J. Symbolic Computation (1995) 19, 507-526

A Fast Method for Finding the Basis of
Non-negative Solutions to a Linear Diophantine
Equation

MIGUEL FILGUEIRAS AND ANA PAULA TOMAS

Universidade do Porto

R. do Campo Alegre 828, 4150 Porto, Portugal 1

(Received May 1998, revised June 1994 and September 1995)

We present a complete characterization of the set of minimal solutions of a single linear
Diophantine equation in three unknowns over the natural numbers. This characteriza-
tion, for which we give a geometric interpretation, is based on well-known properties of
congruences and we use it as the foundation of direct algorithms for solving this partic-
ular kind of equation. These direct algorithms and an enumeration procedure are then
put together to build an algorithm for solving the general case of a Diophantine equation
over the naturals. We also put forth a statistical method for comparing algorithms for
solving Diophantine equations which is more scund than comparisons based on times
observed for small sets of equations. From an extensive comparison with algorithms de-
scribed by other authors it becomes clear that our algorithm is the fastest known to
date for a class of equations. Typically the equations in this class have a small number
of unknowns in one side, the maximum value for their coefficients being greater than 3.

1. Introduction

Research on algorithms for solving linear Diophantine equations on the non-negative
integers, or systems of such equations, had a significant increase in the recent past.
This may be explained by their use in term rewriting techniques, namely in unification
algorithms of terms with associative and commutative function symbols (the so-called
AC-unification) (Stickel, 1981; Huet, 1978; Guckenbiehl & Herold, 1985), and also by the
surge of programming languages and systems based on constraint solvers — examples
are Constraint Logic Programming languages under the CLP-scheme (Jaffar ¢t al., 1986;
Jaffar & Lassez, 1987), and problem solvers emerging from work on Operations Research
and Artificial Intelligence.

It is well known that efficient algorithms do exist for solving these kind of equations
{or systems of them) when the domain is the integers {Chou & Collins, 1982). However,
restricting the domain to the naturals makes those algorithms unsuitable. This also hap-
pens with the work on geometric lattices described, for instance, in Bachem and Kannan

(1984).

t E-mail: mig@ncc.up.pt, aptdncc.up.pt

0747-7171/95/060507 4 20 $08.00/0 © 1995 Academic Press Limited

508 M. Filgueiras and A. P. Tomas

Several specific algorithms have been put forth to find the basis of non-negative so-

lutions to linear Diophantine equations or systems of such equa.tionsT. In other words,
they find the set of minimal solutions which are defined as the non-zero solutions that
are minimal in a component-wise ordering. This set may be viewed as the basis of the
commutative monoid of all solutions. The oldest algorithm we know of is due to Elliott
(1903) in the context of Number Theory. Domenjoud (1991} gives an overview of other
algorithms.

In the sequel we describe a new algorithm, which we named Slopes (Filgueiras §& Tomas,
1992a, 1992b), that solves a single homogeneous Diophantine equation. It may be easily
extended to the non-homogeneous case along the lines of Guckenbiehl and Herold (1985)
and Contejean (1993). First we give a complete characterization of the set of minimal
solutions of a Diophantine equation in three unknowns, based on well-known properties
of congruences. We use this characterization as the foundation of direct algorithms for
solving this particular kind of equation. The basic idea in Slopes is that of combining
these very efficient algorithms with an enumeration procedure for the values of some
unknowns. We have used a similar approach in developing ('BA, for congruence-based
algorithm, (Tomés & Filgueiras, 1991a, 19914) and the Rectangles Algorithm (Filgueiras
& Tomds, 1993).

We also put forth a statistical method for comparing algorithms for solving Diophantine
equations which is more sound than comparisons based on times observed for small sets
of equations. An extensive comparison with other algorithms was made and we conclude
that Slopes is the fastest for a class of equations which in most cases have a small number
of unknowns in one side and a maximum value for the coefficients greater than 3.

In the next sections we start by presenting the basic ideas used in Slopes, and a series
of examples and geometric interpretations of the algorithms for solving equations in
three unknowns. We then proceed with the formal details that prove the soundness of
these algorithms, and a description of the general method and of its implementation.
Comparisons of efficiency with other algorithms are then addressed, followed by the
conclusions.

2. General ideas

The method we describe in this paper to solve

N M
Eﬂ-i czi= Y bj-y; anbj,riy; €N (2.1)
; 3

has the following characteristics:

(1) solving the problem in non-negative integers is replaced by solving a family of sub-
problems in positive integers; each sub-problem is simply the result of setting some
of the unknowns to 0;
(ii) for each sub-problem, enumeration is performed for all but three of the unknowns.
(iii) enumeration is controlled by the bounds of Huet (1978) and Lambert (1987) and
bounds derived from certain kinds of solutions;

T We will not discuss general algorithms from Integer Programming that could be applied to the
present problem. See Abdulrab & Pécuchet {1986) for tentative work in this vein with seemingly uncon-
vincing results.

A Fast Method for Solving Linear Diophantine Equations 509

(iv) for each tuple fixed by enumeration, an equation of the form (2.2) is solved.
a-z=b-y+e z+v, abecz,yzeN~-{0}, veZ- {0} (2.2)

We have found that (2.2) can be solved directly in the sense that all the tuples
generated by the solver are minimal solutions.

The basic resuit is that, if minimal solutions of (2.2) are ordered with z strictly

increasingT, then both the solution with the smallest z and the differences (called spacings
in the sequel) between consecutive solutions can be computed algebraically.

In establishing this result the following geometric characterization was of use. Let us
consider the convex hull of the projections of the minimal solutions onto the ¥ Z-plane.
Then, when » > 0 all the minimal solutions and only minima) solutions lie on its borderi,
which we can easily characterize (see Corollary 4.0.1). When v < 0 the minimal solutions
lie on a polygonal line which can also be easily found out.

3. Solving equations in three unknowns — examples

Solving (2.2) turns out to be simpler when viewed in terms of congruences. It is well-
known that each solution of (2.2) verifies the congruence

b-y+c-z=-v {mod a) {3.1)

and reciprocally, that each solution of (3.1) corresponds to some integral solution of (2.2).

As an example, suppose the equation 8x = 6y + 5z. Table 1 illustrates the dis-
tribution of 6y + 5z mod 8 in the Y Z—plane for {y, z) € N x N. Each G-entry in
the Table corresponds to a solution of the equation.

