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Abstract--A unified development of symbolic analysis is presented. Symbolic analysis is used to identify 
reduced forms of the linearized steady Navier-Stokes equations which permit computational solutions to 
be obtained in a single spatial march in the dominant flow direction. In particular it is demonstrated that 
the "parabolized" form of the Navier-Stokes equations, although not parabolic, is well-posed as an 
initial-value problem in space, provided the solution is restricted to functions with compact support. The 
effectiveness of symbolic analysis for determining the well-posedness of complex systems of equations, 
such as the Navier-Stokes equations, is clearly demonstrated. 

1. I N T R O D U C T I O N  

Traditionally partial differential equations (PDEs) are classified [1] by a determination of the 
existence of surfaces (directions in two dimensions) for which the Cauchy problem is not 
well-posed. For scalar second order PDEs the nature of the corresponding characteristic poly- 
nomial provides precise definition of elliptic, parabolic and hyperbolic PDEs. 

For systems of equations such as govern compressible, viscous flow [2], a characteristic analysis 
is often less useful. First, the direct extraction of the characteristic form may lead to a singular 
matrix. Second where this degenerate behaviour can be avoided the roots of the characteristic 
polynomial may well not correspond to the traditional categories. Instead a mixture of real and 
complex roots will imply that the system of PDEs is of "mixed" type. 

This is a particular problem for reduced forms of the Navier-Stokes equations which are 
developed with the intention of obtaining a well-posed initial-value problem in space [3, 4]. When 
this is achieved a very economical computational algorithm can be constructed to provide the 
solution in a single spatial march in the dominant flow direction. 

What is required is an a priori analysis which will identify systems of PDEs which admit 
well-posed initial-value solutions in a particular spatial direction. The analysis should also clearly 
identify such time-like spatial directions. The traditional characteristic analysis, when applied to 
systems of equations of the complexity of the Navier-Stokes equations, is inadequate for these 
purposes. However by taking the Fourier transform of the governing equations and examining the 
behaviour of the symbol, such an a priori analysis is indeed available. It is suggested that by 
considering nonlinear equations locally, effectively freezing the nonliner coefficients and thereby 
enabling Fourier transforms to be obtained, the behaviour of singularities of the resulting symbol 
allow the existence of initial value solutions of the nonlinear equations to be inferred, given 
appropriate bounds on the nonlinear coefficients. 

Symbolic analysis has been used previously by, for instance, Brandt and Dinar [5], who used it 
to determine whether equation sets are elliptic, and therefore well-posed as boundary-value 
problems, and hence able to be solved using relaxation type multigrid approaches. Gustafsson and 
Sundstrom [6] use symbolic analysis, in addition to other techniques, to determine the behaviour 
of solutions to the Navier-Stokes equations. A particularly good exposition of the use of symbolic 
analysis in determining the behaviour of PDEs is to be found in Schecter [7]. The application 
of symbolic analysis to determine whether reduced forms of the Navier-Stokes equations may 
be solved computationally in a single spatial march is believed by the authors to 
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be novel. In particular the proof that equation set C in Section 4 is well-posed as an initial-value 
problem in space, provided the solution set is restricted to having compact support, has not been 
obtained before. 

This paper will briefly describe symbolic analysis, and make use of it in investigating the 
behaviour of solutions of  reduced Navier-Stokes equations. In Section 2 the method of obtaining 
the symbol for the general scalar second order PDE is given. We describe a constraint on the symbol 
to guarantee the equation possesses a unique initial-value solution. 

In Section 3 the symbolic analysis will be extended to higher order and systems of equations, 
for which the traditional characteristic analysis is less useful. In Section 4 the behaviour of the 
symbol of various reduced forms of the Navier-Stokes equations will be considered, to illustrate 
how the analysis is used in practice to determine whether stable computational solutions can be 
obtained in a single spatial march. 

2. C L A S S I F I C A T I O N  OF SCALAR SECOND ORDER PDEs 

PDEs may be classified as being of elliptic, parabolic or hyperbolic type. From the current point 
of  view such a classification is of interest because it separates elliptic equations, which are 
well-posed as boundary-value problems, from hyperbolic and parabolic equations, that are 
well-posed as initial-value problems. Boundary-value problems must be solved numerically using 
an iterative process, whereas initial-value problems may be solved using a single march algorithm, 
in the time-like direction. However such a classification is complete only for second order 
equations, or equivalent systems; for higher order systems it is not complete. In fact determining 
whether such a general system is elliptic or nonelliptic can be difficult. In this section the method 
of obtaining the symbol and using it to determine if the equation is well-posed as an initial-value 
problem will be briefly described, using the general second order PDE. 

