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We display the full anomaly structure of supergravity, including new contributions to the conformal
anomaly. Our result has the super-Weyl and Kähler U (1), transformation properties that are required for
implementation of the Green–Schwarz mechanism for anomaly cancellation.

© 2009 Elsevier B.V. Open access under CC BY license. 
When compactified from ten to four space–time dimensions,
the weakly coupled heterotic string theory [1] has an invariance
under a discrete group of transformations known as “T-duality”
or “target space modular invariance” [2]. The effective four-
dimensional (4d) theory includes several important “moduli” chiral
supermultiplets: the dilaton supermultiplet S , whose vacuum value
determines the gauge coupling constant and the θ -parameter of
the 4d gauge theory, and “Kähler moduli” T i whose vacuum values
determine the radii of compactification. The T-duality invariance of
the effective 4d supergravity theory results in several desirable fea-
tures [3]: (1) it assures that the Kähler moduli, or “T-moduli” are
generically stabilized at self-dual points, with vanishing vacuum
values for their auxiliary fields, so that supersymmetry breaking
is dilaton dominated and no large flavor mixing is induced; (2) it
protects a symmetry known as “R-symmetry” that assures that the
mass of the axion (pseudoscalar) component of the dilaton super-
multiplet remains sufficiently small to offer a solution to the strong
CP problem; and (3) it may provide a residual discrete symmetry
at low energy that plays the role of R-parity, needed to preserve
lepton and baryon number conservation and the stability of the
lightest supersymmetric partner, which makes the latter an attrac-
tive candidate for dark matter. This symmetry can be stronger than
R-parity and thus forbid higher dimension operators that could
otherwise generate too large an amplitude for proton decay.

At the quantum level of the effective theory, T-duality is broken
by quantum anomalies, as is, generically, an Abelian U (1)X gauge
symmetry, both of which are exact symmetries of string perturba-
tion theory. It was realized some time ago that these symmetries
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could be restored by a combination of 4d counterparts [4] of the
Green–Schwarz (GS) mechanism in 10 dimensions [5] and string
threshold corrections [6]. However anomaly cancellation has been
demonstrated explicitly only for the coefficient of the Yang–Mills
superfield strength bilinear. The entire supergravity chiral anomaly
has in fact been determined [7], but the complete superfield form
of the anomaly is required to fully implement anomaly cancella-
tion.

The anomaly arises from linear and logarithmic divergences in
the effective supergravity theory, and is ill-defined in an unregu-
lated theory. We use Pauli–Villars (PV) regulation, which has been
shown [8] to require only massive chiral multiplets and Abelian
gauge multiplets as PV regulator fields, thereby preserving, for ex-
ample, BRST invariance.

T-duality acts as follows on chiral (antichiral) superfields
Z p = T i , Φa ( Z̄ p̄ = T̄ ı̄ , Φ̄ā):

T i → h
(
T j), Φa → f

(
qa

i , T j)Φa,

T̄ ı̄ → h∗(T̄ j̄
)
, Φ̄ā → f ∗(qa

i , T̄ j̄
)

Z̄ ā, (1)

where qa
i are the modular weights of Φa , and, under U (1)X trans-

formations,

V X → V X + ΛX + Λ̄X , Φa → e−qa
X ΛX Φa,

Φ̄a → e−qa
X Λ̄X Φ̄a, (2)

where V X is the U (1)X vector superfield, with ΛX (Λ̄X ) chiral
(antichiral). In the regulated theory the anomalous part of the La-
grangian takes the form [9]

Lanom = 1
2

∫
d4θ Tr

(
ηΩm ln M2), (3)
8π
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where M2 is a real superfield whose lowest component is the PV
squared mass matrix:

M2
∣∣ = ∣∣m(z, z̄, V X |)∣∣2

, (4)

with z, z̄, V X | the lowest components, respectively, of Z , Z̄ , V X ,
and η = diag(±1) is the PV signature matrix. Under a general
anomalous transformation the logarithm in (3) shifts by an amount

	 ln M2 = Hm
(
T i,ΛX

) + H̄m
(
T̄ ı̄ , Λ̄X

)
, (5)

with Hm a (matrix-valued) chiral superfield. The resulting anomaly
is given by [9,10]

	Lanom = 1

8π2

∫
d4θ Tr

[
ηΩm Hm(T ,ΛX )

] + h.c., (6)

Ωm = − 1

48

[
M2(D2 − 8R̄

)
M−2 Rm + h.c.