Table 1. Distribution of 6y + 5z mod 8 throughout the ¥ Z—plane

Z

9165 3 1 ¥ 5 3 1 7] 5 3 1 7 5 3 1
8y 0 6 4 210 6 4 210 6 4 2 0 6 4
13 T77 83 1T 753 1 7T 5 3 1 T
6] 6 4 2 06 4 2 0|6 4 2 0 6 4 2
5t 1 7 5 311 7 5 3|1 7 5 3 1 7T 5
41 4 2 0 6] 4 2 0 6f 4 2 0 6 4 2 0
37 5 3 17 5 3 11 7T 5 3 1 7T 5 3
212 0 6 4] 2 0 6 4] 2 0 6 4 2 0 86
115 3 1 75 3 1 7¢5 3 1 17 5 3 1
61 6 6 4 2(06 6 4 210 6 4 2 0 6 4

0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Y

T In this presentation we suppose that solutions are computed in this order to which we will refer as
z-increasing order. However, similar results hold if a y-increasing order is taken instead,

} More accurately, the edge linking the first to the last solution should not be included, unless the
projection is a line segment.

510 M. Filgueiras and A. P. Tomds

There is a repetitive pattern, the plane being partitioned into identical rectangles

Ymax X Zmax-

In the above example, Ymax = 4 and zmax = 8.

A trivial conclusion is that the projection along Y Z of each positive minimal solution
of (2.2) for v = 0 lays on Ro = [0, ¥max — 1] % [0, zmax — 1}. In fact, one just has to note
that if s = (y, z) is a solution then s’ = (y Mmod ymax, 7 MOd zmay) is also a solution, and
s" < s. This is still true if v > 0, but may be false when v < 0 for in this case the value
of = corresponding to s’ may be negative. The congruence is, however, still useful as a
guide in the search for positive solutions, since it gives an accurate idea of the place and
pattern of distribution of integral solutions.

We often denote solutions as pairs {y,z) instead of triples (z,y,z) for z is fixed by
(v, 2). Moreover, we often use a similar abbreviate notation for spacings, that is {—6y,6)
appears instead of a triple, {6, —by,6:). Note that solutions are compuled in z-increasing
order so that the variation in y must be negative.

In the rest of this section, we present some examples so as to give some intuition on
the method.

Example 1. Find minimal (z,y, z) € N such that 13z = 6y + 8z.

The values of 6y + 8z mod 13 are shown in Table 2. All the positive minimal
sohrtions are in [0,12] x [0,12], thus Table 2 presents just that rectangle and
the two minimal solutions (0,13) and (13,0). The entries correspording to the
minimal (resp. non-minimal) solutions are denoted by (&) (resp. O).

Table 2. Solving 13z = 6y + 8=

z

13|®

1205 11 4 10 3 9 2 8 1 7 O 6 12

mw 3 9 2 8% 1 7T O 6 12 5 11 4

wp2 8 1 7 0O 6 12 5 11 4 10 3 9

gl 7 @ 6 12 5 11 4 10 3 9 2 8 1

gl12 5 11 4 10 3 9 2 8 1 7 QO 6

714 10 3 9 2 8 1 7.0 6 12 5 1

6l ¢ 2 &8 1 7 O 6 12 5 11 4 10 3

501 7 @ 6 12 5 11 4 10 3 9 2 8

46 12 5 11 4 10 3 9 2 8 1 7 O

3jm 4 10 3 9 2 8 1 7T O 6 12 5

203 9 2 8 1 7 QO 6 12 5 11 4 10

th8 1 7T ® 6 12 5 11 4 10 3 9 2

0] 6 12 5 11 4 10 3 9 2 8 1 7
0 1 273 4 5 6 7 8 9§ 10 11 12 13

Y

The algorithm computes the starting solution (13,0}, and the minimum spacing
A = (~10,1) between minimal solutions (by Praoperties 4.1 and 4.2 in subsec-
tion 4.1). Then, (3,1) = (13,0} + A. Since, A cannot be added to (3,1) because
y would become negative, some formula {see Theorem 4.1 in subsection 4.2}
is applied to compute the next solution (2,5). A new spacing A’ = (-1,4) =
(2,5) — {3,1) is obtained, which is then used to derive other minimal solutions.

A Fast Method for Solving Linear Diophantine Equations 511

A spacing (—6y, 8.} is called the minimum spacing if 6 i3 the minimum positive spacing
in z between integral solutions, and the corresponding 8, < ymax (see Property 4.2 in
subsection 4.1). By m-spacing we mean a spacing between consecutive minimal solutions.

In the previous example, only two m-spacings are used: (—10,1), and (—1,4).

Example 2. Find minimal (z,y, z) € N® such that 13z = 6y + 8z + 9.

This equation may be viewed as 6y + 82 = 4 (mod 13), so that if we were to
solve it by hand, we could go into Table 2 looking for the 4's. Table 3 shows the
minimal solutions {marked by () of this problem. The solution with the smallest
z is (5,0), and the first m-spacing is {—4, 3).

Table 3. Solving 13z = 6y + 82 + 9

z
13| 0
125 11 4 10 3 9 2 8 1 7 0 6 12
1yl 3 9 2 8 1 7 0 6 12 5 11 4
(2 8 1 7 0 6 12 5 11 4 10 3 9
97 o 6 12 5 11 4 10 3 9 2 8 1
gli2 5 11 4 W0 3 9 2 8 1 T 0 6
® 10 3 9 2 & 1 7 0 6 12 5 11
6l9 2 8 1 7 o0 6 12 5 11 4 10 3
501 7 o0 6 12 35 11 4 10 3 9 2 8
46 12 5 11 4 10 3 9 2 8 1 7 0
3ln @ w 3 9 2 8 1 7 0 6 12 5
23 9 2 8 1 7 0 6 12 5 11 4 10
1{8 1t 7 0 6 12 5 1 4 10 3 9 2
ojo 6 12 5 11 & 10 3 9 2 8 1 7 0
o 1 2 3 4 5 6 7 8 9 10 11 12 13
Y

Suppose s = (yg, 2z0) is some minimal solution of (2.2), with v > 0. If A = (—§,,8,} is
the m-spacing that must be added to s to get the next minimal solution, §, is the smallest
positive feasible variation such that §, < yo. When » < 0, an additional condition must
be satisfied: that z is kept non-negative.

As we will see in Subsection 4.3 {see Corollary 4.1.1} the m-spacings required to solve
the family of problems {e -z = b-y+c¢-z+v},>0 are in a one-to-one correspondence with
the positive minimal solutions of some homogeneous equation in 3 unknowns: (—é,,4;)
is a m-spacing if and only if (§,,48;) is a positive minimal solution of that equation. As
we explain in Subsection 4.3, such equation results from the m-spacings being somehow

multiples of the minimum spacing (—48,,,6;,) , as follows:

69 = 69‘1) (62-’/62:1) (mOd !lmax)ﬂ (32)

In the examples above, where ¢ = 13, b = 6, and ¢ = 8, the non-trivial m-spacings
(that is, those for which neither the variation in z nor that in y is null) are
{{=10,1),(-7,2),(-4,3),(—1,4}}. Note that (—7,2) is the first m-spacing if, for
instance, 6y + 8z =9 (mod 13) was to be solved. These m-spacings correspond
to the minimal solutions of &, =10-4, (mod 13).

