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This paper develops a model theory for a pair of noncommuting operators. Using 
backward shift operators on a Fock space Rota’s Theorem is generalized, i.e., it is 
shown ‘that any two bounded operators on a Hilbert space are simultaneously 
similar to part of a pair of backward shift operators on a Fock space. These shift 
operators and the Fock space framework are also used to develop a dilation theory 
for two noncommuting operators. 

1. INTRODUCTION 

Rota [4] proved that any bounded operator A, on a Hilbert space X, with 
spectral radius less than one, is similar to part of a backward shift operator. 
Another result along this line is given in [ 1,3,5]. It states that any 
contraction is unitarily equivalent to part of a co-isometry, i.e., if A on .X is 
a contraction then HA = (V] ‘?%“)H, where H is a unitary operator, from X 
onto 7Y, V is a co-isometry, and r is an invariant subspace for I’. (An 
operator V on X is an isometry if V* V= Z, the identity on X. A co- 
isometry is the adjoint of an isometry.) In this paper we generalize the above 
results to a pair of bounded operators, A, N on S. First it is shown that A, 
N are simultaneously similar to part of two shift operators. Then this result 
is refined; if A *A + N*N ( Z, then it is shown that A, N are simultaneously 
unitarily equivalent to part of two co-isometries. We say that A, N are 
simultaneously similar to [unitarily equivalent to] part of R, T, if (1) R, T 
are operators on a Hilbert space Y, (2) there exists an invariant subspace 
V, for both R and T, (3) there exists a similarity [unitary] transformation H 
mapping S onto w  such that HA = (R 1 WH and HN = (T 17F”‘)H, respec- 
tively. It is emphasized that the same operator H is used to intertwine both A 
with R 1 Y and N with TI ZK (Note: A, N is simultaneously similar to 
[unitarily equivalent to] R, T if (1) holds, and there exists a similarity 
[unitary] transformation H mapping X onto Y such that HA = RH and 
HN = TH, respectively.) 
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ARTHUR E. FRAZHO 

Our model theory for noncommuting operators is motivated by problems 
arising in nonlinear systems [2]. It can also be viewed as a representation 
theory for an operator A perturbed by N. The models obtained are shift 
operators defined on a Fock space. The result is a generalization of the 
existing dilation theory for one operator [ 1, 3-51, a deeper understanding of 
how noncommuting operators interact, and a solution to certain problems in 
mathematical systems theory [2]. 

2. THE SHIFT OPERATORS S AND E 

In this section we introduce several different shift operators on a Fock 
space. These operators will be used to develop a model theory. 

First some notation is established. Throughout, all spaces are Hilbert 
spaces, and A, N are bounded linear operators on X. The adjoint of an 
operator A, is denoted by A*, the open unit disc by D, and the (n-fold) unit 
polydiscbyD”=DxDx... x D. The Hardy space, Zn(X) is the space of 
all analytic functions, f in D” with values in the Hilbert space 5, such that 
the Taylor coefficients are square summable. Each f in e(X) has a power 
series expansion given by 

f@, ,  A* Y.‘., A,) = ‘, 1 fi,& i n;bi’: . . .  12, 
, . , . .  n (2.1) 

I >O,...,i,>O 

where the series converges uniformly in D”, allfi,,il,...,i, are elements in K, 
and the norm is 

II f IIZFn A C II.h, ,..., inIlL* (2.2) 
i,>O,...,i,>O 

Clearly &$Z) is a Hilbert space. The Fock space ;T;(A’) is the Hilbert 
space defined as the orthogonal direct sum of the R,‘s: 

.&(X)~ $ Gqz-). (2.3) 
n=, 

For convenience elements in sS;(X) are represented by two different 
notations: both @F f, and {f,, f*,...} renresent the same element in Y,(Z). 