] − 1

24
Gαβ̇

m Gm
αβ̇

− 1

6
Rm R̄m + 1

3
ΩW + ΩYM − 1

36
ΩXm , (7)

where the operators in (7) are defined by

Rm = −1

8
M−2(D̄2 − 8R

)
M2,

Gm
αβ̇

= 1

2
M[Dα, Dβ̇ ]M−1 + Gαβ̇ , (8)

(
D̄2 − 8R

)
ΩW = W αβγ Wαβγ ,(

D̄2 − 8R
)
ΩYM =

∑
a �=X

T 2
a W α

a W a
α, (9)

(
D̄2 − 8R

)
Ωm

X = Xα
m Xm

α ,

Xm
α = 3

8

(
D̄2 − 8R

)
Dα ln M2 + Xα, (10)

Xα = −1

8

(
D̄2 − 8R

)
Dα K . (11)

The superfields R and Gαβ̇ are related to elements of the super-
Riemann tensor; their lowest components are auxiliary fields of the
supergravity supermultiplet. K is the Kähler potential, and Wαβγ

and W a
α are the superfield strengths for, respectively, space–time

curvature and the Yang–Mills gauge group with generators Ta . We
are (almost) working in Kähler U (1)K superspace [11], where the
superdeterminant of the supervielbien E is related to the superde-
terminant E0 of conventional superspace by a superWeyl transfor-

mation: E = E0e− 1
3 K (Z , Z̄) , so that the Lagrangian for the supergrav-

ity and chiral supermultiplet kinetic energy is

Lkin = −3
∫

E0e− 1
3 K (Z , Z̄) = −3

∫
E. (12)

In the U (1)K superspace formulation, one obtains a canonical
Einstein term with no need for further Weyl transformations on
the component fields. The structure group of Kähler U (1) geom-
etry contains the Lorentz, U (1)K , Yang–Mills and chiral multiplet
reparameterization groups. Chiral multiplets Z i are covariantly chi-
ral: Dα̇ Z i = Dα Z̄ ı̄ = 0, where the covariant spinorial derivatives
Dα, Dα̇ contain the U (1)K , Yang–Mills, spin and reparameteriza-
tion connections. However, in order to implement PV regulariza-
tion and anomaly cancellation in the presence of an anomalous
U (1)X , it is necessary [12] to explicitly introduce the U (1)X vector
field V X in the Kähler potential for U (1)X -charged chiral matter,
and the U (1)X gauge connection is not included in Dα, Dβ̇ , but
instead arises from spinorial derivatives of V X . Since the PV mass
is proportional to the inverse of the PV Kähler metric, the W α

X W X
α

term that is missing from the chiral projection of ΩYM in (9) is
implicitly included in ΩXm . The superfield ΩXm in (11) can be ex-
plicitly constructed [9] following the procedure used to construct
[13] the Yang–Mills Chern–Simons superfield ΩYM.

The result (6), (7) has been obtained using both component
field [9] and superfield [10] calculations. It can be shown [9] that
PV regulation can be done in such a way that (a) gauge and su-
perpotential couplings that contribute to the renormalization of
the Kähler potential K (Z , Z̄), as well as all dilaton couplings, can
be regulated in a T-duality and U (1)X invariant manner, and (b)
the remaining anomaly can be absorbed into the masses of chiral
PV superfields with a very simple, T-duality and U (1)X invariant,
Kähler metric. Given these results, it suffices to calculate the con-
tribution from the latter set of PV fields to obtain the anomaly.
The new “D-terms”, that is, the first three terms in (7), as well
as ΩXm , can be obtained most easily in superspace, by first work-
ing in superconformal supergravity, and then fixing the gauge to
U (1)K superspace [10].