512 M. Filgueiras and A. P. Tomas

81

Figure 1. The case v < 0

When v < 0, the correspondence is still simple but slightly different. As we show in
Subsection 4.3 (Proposition 4.1) and the following example illustrates, if (—6,,6.) is a
m-spacing, then (—8y,6;) = t- (0, zimax) + (—6;, 8,} + 7 - (—¥max, 0) for some t > 0, some
r > 0 and some positive minimal solution (§,, ;) of (3.2). Thus, the trivial m-spacings
(~¥max, 0) and (0, zmax) which are never used if v > 0, may have to be used when v < 0.

Example 3. Find minimal (z,y,2) € N? such that 8z = 46y + 5z — 139 .
Because 46y + 5z —139=6y+52—3 (mod 8), we recall Table 1 which shows
the behaviour of 6y + 5z mod 8. The m-spacings are obtained from the set of
minimal solutions of &, = 3 - (§:/2) mod 4. Because, in this case, the variation
in £ matters, we represent the spacings associated to those minimal solutions by
triples, (6z, —8y,8:):

{(—23,—-4,0),(~16,-3,2},{-9,-2,4),(~-2,-1,86),(5,0,8)}.

Figure 1 shows the projections of the minimal solutions onto the ¥ Z-plane.
The starting sclution, which is labelled by 51, is (—11,1,1)+(23,4,0) = (12,5, 1).
Then, sz = s1 + (—9,-2,4) = (3,3,5), and 53 = 32 + (—-2,-1,6) = (1,2,11).
The idea is to apply the first (if in &;-increasing order) spacing that keeps both
y and z non-negative. Now, none of the non-trivial m-spacings in the set can
be applied to s3. The rule, then, is to compute the minimum ¢ > 0 such that
a spacing other than that corresponding to (0, zmax} = (0,8} can be added to
53 +t-(50,8). Thus, 54 = (s3 4+ (5,0,8)) + (-2,—-1,6) = (4,1, 25), and finally
s5 = 54 +{—2,—1,6) = {2,0,31). For the proof of the correctness of this method
refer to Proposition 4.1.

A Fast Method for Solving Linear Diophantine Equations 513

In the next section, the results that support our algorithm are stated more formally
and some of the proofs are given or sketched.

4. Solving equations in three unknowns — formal details
The problem is to find (x, %, z) minimal in component-wise ordering such that
a-x=b-y+e-z+v, abezyzeN velZ {4.1)

As we have seen, the general idea of our algorithm to solve (4.1} is the following: solu-
tions are obtained in z-increasing order, each solution but the first being computed from
the previous one and some m-spacing. In this section, some technical details are given,
namely how the starting solution and the m-spacings (and in particular, the minimum
spacing) are computed. Moreover, the correctness of the method is justified.

4.1. THE STARTING SOLUTION AND THE MINIMUM S$SPACING

Clearly, if v = 0 then sg = (b/ged{(a,b), ¥max,0) and s, = (¢/ ged{a, ¢), 0, zax) are
minimal solutions of (4.1) where ynax = a/ged(a, d), and zmax = af ged(e, ¢). Thus, in
this case the starting solution, that is the one with the smallest 2 is sg.

It is not difficult to check the following properties.

PROPERTY 4.1. A non-negetive integer z satisfies (4.1} with v = 0 iff z = 6, - ¢, being
8, = ged(a,b)/ ged(a, b, c), andt € N.
PROPERTY 4.2. The minimum spacing is {—58,,,6,,) where

c ged{a, d)
byy = —7——— - by = —7—=,
¥ ged(a, b, c) b MO Ymax ' ged{a, b,)

being my an integer such that! ged{a,b) =m, -a +myp-b.

PROPERTY 4.3. The spacing between any twe selutions is of the form
(-'Syl k+ Ymax * £, 6::1 * k)
for some integers k and t.
PROPERTY 4.4. Provided that ged(e,b,c) divides v, the starting solution sq of ({.1) is
given by
(yOJ ZG) +k- (ymax: 0)
where k = maz{0, [{~b-y5 —c- 20—)/ (- Ymax)|} and

—v- M, (—v—zg-c) -my
=————mod$ =
ged(a,b,c) oo W zcd(a, b)

Here, M. is any integer satisfying b- My +c- M. +a- M, = ged(a, b, ¢), for some integers
Mg, and My, and Yuax, 8z, end my are as defined above.

20 mod ¥max-

! This is the same as saying that my is the inverse of b/ ged(e, b} in Z[ymax]; and n mod m denotes
the (positive) remainder of n/m.

514 M. Filgueiras and A. P. Tomas

Property 4.1 is a simple consequence of the fact that Equation (4.1) with v = 0
has some integral solution if and anly if ged(a,b) divides c- z. Properties 4.2 and 4.3
follow from Property 4.1, because each spacing (—8&y,4,) satisfies b.(-8,) +e¢-6, =0
(mod) . In what concerns Property 4.4, the detail that may be less trivial is that
z = (~v-M_.)/ gcd{a, b,¢) verifying {4.1) as an integral solution implies that the smallest
non-negative zg must be as defined. However, one just has to note that if z satisfies (4.1),
also does 2z + p - §;,, for p € Z. Now, because §, is the minimum spacing, z mod &;, is
the smallest non-negative value. Finally, the correction & - (¥max, 0) is needed when v < 0
and the value zg determined by (yp, z0) 15 negative.

4.2. THE HOMOGENEOUS EQUATION

In this section, one of the major results is stated and proved. As a corollary, the minimal
solutions of the homogeneous equation in three unknowns can be computed directly. That

is, there is an algorithm that yields the minimal solutions without generating superfluous
candidate solutions.

THEOREM 4.1. Let sg = (yk, 2k) and sy = (yg + 8y, 2, — 6;,) be two minimal solutions
af (4.1) with v = 0 such thet 0 < yy < &y, and there is no other minimal solution with
y-component in |yk, yk + by [. Then, taking Fr = [6,, /yi]|, the minimal solution with
mazimum y-component less than yy is

(yf’zl’) = (Fk'yk_éylek'zk'{'ézk)

In the example of Figure 2, we have Fy = 3, pg = Fx - 82 and 83 — p2 = 532 —
81 = {(8y,,6:.). The proof below can be easily understood if one notes that
the rectangles with dashed sides (e.g. the one whose sides contain the (integral)
solutions nj, na, and p1} cannot contain any interior solution (e.g. like s), as this
would imply the existence of a solution in }0,yx[x]0,8.[(e.g., as s") and this
contradicts the minimality of 5, and s,.