The general second order equation in two independent variables (x, y) and one dependent 
variable u(x ,  y )  may be written as, 

AUxx AI- Buxy .~- Cuyy -I(- Dux + Eu e + Fu + G(x,  y) = 0. (1) 

If  equation (1) is nonlinear then we linearize it by freezing the values of the coefficients at their 
local values, thus we may consider them to be constants. To extend local results obtained in this 
manner to global results we must be able to impose global constraints on the behaviour of  the 
coefficients. 

It is well-known that if the discriminant, B ~ - 4AC,  is less than zero such an equation is elliptic, 
if equal to zero it is parabolic, if greater than zero it is hyperbolic. Thus the classification depends 
only on the highest order derivatives, the principal terms, and is independent of the coordinate 
system [1]. 

Now suppose we wish to see whether a solution exists for equation (1) in the domain, 
0 ~< 2 ~< L , -  oo ~< r/~< oo, with initial data prescribed on 2 = 0, where 2 and r/ are linearly 
independent functions of x and y. Firstly we must transform equation (1) into the new coordinate 
system, giving 

au;.;. + bu;.n + cu,, + du~. + eu, + f u  + g(A, q) = 0, (2) 

where b 2 - 4ac has the same sign as B 2 - 4 A C  [1]. The initial data will be of the form 

u;k(0, q )=h , ( r / )  k = 0 ,  r r < 2 ,  (3) 

where u;k is the kth  derivative of u in the 2 direction. The transformation is necessary to identify 
increasing 2 with a time-like direction. The determination of such a time-like direction may impose 
some restriction on the coefficients A to F. 

To determine if solutions exist for equations such as equation (2), we need only consider 
equations of the form [7], 

au~.~. + bu~., + cu~ + du~ + eu, + f u  = 0, (4) 
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with initial data, 

u;,(0, r / )=0 ,  k = 0 ,  r - 1 ,  u~,(0, r /)=p(r/) ,  k = r  r < 2 .  (5) 

We will relate the existence of solutions to the roots of the symbol of the equation, denoted a, 
which we define in the following way. We associate with u(2, t/)~ C s it's Fourier transform 
~(A, f ) ~  CS(A, f ) ,  where we use C s to denote the set of s times continuously differentiable 
functions. The reciprocal formula allows us to write u in terms of ~ as 

(2, r/) = (2n)- ' f e i(~a + ,r) ~ ( A, F )  dA d r ,  u 

where the above integral will converge absolutely for A and F e R, the space of real numbers, if 
s I> n + 1 [8]. When substituted into equation (4) the result is 

(2rr) -~ f e~ 'a+"r)( -aA 2 - bA F  - cF 2 + d i A  + e i f  + f ) ~ ( A ,  F )  dA dF = O, 

and the symbol of equation (4), tr(A, F) ,  is obtained from the kernel of the above expression, i.e. 

tr = - a A  2 - bAF  - cF 2 + d i A  + eiF + f .  (6) 

Similarly the principal symbol, trp, of equation (4) is obtained when all but the highest order terms 
are dropped from equation (6), thus 

trp = - a A  2 - bAF  - cF 2, 

and it is readily seen that by considering the zeros of the principal symbol we may determine if 
the equation is elliptic, parabolic or hyperbolic. 

We now state without proof the constraints on the symbol for equation (4) with initial data 
equation (5) to be well-posed as an initial-value problem in space. For equation (4) with appropriate 
initial data on 2 = 0 a unique solution will exist in the domain 0 ~< 2 ~< L < ~ ,  - o0 < f < ~ ,  
provided [7], 

(1) the roots A of tr(A, F) = 0 are bounded below in the complex plane; 
(2) the inital data is sufficiently smooth. 

By a solution we mean a function u(2, r/) which satisfies equation (4) and the initial data, which 
is at least twice differentiable and which is continuously dependent on the initial data. If  this is 
the case then we say that equation (4) with the appropriate initial data is well-posed as an 
initial-value problem in the given domain. 

The classification given above is for a scalar second order PDE. In general one can expect to 
encounter higher order and systems of PDEs, and so it is natural to wish to be able to classify such 
systems in a similar manner to that given for the second order scalar PDE. In the next section this 
extension is provided. 