Anomaly cancellation is most readily implemented using the
linear multiplet formulation for the dilaton [14]. A linear super-
multiplet is a real supermultiplet that satisfies(

D2 − 8R̄
)
L = (

D̄2 − 8R
)
L = 0. (13)

It has three components: a scalar, the dilaton  = L|, a spin- 1
2

fermion, the dilatino χ , and a two-form bμν that is dual to the
axion Im s, and no auxiliary field. For the purpose of anomaly can-
cellation we want instead to use a real superfield that satisfies the
modified linearity condition:(

D̄2 − 8R
)
L = −Φ,

(
D2 − 8R̄

)
L = −Φ̄, (14)

where Φ is a chiral multiplet with U (1)K and Weyl weights [11]
w K (Φ) = 2, wW (Φ) = 1. Consider a theory defined by the Kähler
potential K and the kinetic Lagrangian L:

K = k(L) + K (Z , Z̄), L = −3
∫

d4θ E F (Z , Z̄ , V X , L). (15)

When a (modified) linear superfield L is included, the condition
(12) for a canonical Einstein term in U (1)K superspace is replaced
by

F − L
∂ F

∂L
= −L2 ∂

∂L

(
1

L
F

)
= 1 − 1

3
L
∂k

∂L
, (16)

with the solution:

F (Z , Z̄ , V X , L) = 1 + 1

3
LV (Z , Z̄ , V X ) + 1

3
L

∫
dL

L

∂k(L)

∂L
, (17)

where V is a constant of integration, and therefore independent
of L. If we take

V = −bV (Z , Z̄) + δX V X , (18)

V (Z , Z̄) =
∑

i

gi + O
(
e
∑

i qa
i gi ∣∣Φa

∣∣2)
,

gi = − ln
(
T i + T̄ ı̄

)
, (19)

8π2b = Ca − C M
a + 2

∑
b

Cb
a qb

i + ba
i ∀i,a, (20)

4π2δX = − 1

24
Tr T X = −1

3
Tr T 3

X = −Tr
(
T 2

a T X
) ∀a �= X, (21)

such that under an anomalous transformation 	V = H(T ,ΛX ) +
H̄(T̄ , Λ̄X ), then

	L = 1

8

∫
d4θ

E

R

(
D̄2 − 8R

)
LH + h.c.

= −1
∫

d4θ
E

ΦH + h.c., (22)

8 R
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since the term involving D̄2 vanishes identically [11]. The anomaly
(6) will be canceled: 	L = −	Lanom, provided (6) reduces to the
form

	Lanom = −
∫

d4θ Ω H(T ,ΛX ) + h.c., (23)

Ω = −Tr
[
cd

{
M2(D2 − 8R̄

)
M−2 Rm + h.c.

} + cg Gαβ̇
m Gm

αβ̇

+ cr Rm R̄m] + cwΩW + Tr
(
caΩ

a
YM − cmΩXm

)
, (24)

where the (matrix valued) constants cn = ηc′
n(qi,qX ) depend on

the signatures, modular weights qi and U (1)X charges qX of the
PV fields. They are determined by the requirement that quadratic,
linear and logarithmic divergences cancel, and will be given ex-
plicitly in [9]. In particular, we require cw = 8, ca = 1 in the class
of models we are considering with affine level ka = 1. The result-
ing component expression includes the standard chiral anomaly,
including [7] contributions from the Kähler U (1) and reparameter-
ization connections. In the present approach, the factor 1/3 in the
coefficient of F X

μν F̃ μν
X , relative to that of F a

μν F̃ μν
a , comes from a

combination of the operators ΩXm and Gm
αβ̇

Gαβ̇
m in (8).