Proor. That {y’, z') is indeed a solution follows trivially from s;, s being solutions.
That (¢, z’) is & minimal solution with maximum y-component < y4 is now proved by
showing that the existence of a solution s = (y, z) in the rectangle |0,ye[x[62,, Fi- 25 +

62.] leads to a contradictionT. Let the natural n, 1 € n € Fyi, be such that
n—1)-2zpg+8,;, <z<n-zp+6
. As (y,2), (we + 8y,, 2k — 82,), and (yr, zx) are solutions, so is

"= ") =y + byt —nyk, zk— 6 + 2 — 1 zy)

From 0 <y <yr and 1 <n wehave y —n -y < 0, and because n < Fy and
Fr -y is the minimum multiple of yx greater than &, we have (n — 1) yx < 6,, or

t Note that in the rectangle 10, ¥ [x]0, 8-, [there can be no solutions because otherwise s;, sz would
not be minimal.

A Fast Method for Solving Linear Diophantine Equations 515

Figure 2. Finding the next m-spacing

equivalently n -y < yg + &y, . It follows

O<yr+dy +y—n-yp <yr+by, 0<y"<yk+6yk. (4.2)
From the definition of n,
nozg—zpt by, <z r—m-zp—b; <0
so that
02 -6, +z—n-z, < 2z 0 <z <z (4.3)

But (4.2} and (4.3) contradict the assumption that s; and sy are minimal solutions. O

In other words, the theorem provides an expression of the next minimal solution when
the current m-spacing, denoted by {—6,,,6,,) cannot be added to the current solution
(s2 in Figure 2).

From the expression of y' given by this theorem we have either 3’ = 0 or 3/ = y3 —
(8y, mod yx). The first case leads to the solution (0, zmay) and the new m-spacing is
(=¥ks Zmax — 2k}, while in the latter we have a new m-spacing

(-6yk+1| 6Zk+1) = (__(6yk mod yk): L‘Syk/yk_‘ cZp + 6zk)-
A trivial conclusion is that

Baypy L.
—_—— < — —
6yk+1 6yk

which justifies the following geometric characterization of the set of minimal solutions of
any homogeneous equation in three unknowns.

CoroLLARY 4.0.1. Let § = {si}o<i<s be the set of the minimal solutions of a-x =
b-y+c-z, a,b,c,x,y,2 € N in z-increasing order. Let p; denote the projection of s; onto
the Y Z-plane. The convex hull of the points {pi}o<i<i is the polygon whose edges are
obtained by linking p; to p;11, 0 <i < L and pg, to pg. No minimal solution lies strictly
inside the polygon. Only minimal solutions lie on the edges PiPiy1. Al the vertices are
minimal solutions.

316 M. Filgueiras and A. P. Tomas

Input: The positive coefficients a, b and c.
Qutput: The set § of minimal solutions.

gb = ged(s,b); ge:= gedfa,c); G := ged(gb,c);
ymaz = a/gb; zmaxr = a/ge;
dz := gb/G; dy:= (cxmultiplier(h,a)/G) mod ymaz;
y 1= ymaz-dy; z:= dz;
8§ := {(b/gb, ymez, 0), (c/gec, 0, zmaz)}, ((bry+cxz}/a, y, 2)};
while dy > ¢ do begin
while y > dy do begin
y = y-dy; 2:= z4dz;
= SU {((bry+erz)/a, v, 2}
end;
Fi=dy/y; dy:= dymod y; dz:= fazsdz
end

Figure 3. The Slopes Algorithmona-z=b-y+c-z

Moreover if s;, s;, and s are minimal solutions in z-increasing order, then the slope
of the line linking p; to p; is not less than that of the line linking p; to pg.

The Basic Slopes Algorithm, shown in Figure 3, computes directly all the minimal
solutions. [t starts from the two minimal solutions (¥max: 0), (¥max — 6y,,6z,} and follows
the minimum spacing until there is a (minimal) solution (yi1,z1) with y; < §,,. Theo-
rem 4.1 can then be applied resulting 2 new minimal solution (3, z}) whose difference
to (y1,z1) defines a new m-spacing. The same procedure is used for this pair and the
new m-spacing. The algorithm stops when a minimal solution with null y-component is
found.

4.3. WHEN v # 0

When v # 0, we already know (by Property 4.4) how to compute the starting solution.
Given a minimal solution s = (z,, y., 25), the question is what m-spacing must be added
to obtain the next minimal solution. Now, since z is to be strictly increasing, y must
decrease. Thus, the m-spacing must be of the form (—8,,8;) and

{i) 6, > 0 must be as small as possible, §, > 0 must be as large as possible,
(i) ys — by > 0 and @, + (—b - 8y +c-8,)/a > 0.

Note that (—b -6, + c- 6;)/a is the spacing in z corresponding to (—dy, 6), which we
denote in the sequel by 4. On the other hand, by Property 4.3, any spacing is of the
form

(wﬁy,ﬁz) = (—6y1 -k + Ymax - L, 621 . k)

for some integers k£ and ¢. In fact, k > 0 if minimal solutions are to be computed in
z-increasing order. Equivalently we may write

by =8, -k (mod ymayx) b =18, -k (4.4)

Because &, and k are in a one-to-one correspondence, we denote the solution (8., ki, §4,)
of (4.4) corresponding to the ith minimal solution of the congruence &, = &, - &

A Fast Method for Solving Linear Diophantine Equations 517

(mod ymax) by (6y.8) . Moreover, in the sequel, we refer to (6,,,6,.) as the minimal
solution of (4.4}. Equation {4.4) is equivalent to 6y, -k + (¥max — 1) -0y =0 (mod ymax),
and its solution set can be obtained by Theorem 4.1 in k-strictly increasing (6,-strictly
decreasing) order. Note that if (6,, ki) is minimal then (é,,, 6,,) is minimal, for &, strictly
increases with k.

Now we are going to show the result we mentioned in section 3: any m-spacing (—6,,46;)
required to solve any problem in the family {a-c =86 y+c-z+ "}uel is given as

(_5!;: 62) =t (0, zmax) + (_6;:6;) + 1 - (=%max, 0}

for some (possibly none) positive minimal solution (8;,6,) of (4.4), and some t > 0,
k>0

The following Lemma says how to compute ¢. It gives the smallest ¢ > 0 such that
some spacing A; = (8x,, —6y,,6;,) associated to a solution of (4.4), can be added to
(s, vs,2s)+1t-Ar, where Ap = (¢ 2max/a, 0, Zmax) 15 the spacing determined by the last
(i.e. the Lth) solution of (4.4). “Can be added” meaning that the solution obtained is

non-negative and not comparable with s, thatis, 0 < 8y, <y, and z,+1t-6;, +65, > 0.
Moreover, the Lemma also says which is the first spacing that can be applied.

LEMMA 4.1. Let {(8y,,8.,)}o<icL be the set of minimal solutions of (4.4) in b,-increasing
order. Let s = (a5, ¥s, 25) be a minimal solution of a -2 =b.-y+c-z 4 v, for a fized
v & Z, being y; = 6,,_, = min{éy, | §,, # 0}. Then, the minimum t such that some
spacing Ay = (8g,, —6y,,85,) with i < L can be added to s +¢- A is given by

oz
tg = max (0, {V_%_-F_—.L'—l-.l) .
.