The backward shift operator, S, mapping <(Y&7) into Rn(X) is the linear 
operator defined by 

S,f (4 ,**., n,,+ [f@, T..., &-f&4&,& ‘..., n”)]. (2.4) 
1 

Note the operator S, only acts on the Taylor coefficients of II, in the power 
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series expansion ofJ The generalized backward shift operator Ss mapping 
,5(X) into ST;(X) is defined by: 

The adjoint S,% is 

Gk=G4f, ~f”-w) - 
i 

(2.6) 
I 1 1 

Clearly S,g is an isometry. Thus, S,% is a co-isometry. 
The evaluation operator, E, mapping <(X) into Zn- l(X) for 12 > 1 is 

given by 

E,f (A, , 1, ,..., ~n-l)~ff(0,1Z-l,~2,...,~“-1) (f-w-)). (2.7) 

The E, operator evaluates A, at zero and relabels the complex variables 
/li-,Ai-,. By convention &(A) 6 .X. Thus El f(A,) = f(0) E .X if 
f Eq(S). The generalized evaluation operator E,- mapping ;TI(Z) into 
&(%) is 

(2.8) 

where 0;” f, = {fl(A1), fi(Al, A,),...} E 6(A). The adjoint of E, is given 
by 

Clearly, E$ is an isometry and E, is a co-isometry. The subscript X is 
dropped from S and E when the underlying space is understood. 

The operators S and E are the models we use. It turns out that “any” pair 
of operators A, N are simultaneously similar to part of S and E; see 
Proposition 1. Furthermore, these operators have several interesting 
properties. The spectrum of S and E is the closed unit disc; the point 
spectrum of S and E is the open unit disc (Problem 67 of [3]). It is easy to 
verify that ran S* is orthogonal to ran E* (ran denotes the range). 
Furthermore, 6(X) is the orthogonal direct sum of ran S*, ran E* and .X 
(identifying 2Z with the obvious subspace of&(X)). Thus S*S + E*E < I. 
The dimension of X is called the multiplicity of S and E, in accordance 
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with the usual definition for shift operators, since .-%‘ is cyclic for the algebra 
generated by S* and E *. 

Finally, we introduce an operator @. Let A, N be two bounded linear 
operators on 97 and let 

(2.10) 

Define a sequence of mappings Qi : .% --t A?&%) by @i(A,) A F, ; 
@,(A,, A,) G F2 NF, and generally 

@,(A,, 1, ,..., A,) A F,NF,-,N -a- NF, = F,,N@,-, (n > 2). (2.11) 

In the case that 

(for all x E X) 

define the bounded linear operator @ from X into &(X) by 

@x= 6 @“x= {Q1x, @*x, @,x )... }. 
n=l 

(2.12) 

(2.13) 

Throughout, A and N are fixed, and @ always refers to the above transfor- 
mation. Clearly II @xl1 > llxll f or all x E X. Hence & (if defined) always has 
closed range and is a similarity transformation from X onto its range. 

3. SIMULTANEOUS SIMILARITY 

PROPOSITION 1. Let A, N be operators on 227 such that (2.12) holds. 
Then A and N are simultaneously similar to part of S and E on T(S). 

ProoJ First we show that S@ = @A and E@ = @N. The former equality 
follows from S, F, = F, A (see (2.10)) and 

s~=~s,~,=~F,NF,,N.-.NS,F, 
I 1 

(3.1) 
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The other equality follows from F,(O) = Z and 

= 6 E,+,F,+,NF,N-.. NF, 
tl=l 

=GF,NF,+,N..-NF,NF,(~)=~N. 

(3.2) 

Since the ran @ is invariant for both S and E, the proof is complete. 
Clearly (2.12) does not hold for all A and N. For instance choose A = Z 

and N = 0. However, there always exists a E > 0 such that the corresponding 
condition for &A and EN holds. Therefore our models S, E for A, N are 
perfectly general. 

COROLLARY 1. Zf A, N are bounded operators on X, and A *A t 
N*N < r-Z, where r < 1 then A, N are simultaneously similar to part of S, E 
on T(X). 