Now consider the following Lagrangian

Llin = −3
∫

d4θ E

[
F (Z , Z̄ , V X , L) + 1

3
(L + Ω)(S + S̄)

]
, (25)

where S ( S̄) is chiral (antichiral):

S = (
D̄2 − 8R

)
Σ, S̄ = (

D2 − 8R̄
)
Σ†, Σ �= Σ†, (26)

with Σ unconstrained; L = L† is real but otherwise unconstrained,
and Ω is the anomaly coefficient (24):(

D̄2 − 8R
)
Ω = Φ,

(
D2 − 8R̄

)
Ω = Φ̄. (27)

If we vary the Lagrangian (25) with respect to the unconstrained
superfields Σ,Σ†, we recover the modified linearity condition
(14). This results in the term proportional to S + S̄ dropping out
from (25), which reduces to (15), with

F (Z , Z̄ , V X , L) = 1 − 1

3

[
2Ls(L) − V (Z , Z̄ , V X )

]
,

s(L) = −1

2

∫
dL

L

∂k(L)

∂L
, (28)

where the vacuum value 〈s(L)|〉 = 〈s()〉 = g−2
s is the gauge cou-

pling constant at the string scale.
Alternatively, we can vary the Lagrangian (25) with respect to

L, which determines L as a function of S + S̄ + V , subject to the
condition

F + 1

3
L(S + S̄) = 1, (29)

which assures that once the (modified) linear multiplet is elimi-
nated, the form (12), with a canonically normalized Einstein term,
is recovered. Together with the equation of motion for L, the con-
dition (29) is equivalent to the condition (16), and the Lagrangian
(25) becomes

Llin = −3
∫

d4θ E −
∫

d4θ E(S + S̄)Ω

= −3
∫

d4θ E + 1

8

(∫
d4θ

E

R
SΦ + h.c.

)
. (30)

Since L = L(S + S̄ + V ) is invariant under T-duality and U (1)X , we
require 	S = −H , so the variation of (30) is again given by (22).
The above duality transformation can be performed only if the real
superfield Ω , with Kähler weight w K (Ω) = 0, has Weyl weight
wW (Ω) = −wW (E) = 2, so that EΩ = E0Ω0 is independent of K
and therefore Weyl invariant and independent of k(L). The oper-
ator (24) indeed satisfies this requirement, as has been verified
[10] by identifying the Weyl invariant operators in conformal su-
perspace, and then gauge-fixing to U (1)K superspace.

The Lagrangian (30) includes new tree level couplings that gen-
erate new ultraviolet divergences. We expect that these can be
regulated by PV fields with modular and U (1)X invariant masses,
as was shown [9] to be the case for the dilaton coupling to ΦYM,
so they will not contribute to the anomaly. These new terms are
in fact expected from superstring-derived supergravity. The La-
grangian depends on the 2-form bμν only through the 3-form
hμνρ . For a linear multiplet, the 3-form is just the curl of the 2-
form: hμνρ = ∂[μbνρ] . This is modified by (14). In 10d supergravity
we have

HLMN = ∂[L BMN] + ωYM
MN L + ωLor

MN L, M, N, . . . = 0, . . . ,9,

(31)

where ωYM and ωLor are, respectively, the 10d Yang–Mills and
Lorentz Chern–Simons forms. When this theory is compactified to
4d supergravity, we obtain the 4d counterparts of the Yang–Mills
and Lorentz Chern–Simons forms, as well as additional terms that
arise from indices m,n, . . . = 4, . . . ,9 in the compact 6d space:

hμνρ = ∂[μbνρ] + ωYM
μνρ + ωLor

μνρ + scalar derivatives + · · · ,
μ,ν, . . . = 0, . . . ,3. (32)

To conclude, we have determined the general form of the su-
pergravity anomaly, and described how it may be canceled by
a generalized Green–Schwarz mechanism. In many compactifica-
tions the anomaly is not completely canceled by the GS mecha-
nism and string loop threshold corrections play a role; these are
reflected in the parameters ba

i in (20). They can easily be incorpo-
rated into the present formalism by introducing [9] a dependence
on the T-moduli in the superpotential for the massive PV fields:
WPV = μ(T i)ZPV Z ′

PV. Phenomenological applications of our results
as well as a more precise connection to the underlying string the-
ory will be explored elsewhere.
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