Moreover, Ag = (6g,,~0y,,62,) is the first spacing that can be added, where

g=min{i | by, S ys, T3+ tg-bg + 64, >0}

PrOOF. The sequence {6z, } is strictly increasing. Indeed, from 6y, < é,, and 6., >
8y it follows a-65,, = b (=by,,) +c b, > b (=6,) +c-6;, = a-b,,. Hence,
6z,_, > 6z, foralli < L, and as a result A; can be added to s+ fp- Ap only if also
AL—I can be, O

PRrROPOSITION 4.1. The m-spacings required to solve the family of problems
{a-:r=b-y+c-z+v}uez

are obtained from the minimal solutions of (4.4) as follows. Let {(&y,.6.,)}o<icr be that
set of minimal solutions in §,-increasing order, and A; = (8, —8y,.82,) be the spacing
determined by the ith solution, Let s = (1,,y5,25) be a minimal solufion of a -z =

b-y+c-z+wv, forafitedve Z. Ifys > 8y, _, then

to- AL+ Ag+rg-Ag
is the m-spacing that should be added to s to obtain the next minimal solution, where g

and tg are as defined in Lemma 4.1, and ro = min{ |(ys — 6,)/ Ymax), [(zs+to- b, +
82,0/ (=820)] }. If ys < 6y, _,, there are no more minimal solutions.

518 M. Filgueiras and A. P. Tomas

Proor. If ys < 6y, ,, there is no minimal solution following s because 6,,_, is the
minimum positive spacing in y between integral solutions.

If y, > &,,_, then there exists k > 0 such that s + Ap_; -+ k- Ay is a positive
solution, that is not comparable with s. Thus, s is not the last minimal solution. Then,
let s’ = (2,9, 2') be the minimal solution following immediately s, and let (65, 6y, 6;)
be the spacing applied, that is (67, —6,,6.) = (2,4, 2") — (x5, ¥s, z5). Clearly, we may
write (8z, —6y,6,) in terms of Ay = (8;,,0, zmax) as follows

82

max

{6z, —6y,6,) = L J {62,,0, Zmax) + (85, =8y, 8, MOd Zmax)

where 6., = 65 — [6./2max} - 6z, . We are going to show that

162/ 2max} = to (4.5)
and that
(85, =8y, 6, 100d zimag) = Ay + 10 - A (4.6)
Because (6y,8, mod zmax) is a solution of (4.4) there are integers a; > 0 such that
L—1
(85 —8y, 82 mod zmax) = > @i+ By, (4.7)
i=0

By definition of tg, we have tg # 0 only if 6, < 0 for all i < L. Hence, from (4.7) if
to # 0 then & < 6, _, < 0. Moreover &, > é,,_,. Then, as (8., —6y, &, mod z,ay) can
be added to s+ |8;/2max]| - Ay , 50 does Ap_;. This implies that |8;/zmax] > to, and
thus |6;/zmax} = to- Otherwise, s +tg- Ag + Afr_; is a solution that contradicts the
assumption that s’ immediately follows s.

On the other hand, tp = 0 implies that at least A;_; can be added to s. If [§,/2/max| 7
0 = tg then s + Ap_; is a solution that contradicts s’ immediately following s for
821y < Zmax- Therefore (4.5) holds.

Now we prove (4.6) using the fact that (4.5} holds. From (4.5) and the definition of
g given by Lemma 4.1 it follows that §, mod zmax = 8., Otherwise, there would be a
positive solution whose z component, say z”, verifies z, < 2 = 75 + to - zmax + 85, < 2
contradicting the assumption that s’ immediately follows s.

As a result, we may write

(87, =8y, 6. M0Q Zmax) = (bz,, =6y, 62,) + (65 — bz,, —6y + by,.0),

. Replacing &}, by its definjtion, and as (-6, + 6, ,0) must be of the form r - (ymax, 0}, it
is not difficult now to conclude that (4.6) holds. [

It may be worth noting that this result is just the one mentioned previously because
we have not required q # 0 but just ¢ < L. If ¢ = 0, the m-spacing results from both
{and only) the positive minimal solutions of (4.4). If ¢ # 0, then (8, ,5;,) is a positive
minimal solution.

When v > 0, the definition of ¢ can be simplified. Remark that in this case, ¢ -z =
b-(ys—by,)+c (zs+6;)+v > 0,if yy > 6,,. Besides, note that in particular the following
corollary justifies that all what has been said about the geometric characterization of the
set of minimal solutions when v = 0 (see Corollary 4.0.1 in section 4.2) holds in fact
when v > 0. [t may not be true however when v < 0 as in the example of Figure 1 above.

A Fast Method for Solving Linear Diophantine Equations 519

COROLLARY 4.1.1. The m-spacings required to solve the family of problems
fa-z=b-y+c-z+uv}y>o

are in a one-to-one correspondence with the positive minimal solutions of {4.4). Let
{(b.,62.)}: be that set of minimal solutions in 6,-increasing order. Given s = (75, Vs> 25),
a minimal solution of a-z = b-y+c-z 4w, for a fized v, let ¢ =min{i | 8,, < ys}. The
next minimal solution is obtained by adding Aq = (6., —by,, 629) to s, provided &, # 0.
Qtherwise, there are no more mintmal solutions.

Even when v < 0, may Proposition 4.1 be simplified. Basically, it can be proved that
provided L > 2, either Ap, = (65, ,0, zmax) 0F Ag = (824, —¥max, 0) has never to be added,
and hence the formula given in Proposition 4.1 may be simplified.

COROLLARY 4.1.2. Under the conditions of Proposition 4.1, and provided L > 2,

(i) if 6;. > 0 for some i < L then A is never added, that is fo = 0 for all s;
(it} if 8z, < O then Ap is never added, that is ¢ # 0 and ro = 0 for all 5.

The first statement follows trivially from the definition of ¢5. As to the second, note
that if the solutions were computed in y-increasing order the spacings would just be the
symmetrics of the ones we are using now. In that case —Ap would have the same role as
A is having now, and therefore the second statement is just 4 reformulation of the first.

5. The general case

In this section we describe in more detail one of the possible ways of using the previous
algorithms in solving the general case of an equation

N M
Zai'fﬂi:zbj'yj a.;,bj,a:.-,yjeﬂ\l. (51)
i J

5.1. SUB-PROBLEMS

It would be possible to select three unknowns (not all on the same side of the equation)
and to reduce (5.1) to an (non-homogeneous) equation in three unknowns by enumerating
all the others from zero. There are some advantages of considering instead different sub-
preblems by giving some of the unknowns the value zero and forcing all the others to
have values > 1.