Proof: We must verify that @ is a bounded operator. Let P be any 
positive self-adjoint operator, and L be the transformation mapping positive 
operators into positive operators defined by LP GA *PA t N*PN. Clearly 
LZ<rZand LP<LQ ifP<Q. Thus 

L”Z= LL”-‘I( rL”-‘I< r”Z. (3.3) 

This implies that CFzO L’Z is an increasing sequence of positive operators 
bounded by (1 - r)- ‘. By Problem 94 of [3], this sequence has a limit 

R=f L’Z=Z+A*A+N*N+A**A*+A*N*NA 
i=O 

t N*A*AN+ N**N* + -.a 

in the strong operator topology. 
The expansion for ]I 0x(]* is 

II(PX~~* = llxll* + 2 (A*%, x) 
i=I 

(3.4) 

+ c (A*jN*A*‘A’NAjx,x) + e.- . (3.5) 
i>O.i>O 
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It is easy to show that (3.4) and (3.5) contain exactly the same terms, i.e., 
(Rx, x) = /I @x]12 for all x E .K. Since R is bounded 

(I @XI/~ = 2 /I @+x/l2 = (Rx, x) <M llxll’ 
i=l 

(3.6) 

and the proof is complete. 
Equation (3.6) also proves 

COROLLARY 2. If A *A + N*N Q rZ for some r < 1, then (2.12) holds. 

A converse to Corollary 2 is 

COROLLARY 3. Let A, N be bounded operators on X. Zf (2.12) holds, 
then there exists a Hilbert norm (I . II,, on X equivalent to II . II such that 

IlAxlli + IINxlli < Wl~ (XEA-) (3.7) 

for some r < 1. 

Proof: The proof is omitted. It is almost identical to problem 122 in [3]; 
the other norm on X is defined by llxl]~ G ]I @x]l$. 1 

Corollaries 2 and 3 show that (2.12) holds if and only if A, N are 
simultaneously similar to a pair A,, N, such that for some r < 1 and all 
XE.X, 

llAo412 + II&~ll’ G rllxl12* 

If N = 0 the above reduces to the following standard result (Problem 122 in 
[3]): A on X is similar to a strict contraction if and only if 

5 IIAi~l12 oflI~11~ (xEX). 
i=O 

(7’ is a strict contraction if ]] T]I < 1.) In other words, the spectral radius of A 
is strictly less than one if and only if (3.8) holds. 

Remark. In Proposition 1 and Corollaries 2, 3 the condition (2.12) 
plays an important role. One can express this condition through a Lyapunov 
equation. We claim that (2.12) holds if and only if there exists a positive 
operator P such that 0 ( P ( co and 

P--*PA-N*PN=I (O<P<co). (3.9) 
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Assume (2.12). Then PA @*@ satisfies (3.9). This follows from the 
expansion of @*@: 

@p”@& c A*‘A + c A*jN*A*‘A’NAj 
i>O J>O,i>O 

+ k>O zOi>O 

A * kN*A *jN*A *'A iNA'NAk + . . . . 

5 3 
(3.10) 

Assume P satisfies (3.9). Let X0 be the Hilbert space X equipped with 
the following inner product (x, x)~ A (Px, x). Clearly I] . I] and ]I . ]I0 are 
equivalent norms. Set Q = A*PA + N*PN. Using (3.9) and P = Z + Q a 
simple calculation gives 

IIAxll; + IINxll; _ @*PA + N*PNx, x) 

1141~ - (Px, x> 

(Qxv xl 
= (x, x) + <Qx, x) 

<Qx, 4 
= (x7 4 IIQII 

1 + <Qx, 4 ’ 1 + 11 QII < ‘* 
(4 xl 

(3.11) 

Hence (3.7) holds. Corollary 2 gives (2.12). In many applications, obtaining 
a solution P to (3.9) is easier than proving that (2.12) holds. Finally, it is 
noted that the solution to (3.9) (if it exists) is unique. 

