{E}_{\mathcal{F}} \doteq Z E_{\mathcal{E}}$, where $E_{\mathcal{E}}$ is the generalized evaluation operator, (replace \mathscr{Y} by \mathscr{F} in (4.9)). Consider the operator Φ_{\neq}mapping \mathscr{E}^{-}into $\mathscr{F}_{0}(\mathscr{F})$ defined by

$$
\begin{equation*}
\Phi_{z} x \doteq\left\{0, P N \Phi_{1} x, 0,0, \ldots\right\} \quad(x \in \mathscr{K}) \tag{4.16}
\end{equation*}
$$

From (4.13)

$$
\begin{equation*}
\left\|\Phi_{\mathcal{F}} x\right\|^{2}=\lim _{n \rightarrow \infty}\left\|N \Phi_{n} x\right\|^{2} \quad(x \in \mathscr{C}) \tag{4.17}
\end{equation*}
$$

Using (4.14), (2.4), (2.7) a simple calculation verifies that

$$
\begin{equation*}
S_{z} \Phi_{z}=\Phi_{z} A \quad \text { and } \quad \tilde{E}_{z} \Phi_{z}=\Phi_{z} N \tag{4.18}
\end{equation*}
$$

At this point the proof is exactly the same as Proposition 3 except one uses the co-isometries $S_{\mathscr{G}} \oplus S_{\mathscr{Z}} \oplus S_{z} \quad$ and $\quad E_{\mathscr{G}} \oplus E_{\mathscr{y}} \oplus \tilde{E}_{z} \quad$ on $\mathscr{F}_{1}(\mathscr{D}) \oplus \mathscr{F}_{0}(\mathscr{F}) \oplus \mathscr{F}_{0}(\mathscr{Z})$, along with the isometry mapping \mathscr{C} into $\mathscr{F}_{1}(\mathscr{T}) \oplus \mathscr{F}_{0}(\mathscr{Y}) \oplus \mathscr{F}_{0}(\mathscr{F})$ defined by $D \Phi x \oplus \Phi_{\infty} x \oplus \Phi_{\mathcal{Z}} x$ where $x \in \mathscr{K}$. Note (4.1), (4.10) and (4.17) guarantee that the last operator preserves the norm. The intertwining property follows from (4.6), (4.11), and (4.18).

References

1. P. A. Fillmore, "Notes on Operator Theory," Van Nostrand, New York, 1970.
2. A. E. Frazho, A shift operator approach to bilinear systems theory, SIAM J. Control 18, No. 6 (1980), 640-658.
3. P. R. Halmos, "A Hilbert Space Problem Book," Van Nostrand, New York, 1967.
4. G. C. Rota, On models for linear operators, Comm. Pure Appl. Math. 13 (1960), 469-472.
5. B. Sz Nagy and C. Foias, "Harmonic Analysis of Operators on Hilbert Space," NorthHolland, Amsterdam, 1970.