Hence, for each sub-problem we find its minimal positive solutions by enumerating all
but three unknowns from 1 and using the algorithms described above. Each such solution
corresponds to a solution (obtained by “inserting” a zero for each null unknown} of (5.1)
that we refer to as a candidate solution. In general, a candidate solution must be compared
with other solutions of (5.1) to check whether it is minimal or not.

There are two advantages in considering sub-problems in this way:

(i) for each sub-problem it is easy to choose the more appropriate algorithm, by con-
sidering the numbers of (positive) unknowns in each side;

520 M. Filgueiras and A. P. Tomas

(ii) it becomes possible to separate sets of sub-problems giving origin to solutions of
{5.1) which are not comparable {(for instance, solutions with the same number of null
components but with different null components are certainly not comparable}, This
decreases the number of comparisons that must be made and leads to an algorithm
for solving the general equation which is highly suited for parallel implementation.
This latter issue is currently being addressed by our team.

We choose a particular order for solving all the sub-problems so that the solution set
of {5.1) is computed monotonically, i.e. each candidate solution is minimal if it is not less
than any minimal solution already in the set.

5.2. ENUMERATION AND BOQUNDS

We have used a lexicographic enumeration procedure with the property that each
valuation is always smaller or not comparable (in a component-wise ordering) with any
valuation that is obtained later. We profit from this when solving each sub-problem in
order to obtain its solution set in a monotonic way.

The enumeration of values for the unknowns is controlled by using the bounds described
in Huet (1978) and Lambert {1987), and also by bounds dynamically determined from
quasi- Boolean solutions, i.e., solutions whose non-null unknowns all but one have value 1.
On the other hand, solutions whose non-null unknowns are all 1 (Boolzan solutions) are
used to avoid dealing with sub-problems for which no minimal solution will be generated.

If the problem being solved has a single coefficient in one side of the equation then the
minimality of a solution can be checked by inspecting only the components in the other
side. Hence we extend the notions of Boolean and quasi-Boolean solutions in this case
by disregarding the value of the isolated component.

From several tests with different versions of our algorithms we may conclude that when
dealing with problems having small coefficients (< 3) the use of the Lambert’s bounds
and of the information from quasi-Boolean and Boolean solutions is usually a cause of
inefficiency.

6. Implementation

We have a sequential implemention in C of our method, using streamlined forms of
the algorithms presented before. For a fast access to the information concerning Boolean
solutions and for speeding up the comparison between minimal solutions and candidate
solutions, we identify each configuration of non-null components by a bit mask. We also
keep, for each sub-problem, a list (built using lazy-evaluation) of the minimal solutions
that should be compared with candidate solutions. In one of the versions of the im-
plementation the coefficients are internally ordered so that they are decreasing in the
left-hand side and increasing in the right-hand side of the equation, this in most cases
speeding up the algorithm.

The analysis of profiling data obtained with the Unix profile utility, suggested a
couple of changes that increased the overall efficiency.

Two parallel implementations, for shared-memory and distributed-memory architec-
tures, are presently being developed. The former is based on the p-System {Lopes &
Silva, 1994), thal provides a parallel extension to the C programming language, while
the latter uses PVM {Geist et al, 1993).

A Fast Method for Solving Linear Diophantine Equations 521

7. Efficiency comparisons

We made an extensive comparison of our sequential implementation with two other al-
gorithms for solving a single equation'f, namely, those described in Elliott (1903) and
Clausen and Fortenbacher (1989). The latter (to which we will refer by the imitials
“C&F”) was generally believed to be the fastest method available, according to the results
of comparisons (with algorithms by Huet, but improved with the bounds of Lambert, by
Fortenbacher, and by Lankford) in Clausen and Fortenbacher {1989). The results below
show clearly that our methods are faster than the other two, and therefore, at present,
the fastest available, for a certain class of equations. Typically these equations will have
a small number of unknowns in one side, and the maximumn value for the coefficients will
be greater than 3.

All the algorithms under comparison were implemented in the same language (C, using
the standard Unix c¢ with optimization flag -03) and the same machine, a Sun Sparc-
Center with 8 processors (that makes possible running much larger problems than those
that we used for comparisons in previous papers). Execution times below are CPU-times
obtained by making calls to the appropriate Unix system routines. For some problems
and in order to have measurable times, the computation of the solutions was repeated
100 times and the average CPU-time was taken.

We adopted a statistical approach in making the comparisons. A set of problems were
generated at random (by a program using the standard UNIX rand routine} and sub-
mitted to the different programs. The problems were classified according to the number
of unknowns in each side of the equation and the maximum value for the coefficients.

The behaviour of the algorithms for problems in the same class is very irregular, as the
following examples show:

Exec. times {msec.) Min. sols.

Coefficients C&F Slopes
{(123)(7564) 2.7 2.8 38
(174)(2563) 11.3 4.5 79
{107 57)(77 101 46 55 63) 13.4e3 21.3e3 1040
(14 107)(89 95 93 22 31) 120.2¢3 69.3e3 2286

The fact that for a set of 1230 equations {evenly distributed in 138 different classes), the
standard deviations of the execution times are 6.7 {(C&F) and 19 (Stopes) times bigger
than the respective averages also shows that the behaviour of the algorithms is indeed
unpredictable. Dividing the execution time by the number of solutions does not help in
finding a more regular data set. Note that this is mainly due to the big changes, in both
the number and the spatial distribution of solutions, caused by small differences in the
number or the values of the coefficients. This behaviour makes any comparison based on
averages of execution times completely meaningless.

It is also worth noting that when the number of coefficients and its maximum increase,
“pathological” cases are likely te occur either with too many minimal solutions {(e.g.

t Algorithms for solving systems of equations are much more inefficient. However, it would be unfair
to compare algorithms that address different kinds of problems.

522 M. Filgueiras and A. P. Tomds

(654)(7 B 9 23 24 26) has 197,942 and is solved in 7.7 hours by Slopes}, or in which the
algorithms spend huge amounts of time — e.g. Slopes needs about 6.2 days to find the
1543 solutions of (503 324 84){152 84 144 424 270). This imposes practical limitations on
which and how many tests can be done. For instance, as Elliott’s algorithm becomes too
slow for harder problems, the set of problems used in comparing it to Slopes is a subset
of the one used in comparing C&F and Slopes.

If comparing averages of execution tirmes has no meaning, a direct comparison of exe-
cution times for a small set of equations is obviously also completely meaningless. This
discredits not only the comparisons in our previous papers {based on a set of 45 equa-
tions), but also those in papers by other authors (namely Clausen & Fortenbacher, 1989)
where times for only 8 equations (in different classes) are used.