3. E X T E N S I O N  TO H I G H E R  O R D E R  A N D  S Y S T E M S  O F  E Q U A T I O N S  

If we attempt to use the method of characteristics to classify higher order equations, or equivalent 
systems, by dividing them up into elliptic, parabolic and hyperbolic types, then the classification 
would be as follows. The equation system is elliptic if the principal symbol has no real roots, it 
is hyperbolic if it has as many real roots as it's order, and it is parabolic if it has only one real 
root. This immediately presents us with a number of problems. Firstly, if we have a system of 
equations, what is meant by the principal symbol? Secondly, to effectively classify the system we 
must in general find all the roots of  what is likely to be a high order polynomial. Finally, the 
classification is evidently not complete for systems with a principal symbol of order higher than 
two. In addition, even if we can identify a system as being parabolic, initial-value solutions will 
exist only if the initial data is specified on a space-like surface, and the solution extended in a 
positive time-like direction. For these reasons it is suggested that the use of a characteristics analysis 
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to divide equations or systems into elliptic, parabolic and hyperbolic types is not a satisfactory way 
to identify those that are well-posed as initial-value problems. 

In the present section we define what is meant by the symbol of a system of equations, and extend 
the classification given in the previous section that determines the existence of initial-value 
solutions, to include such systems. 

The relation of the behaviour of initial-value solutions to the roots of the symbol, given in the 
previous section, is extended to higher order systems of equations in the following way. If  we have 
a system of N m t h  order differential equations in N unknowns u(2, ql • .- q,), and if we define the 
differentiation operators D = (D , I . . .  D,,), the system may be written as, 

P(.;., D)u(2, q) = G(2, r/), (7) 

where P is an N x N matrix whose elements are mth degree polynomials in each of their n + 1 
arguments. On the surface 2 = 0 we prescribe initial data, 

u>.,(0, q )=Hk(q) ,  k = 0 . . . r ,  r < m .  (8) 

Once again we may reduce the problem of showing the above system has a solution to the 
standard problem of showing that the system, 

P (  ~., O)u(2 ,  r/) = 0, (9) 

u>k(0, q) = 0, k = 0 . . . r - l ,  

u~k(0, r /)=p(r/) ,  k = r ,  r < m ,  

has a solution. 
To show when this is the case we write u in terms of it's Fourier transform, giving, 

where 

u (2, q ) = (2re)- (" + 1)/2 f ei(~., + 2A)~_ i (A, E) dE dA, 

• E = (~hEl +" " " + thE.). 

Substituting this into equation (9) gives 

(10) 

(l l)  

(2~)-(,+ 0/2 jei(~.~ + ;.A)P(iA, iE)t~(A, E) dE dA = 0, (12) 

The symbol of  equation (9) is obtained from the kernel of the above expression, and is P(iA,  iE). 
System equation (9), will possess solutions u of class C~' provided that all the zeros A of 

det P(iE, iA) are bounded below in the complex plane, and that r is one less than the number of  
zeros including multiplicities, and that the initial data is of class C~' +" + 1; in which case equation 
(9) is well-posed as an initial-value problem [7]. 

4. P R A C T I C A L  A P P L I C A T I O N  OF SYMBOLIC ANALYSIS 

Our primary use of symbolic analysis is to identify systems of  equations that will lead to stable 
computational solutions in a single spatial march [9]. For this to be the case it is necessary and 
sufficient, when the solutions A of det P(iA,  iE)= 0 are continuous functions of  E, that im A is 
bounded below in the complex plane. 

4.1. Full Nav ier -S tokes  equations 

We consider the linearized, nondimensional Navier-Stokes equations for incompressible flow in 
two-dimensional cartesian coordinates, (x, y), with corresponding velocity components (u, v), with 
p denoting the pressure and Re is the Reynolds number, 
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1 
aUx + ~uy = - p x  + Ree (u~x + u.),  

1 
aVx + Ovy = - p y  + ~ (Vxx + v.),  

59 

(13) 

(14) 

u~ + Vy = 0, (15) 

which we will call equation set A. The overbar indicates we are using frozen local values for these 
components. 