4. UNITARY EQUIVALENCE 

If N = 0 then Proposition 1 reduces to Rota’s Theorem [4]. Problem 121 
of [3] is a refinement of Rota’s Theorem. In our more general setting, this 
refinement becomes 

PROPOSITION 2. Let A, N be bounded operators on X, such that 
A*A+N*N<Z, and let @,, for n> 1 be defined by (2.11). rf A”+0 
strongly and I( N@P,xll,n -+ 0 for all x E 37, as n + 00, then A, N are 
simultaneously unitarily equivalent to part of the shifts Sa, E, on T(g), 
for some closed linear subspace G3 of X. 

The proof depends on the following 

LEMMA 1. Let A and N be bounded operators on ST such that 
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A*A + N*N < I, and D be the positive square root of I-A *A - N*N. Let 
c&f be the closure of the range of D. Then 

(i) A *“A” strongly converges to the positive operator A;, as n -+ co. 

(ii) For each x E .S” the sequence 1) N@,,xIjCKn is decreasing. 

(iii) 

g, j(D@,x((’ < \\x\1’ (jbr all x E 25) 

so that the operator D@ mapping .X into T(Q) defined by D@x= 
0;” D@,x, is well defined. In fact 

for all x E .X. 

ProoJ: Part (i) follows because A is a contraction, i.e., A*“A” is a 
sequence of decreasing positive operators. 

Consulting (2.11) gives 

= liz f (A *‘(Z - A *A - N*N) Aix, x) (4.2) 
,=o 

= llxl12 - ;\: lIAk412 - IIN@,-d$-; 

Therefore, 

IWW’ = ll# - lILxl12 - lW’,~ll~~ (4.3) 

Following the same procedure on the general term n > 1 gives 

llD@,xl12 = IIW-,xl12 - l14,N@,-,xl12 - IIN@,4l* 

summing to n on (4.3), (4.4) and rearranging terms: 

(4.4) 

;$ IID@,xll* + IIAooXll* + I$; IIAco~@P,~~~* 

= llxll - IIN@A*~ (4.5) 

Since the left-hand side is positive and increasing in n, the ([NQ,xll* are 
decreasing. Part (iii) follows by taking limits in (4.5). 
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Proof of Proposition 2. Let D@ be the operator given in the lemma. 
Following (3.1), (3.2), it is easy to verify that 

S, D@ = D@A and E,D@ = D@N. (4.6) 

The hypothesis of the Proposition and (4.1) guarantees that D@ is an 
isometry. Since the ran D@ is invariant under S8 and Ea, the proof is com- 
plete. 

COROLLARY 4. If A, N are bounded operators on X and A*A + 
N*N < rI where r < 1 then A nd N are simultaneously unitarily equivalent to 
part of S and E on -;T;(X). 

Proof We verify that the hypothesis of the proposition are satisfied. 
Clearly A” -+ 0. Equation (3.6) and Corollary 2 guarantees that 

IlN@nx II& +O as n+co for all xEX. Since r< 1 we have @=.YZ and 
the proof i”s complete. 

By employing a trick found in [ 1, 51 the hypothesis A” + 0 and N@, --) 0 
strongly as n + cc in Proposition 2 are removed. This begins with 

PROPOSITION 3. Let A, N be operators on X, and A*A + N*N < I. If 
11 N@,xll + 0 as n + 00 for all x E X, then A, N are simultaneously unitarily 
equivalent to part of a pair of co-isometries. 

Proof Throughout the notation of Lemma 1 is used. Let lc9 be the 
closure of the ran A, and W the operator mapping J into JSY defined by 
WA,x s A,Ax. It is easy to show that W is an isometry (see p. 5 1 of [ 1 ] 
or p.39 of [5]). By Proposition (2.3), p. 6 of [5], W can be extended to a 
unitary operator S, on some larger Hilbert space $?‘, i.e., z&’ is a subspace of 
j? and W= S, ] yF9. Further, S,,A, = A,A. 