We resorted instead to another technique: we compared the number of cases in which
each algorithm is better than the other one for a small sample of (normally) 10 equations
in each class. We only consider as meaningful the results for classes having 80% or more
cases favouring one of the algorithms. We are allowed to do so by the following reason:
the probability of having a repartition of 80% cases in favour of one algorithm when a
sample of 10 equations is taken assuming that the two algorithms have the same speed
is very low. This probability can be computed as

E105) = (o.gp)P(o.gP)
(o)

where P is the number of possible problems in the class. This number is less than (because

of simmetries)
N+A-IN/M+A-1
N M

where N and M are the number of unknowns in the left- and right-hand sides of the
equation and A is the maximum of the coefficients. The following table gives an idea of
the sizes of the “populations” for different classes.

A 5 13 1021
N M

1 2 75 1183 532e6
1 9 3575 3.8e6 3.5e24
5 5 15876 38.3e6 87.2¢24

The probability p,(8]0.5) takes the values 4.3% for P = 1000 and 4.4% for values of P

up to 100e24 (these computations were made using infinite precision Softwaref). When 9
in 10, or 10 in 10 cases favour one algorithm the probabilities of the same speed are much
lower: ps{9]0.5) ranges from 0.95% for P = 1000 to 0.98% for P = 100224, while p,(10/0.5)
ranges from 0.09% to 0.1% for the same values of P. We are then in a position to reject
the hypothesis that the two algorithms have equal speed in these extreme situations (i.e.

t Namely, GAP, a system for computaticnal group theory developed at RTWH Aachen, and the UNIX
standard bc.

A Fast Method for Solving Linear Diophantine Equations 523

8 or more cases for one of the algorithms), the results being significant at the 5% level.
However we are not allowed any conclusion when the situation is not so clear-cut.

We are now ready to present the results of the comparisons. In the tables below for
each class (fixed by N, M and A, respectively the numbers of unknowns in each side of
the equation and the maximum coefficient) we list an entry k; : ko where k; (ka) is the
number of times the first {the second) algorithm was faster than the second (the first).
When there were draws, their number was equally distributed over k; and kg (this is
common practice in applied statistics}.

We start by the comparison with Elliott’s algorithm which we implemented from
scratch using the descriptions in Elliott {1903} and MacMahon (1918) and also Stan-
ley (1973). The latter has a description that is said to be “sketchy” by the author and
that omits conditions that are essential for termination; the termination proof is based
on the strict monotonicity of a function which is not always strictly monotonic even
under the conditions given by Elliott. From the basic implementation an enhanced one
was made by introducing filtering by Boolean solutions and taking advantage of the fact
{(noticed by Eric Domenjoud — personal communication, 1992) that about one third of
the work done by the algorithm is superfluous. More details on this algorithm and its ver-
sion for solving systems of equations may be found in Filgueiras and Tomds {1992¢). The
results of the comparison of Slopes and the enhanced version of Elliott’s are in Table 77,
for which 1121 problems were considered.

Table 4. Comparing Elliott’s and Slopes algorithms

A 2 3 5 13 29 39 107
N M
1 2 3:2 5:3 4:5 4:5 1:9 2:8 1:¢
1 3 3:1 5:4 5:4 2:7 1:9 0:10 2:8
1 4 4:4 4:6 2:7 0:10 0:9 1:9 1:9
1 5 6:2 4:86 2:8 0:10 2:8 0:9 0:10
1 6 4:5 3:6 4:6 0:10 1:9 0:10 0:10
1 7 6:4 2:8 1:8 1:9 0:10 0:9
1 8 5:4 4:6 3:7 0:10
1 9 5:5 0:10 1:8
2 2 4:2 5:4 1:8 1:9 2:8 0:10 2:7
2 3 3:5 2:7 0: 0:10 1:9 1:8 1:9
2 4 5:5 1:9 0:10 0:10 0:10 0:10 2:8
2 5 5:4 0:9 0:10 0:10 O0:10 0:10 O:10
2 & 6§:3 0:10 0:10 0:10
2 7 2:8 0:10 0:10 0:10
2 8 4:5 0:10 0:10
3 3 3:5 0:9 0:10 0:10 0:10 0:10 3:7
3 4 0:10 0:9 0:10 0:10 0:10 0:10 2:8
3 5 0:10 0:10 0:10 0:10
3 6 0:10 0:10 0:10
4 4 0:8 0:10 0:10 0:10

0:10 0:10 0:10

524 M. Filgueiras and A. P. Tomas

It can be seen that in 82 out of 115 classes we are allowed to say that Slopes is faster.
These 82 classes correspond to the harder problems, with more unknowns and/or bigger
coefficients. On the other hand there is no class for which we can say that Elliott’s is
faster.

In order to compare C&F and Slopes, we translated the Pascal program given in
Clausen and Fortenbacher (1989) to C and changed the graph initialization procedure
so that the maximum coeflicient in the equation being solved is taken into account
{otherwise a constant time is lost in the initialization phase). The results of a comparison
with Slopes for 1564 problems are given in Table 5.

Table 5. Comparing C&F to Slopes

A 2 3 5 13 29 39 107 503 1021
N M
1 2 4:2 4:4 1:9 0:9 0:10 0:10 0:10 O0:10 0:10
1 3 3:1 4:5 2:7 0:10 0:10 0:10 0:9 0:10 O0:10
1 4 6:3 5:5 1:8 0:10 0:10 0:10 0:10 O0:10 0:10
1 5 8:1 5:5 2:8 0:10 0:10 0:10 0:10 OQ:10 0:10
1 6 7:2 8:2 4:6 0:10 0:9 0:10 CG:10 0:10
1 7 9:1 9:1 1:8 1:9 0:9 0:9 0:9 0:10
1 8 9:1 9:1 4:5 0:10 1:8 0:10 0:8
1 9 10:0 8:2 6:3 0:10 0:10 0:10
2 2 4:1 5:4 0:8 0:10 0:10 0:10 0:10 O0:10 O0:10
2 3 6:2 5:4 0:9 0:10 0:10 0:9 0:10 3.7 4:6
2 4 931 £:2 0:9 0:10 0:10 2:8 4:6 7:3 10:0
2 5 9:0 7:3 1:8 0:10 2:8 0:10 5:5 9:0
2 6 10:0 10:0 1:8 0:10 2:8 3:7 8:2
2 7 10:0 10:0 2:7 1:9 2:8 4:6
2 8 9:0 10:0 5:5 0:9 4:6 2:8
3 3 8:0 6:3 0:9 0:10 0:10 0:10 3:7 10:0
3 4 10:0 8:2 0:10 0:10 1:8 2:8 7:3
3 5 10:0 10:0 0:10 0:10 0:10 3:6 9:1
3 6 10:0 10:0 1:9 0:10 4:6 3:7
4 4 8:0 10:0 1:9 0:10 3:7 5:5 6:3
4 5 10:0 9:1 3:7 0:10 1:9 5

It can be seen that in 88 out of 160 classes we are allowed to say that Slopes is faster,
while in 33 classes we are allowed to conclude the opposite. Tt is clear that most of
these 33 classes (more precisely, 28) correspond to coefficients of at most 3. This is in
line with our previous statements about the unsuitability of our algorithm for this kind
of problem — in fact, the time Slopes spends in computing all the ged’s it needs will
normally be greater than the time taken by any brute-force enumeration technique to
solve the problem.,

It also seems to be the case that when the coefficients become large (> 107) and the
numbers of unknowns in each side are not too different, Slopes is slower than C&F, This
is easily explained by the use of enumeration by Slopes and the lack of good bounds

A Fast Method for Solving Linear Diophantine Equations 525

for the values of the unknowns. In the Rectangles algorithin we try to circumvent this
problem by computing bounds dynamically by a technique that has relations to those of
constraint propagation.