The dependent variables u, v, p are written in terms of their Fourier transforms fi, 13,/~, as 

u(x,  y) = (2n)-1 f c, exx+ ry, d X  dY ,  (16) 

with equivalent expressions for v and p. Substitution for u, v, p in the linearized equation set A gives 

0 • i Y  = O, (17) 
iX  i Y  0 

where 

ot = i~X + i6 Y + - -  
X 2 + y2 

Re 

The symbol of A, tr(A), is the matrix in the above system. The principal symbol, ap(A) is the 
matrix, 

X 2 + y2 ] 
Re 0 0 ] 0 X2 + y2 

Re 0 
0 0 0 

(18) 

Equation system A will be elliptic if no nonzero real roots (X, Y) exist for det ap(A)= 0. It is 
apparent that det ap(A) = 0 for all (X, Y) since the matrix Ap is degenerate, and therefore A is not 
elliptic. The source of the degeneracy is the lack of second derivatives in equation (15). 

If  we now consider the complete symbol we obtain, 

( x2+_ Y2 (x2 + 
det tr (A) = l a x  + i~ Y -~ Re ] y2). (19) 

Equations of the above sort for which the real roots of det tr(E) = constant can be contained in 
a finite sphere in E space are members of the set of hypoelliptic equations [7]. Elliptic and parabolic 
equations are members of the set of hypoelliptic equations. Since det tr(A) has roots of the form 
X = + iYclearly equation set A will not have initial-value solutions, and thus it is, as is well-known, 
not parabolic, although it is not possible from the above analysis to determine if it is well-posed 
as a boundary value problem, i.e. whether it is elliptic. We relate the apparent nonellipticity to the 
fact demonstrated by Gustafsson and Sundstrom [6] that the unsteady Navier-Stokes equations 
are not of parabolic type, but are defined as incompletely parabolic. 

It is possible to obtain a genuinely elliptic equation set from the set A by replacing equation (15) 
with a Poisson equation for the pressure, which is constructed in the following way. Equation (13) 
is differentiated with respect to x, equation (14) with respect to y and the resulting equations added 
to create a Poisson equation for p. Using equation (15) to remove terms the following equation 
set D is obtained, 

1 
aux + ~uy = - p x  + Ree (Ux~ + u.) ,  (20) 

1 
aVx + ~v~ = -p~ + Ree (Vx~ + v.) ,  (21) 
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Pxx + Pyy = - ux ux - 2Vx uy - vy Vy, (22) 

where the freezing of the nonlinear terms has been carried out after the manipulation is completed. 
The equation set above has as its principal symbol, 

with roots obtained from, 

)t-2 + y2 
0 0 

Re 
X 2 + y2 

0 0 
Re 

0 0 _ (X 2 + y2) 

(23) 

det ap = - ( X  2 + y2)3 = 0. (24) 

The roots of equation (24) are the purely imaginary terms X = + iY, indicating that the equation 
system (20)-(22) is elliptic. 

4.2. Reduced fo rms  o f  the Nav ier -S tokes  equations 

For many flow problems with a dominant flow direction it can be shown that second derivatives 
in the flow direction in equations (13) and (14) are always small and can be neglected [9]. This leads 
to the following system of equations: 

1 
~Ux + fuy = - P x  + Ree uyy, (25) 

1 
UVx W VVy = --py + Re  Vyy, (26) 

u~ + v., = 0, (27) 

which we will call equation set B. Once again the principal symbol is degenerate, so it is not possible 
to determine the existence of boundary value solutions. The complete symbol is 

det a ( B )  = iaX + i~Y + ~-~ ( X  + y2). (28) 

Thus as before we have a hypoelliptic equation which has roots unbounded in the complex plane, 
and is therefore not well-posed as an initial-value problem. 

To attempt to determine exactly how the equations interact to preclude the existence of 
initial-value solutions we considered the simplified equation set, 

G(u)  = - P x ,  (29) 

F(v)  = - p y ,  (30) 

ux + Vy = 0, (31) 

where G and F are general differential operators. We then investigated, numerically when necessary, 
the roots of all possible forms of these operators. 

Obtaining the determinant of the complete symbol of the above equations set we get, 

det(p) = GX 2 + py2 .  (32) 

Clearly whenever G and F are equal the above simplified equation set will retain the ill-posed 
character of the full equations. After an extensive investigation of the roots of various forms of 
F and G it has been found that all but a few degenerate combinations lead to negative imaginary 
roots. Examples of such degenerate forms are, 

G = x, F = y, 

G = . x ,  F = . y y .  



Development of symbolic analysis 61 

It is apparent that an ill-posed initial-value problem will result whenever the V momentum 
equation acts to couple the x derivative terms in the U momentum and continuity equations in 
a physically realistic manner. This is equivalent to saying that as long as the pressure field is able 
to act globally to adjust the flow so that it satisfies continuity the equations are ill-posed as an 
initial-value problem. 