Let &j@?) be the following Fock space 

(4.7) 

(Recall &($?) A $?.) Define the co-isometry S, on Fo(j?) by 

sy + ftl% + S,f” = {So.L S,f, 9 w, 3.e. 13 (4.8) 

where So is the above unitary operator and S, is the usual backward shift 
operator on &Q’) for n > 1, (see (2.4)). The co-isometry EF on X0($?) is 
defined by 

EpGfnG 6 En+lfn+,= {E,f,,E,f,,E,f,,...), (4.9) 
0 II=0 
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where E, for it > 1 is the evaluation operator mapping ~~~(‘jj?) into 
$- ,(%/>, (see (2.7)). 

Consider the operator Qbo mapping .% into XOw) defined by 

@,xlA,x@A,N@x 

= {A,x,A,N@,x,A,N@,x ,... } (x E X). 
(4.10) 

By following the calculations in (3.1), (3.2) with the definition of S, it is 
easy to verify that 

SyQm = @,A and EY@, = @,N. (4.11) 

To complete the proof we combine the above with the proof of 
Proposition 2. Consider the operator D-D @ Qp, mapping .Z into 
T(g) 0 X0($?) defined by D@x 0 @,x when x E .X. This operator is an 
isometry, by (4.1) and (4.10). Clearly the operators S, @ SY and E, @ Ey 

on T(g) OSrW are co-isometries. Further (4.6), (4.11) give (S, 0 Sy) 
(D@x @ @,x) = D@Ax 0 @,Ax and (E, GJ EY) (D@x @ @,x) = 
D@Nx @ Qoo Nx, where x E .X. Since the range of D@ @ Qa? is an invariant 
subspace for both SB @ S, and E, @ EF the proof is complete. 

Finally we are ready to prove 

PROPOSITION 4. If A, N are operators on .2? such that A *A + N*N < I, 
then A, N are simultaneously unitarily equivalent to part of a pair of co- 
isometries. 

Proof Since /I N@,xlj * is a decreasing sequence (see Lemma l), there 
exists a positive operator P on X such that 

(P’x, x) = (IPx1(’ = i;i~ (@,*N*N@,x, x) = ;irr /I N@,xll<& 

By the definitions (2.2) and (2.11) we have 

IIpXll* = n’\: j,,o; I >. (INAinNAin-LN -.a NA”x(l:, 
3 3’” 

(4.12) 

and 

lP-‘xll.~~= IIPN@,41~I (4.13) 

for all x E X. Let 55 be the closure of the range of P, and let Z be any 
unitary operator on the Fock space &,(A”) such that 

Z{Px, O,O,O ,... } = (0, PN#,x, 0,O ,... }. (4.14) 

Such an operator exists by (4.13). 
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Let S$ be the co-isometry on ;T(S) defined by 

where SJ is the backward shift operator in Rn(%), for n > 0, and So A I. 
Define E, to be the co-isometry on Ro(Z) given by Ep G ZE,, where E, is 
the generalized evaluation operator, (replace $! by X in (4.9)). Consider the 
operator ar mapping % into .Fo(8) defined by 

From (4.13) 

@,x G (0, PN@,x, 0, O,..i} (x E <%-). (4.16) 

II %x11* = ;\t IIN@“Xl12 (x E <X). (4.17) 

Using (4.14), (2.4), (2.7) a simple calculation verifies that 

S,@, = @$A and Z?pDr= @$N. (4.18) 

At this point the proof is exactly the same as Proposition 3 except one 
uses the co-isometries S,@S,@S, and E,@Ep@E”, on 
;Z;(g) @Fo(jY) e&(X), along with the isometry mapping .% into 
<q(G) @Sr,(jY) @X0(X) defined by D@x @ @,x @ @,x where x E ,%“. 
Note (4.1), (4.10) and (4.17) guarantee that the last operator preserves the 
norm. The intertwining property follows from (4.6), (4.1 I), and (4.18). 
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