8. Conclusions

We presented a new algorithm, Slopes, for finding the basis of minimal solutions of
linear Diophantine equations on the natural numbers. It combines an enumeration pro-
cess for some of the components with linear algorithms for solving equations in three
unknowns. These algorithms are based on a geometric characterization of the set of
minimal solutions, which we are trying to extend to the case of equations with more
unknowns.

The fact that at each stage Slopes splits the problem into several independent sub-
problems makes it highly suitable for parallel implementation. This is being explored
both for shared- and distributed-memory architectures.

The results presented in the previous section clearly show that Slopes is the fastest
algorithm when the equation has coefficients greater than 3 and the number of unknowns
in one side is small.

Other points that we are addressing or will address in the near future are:

(i) the possible application of the ideas underlying our methods in obtaining methods
for solving systems. In particular, it can be shown that the algorithm for solving
equations in three unknowns applies directly to systems of m x {m + 2) equations
of rank m since they are equivalent to a system of congruences;

(ii) further study of the Elliott algorithm which has a simple formulation and seems to
have potentialities not yet explored;

(iii) integration of our methods in Constraint Logic Programming systems dealing with
finite domains and naturals.

Acknowledgements

We would like to express our gratitude to the referees of previous versions of this paper
for their constructive comments. Discussions on this subject with Alexander Herold,
Claude Kirchner, Eric Domenjoud, Evelyne Contejean, Jean-Pierre Jouannaud, and Loic
Pottier were also very heipful. These discussions as well as our visits to LRI in Orsay were
partly funded by the Commission of the European Communities through the HCM SOL

Network. Our thanks go also to Margarida Brito who suggested the statistical foundations
for our comparison method.

References

Abdulrab, H. & Pécuchet, J.-P. (1986). Solving systems of linear Diophantine equations and word equa-
tions. In (N. Dershowitz, ed.) Proceedings of the 3rd International Conference on Rewriting Tech-
niques and Applicetions, Lecture Notes in Computer Science, 355, Springer-Verlag, pp. 530-532.

Bachem, A. & Kannan, R. (1984). Lattices and The Basis Reduction Algorithm. Tech. Rep. CMU-CS-
84-11, Carnegie-Mellon University.

Chou, T. J. & Collins, G. E. (1982). Algorithms for the solution of systems of linear Diophantine
equations. STAM J. Comput., 11(4), 687-708.

Clausen, M. & Fortenbacher, A. (1989). Efficient. solution of linear Diophantine equations. J. Symbolic
Computation 8, 201-216.

526 M. Filgueiras and A. P. Tomds

Contejean, E. (1993). Solving linear Diophantine constraints incrementatly. In (D. S. Warren, ed.) Pro-
ceedings of the {0th International Conference on Logic Programming, MIT Press, pp. 532-549.

Domenjoud, E. (1991). Outils pour la Déduction Automatique dans les Théories Associatives-Commu-
tatives. Thése de doctorat, Université de Nancy 1.

Elliott, E. B. (1803). On linear homogenous Diophantine equations. Quart. J. Pure Appl. Math. 34,
348-377.

Filgueiras, M. & Tomis, A. P. (1992a). A Congruence-based Method with Slope Information for Solv-
ing Linear Constraints over Natural Numbers. Presented at the Workshop on Constraint Logic
Programming 92, Marseille.

Filgueiras, M. & Tomds, A. P. (1992b).5Solving Linear Diophaniine Equations: The Slopes Algorithm.
Centro de Informdtica da Universidade do Porto.

Filgueiras, M. & Tomds, A. P. (1992c).A Note on the Implementation of the MacMahon-Elliott Algo-
rithm. Centro de Informatica da Universidade do Porto.

Filgueiras, M. & Tomds, A. P. (1993). Fast Methods for Solving Linear Diophantine Equations. In
(M. Filgueiras, L. Damas, eds.) Progress in Artificial Intelligence — 6th Portuguese Conference on
Artificial Intelligence, Lecture Notes in Artificial Intelligence 727, Springer-Verlag, pp. 297-306.

Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R. & Sunderam, V. (1993). PVM3 User’s
Guide and Reference Manual. Oak Ridge National Laboratory.

Guckenbiehl, T. & Herold, A. (1985). Solving Linear Diophantine Equations. Memo SEKI-85-1V-KL,
Universitit Kaiserslautern,

Huet, G. (1978). An algorithm to generate the basis of solutions to homogeneous linear Diophantine
equations. Information Processing Letters, 7(3). AU PAGES?

Jaffar, J., Lassez, J.-L. & Maher, M. (1986). Logic Programming language scheme. In (D. DeGroot and
G. Lindstrom, eds.), Logic Programming: Functions, Relations, end Egquations, Prentice-Hall.
Jaffar, J. & Lassez, J.-L. (1987). Constraint Logic Programming. In Proceedings of the 1ith POPL

Conference.

Lambert, J.-L. (1987). Une borne pour les générateurs des solutions entitres positives d'une équation
diophantienne linéaire. Comptes Rendus de "Académie des Seiences de Paris, t. 305, série 1, 39-40.

Lopes, L. B. & Silva, F. (1994). Scheduling algorithms performance with the p-System parallel program-
ming environment. To appear in Proceedings of the 199 Parallel Architectures and Languages
Europe (PARLE’94}, Lecture Notes in Computer Science, Springer-Verlag.

MacMahon, P. (1918). Combinatory Anclysis, 2. Chelsea Publishing Co..

Stanley, R. (1973). Linear homogeneous Diophantine equations and magic labelings of graphs. Duke
Math. J., 40, 607-632.

Stickel, M. E. (1981). A unification algorithm for associative-commutative functions, JACM, 28(3).

Tomis, A. P. & Filgueiras, M. {1991a). A new method for solving linear constraints on the natural
numbers. In (P. Barahona, L. Moniz Pereira, A. Porto, eds.) Proceedings of the 5th Portuguese
Conference on Artificial Intelligence, Lecture Notes in Artificial Intelligence 541, Springer-Verlag,
pp. 30—44.

Tomads, A. P., & Filgueiras, M. (19915). A Congruence-based Method for Finding the Basis of Solufions
to Linear Diophantine Equations. Centro de Informatica da Universidade do Porto.