If  viscous effects are confined to a thin layer for the flow past a stationary solid surface the 
governing equations can be simplified further to produce equation set C, 

1 
aux + ~uy = -px  + Ree u , ,  (33) 

py = 0, (34) 

Ux + vy = 0. (35) 

In this case 
y2 

det a ( C ) = ( i ~ X  + igY + ~e)(Y2). (36) 

It can be seen that det a(C)  has the roots X = iY2/u - vY/u and (X, 0). The first of these roots 
has a positive imaginary part, provided a is positive. It is evident, from the second of the above 
roots, that the symbol possesses a singularity at the point Y = 0 which prevents the equation set 
being well-posed as an initial-value problem. If this singularity can be removed then it is apparent 
that the equation set will be well-posed as an initial-value problem in space, with the sign of a 
determining if x or - x  is the positive time-like direction. A method of removing the singularity 
by restricting the solution space to only those functions with compact support in x is suggested. 

Consider that u is the solution to a single PDE in (2, r/) space, and that we wish to prove that 
the equation is well-posed as an initial-value problem in the positive time-like direction. We express 
u in terms of its initial data p(2) as, 

(2n) -t .(e'.~p(r)Q(L r )  dr. (37) U 

In equation (37) Q is represented as 

t ~ eii'z 
Q(2, F)  = (2n)- Jca(Z, r) dz' (38) 

where C goes once around each root of a = 0. 
It is evident that it is not possible to obtain a unique u for a given initial data, due to the 

multiplicity of zeros that occur at F = 0. If it is possible to remove the single point F = 0 then the 
resulting solution will be unique, providing that any remaining zeros are bounded below in the 
complex plane. A method for removing the F = 0 singularity by requiring that any solution must 
have compact support in q is given. 

The variable u(2, q) is represented as U0 + U,, where 

U0 = (2n)- '  f e'nr:(F)Q(2, r )  d r ,  u, = R(2, ,1), (39) 
J6 < Irl 

with Q is defined as above. Provided the initial data is of class Cg '+"+ ~, the integrand of equation 
(39) is of class C m and we may take the limit of equation (39) as 6 goes to zero to obtain U0 of 
class Cg '+"+ ~. Therefore u will have compact support if U, does. Therefore we set R(2, r/) to zero, 
and 

u = l im~ 0 U0. 

Thus provided the roots of tr(z, F),  F ¢ 0 are bounded below in the complex plane, and the initial 
data P0.) is sufficiently smooth, an initial-value solution will exist. 

The additional requirement that only solutions with compact support are admissable indicates 
that equations of this form are not well-posed as pure initial-value problems. This is in accord with 
the fact that the wave equation Uxx- Uyy = 0, is not well-posed for initial data specified on a 
characteristic, requiring data also specified on one more line, as the (X, 0) root is typical of 

C.A.M.W.A. 19/5--E 
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hyperbolic systems when the coordinate directions are coincident with the characteristic directions. 
The requirement t h a t  t h e  solution have compact support is equivalent to setting the solution to 
zero for large It/I, i.e. imposing the boundary-value u = 0 at large 171. 

We have therefore shown initial-value solutions do exist for such a system provided we limit our 
solution space to solutions with compact support. In practice this is accomplished by specifying 
appropriate boundary values for v and p on one line of the form y = constant. 

That the full steady-state Navier-Stokes equations, set .4, equations (13)-(15), are not well-posed 
as an initial-value problem is well-known. System B, equations (25)-(27), is often referred to as 
the "parabolized" Navier-Stokes equations, due to the fact that equations (25) and (26) taken 
individually [i.e. i fp(x,  y)  were given], are parabolic. However as the symbolic analysis indicates, 
when the system is considered as a whole it is still hypoelliptic, but does not have initial-value 
solutions. Equation set C, equations (33)-(35), is also frequently referred to as "parabolic", the 
justification being, as we have shown, that it will be well-posed as an initial-value problem. 
Nonetheless it is still not a true parabolic system, being in some sense a mixture of parabolic and 
hyperbolic types. 

4.2.1. R e d u c e d  N a v i e r - S t o k e s  equations in cylindrical  coordinates.  A reduced Navier-Stokes 
equation set is commonly used to enable internal swirling flow to be solved using single sweep 
schemes. The equation set that is used is as follows [9]. The Navier-Stokes equations are expressed 
in nondimensional axisymmetric form in cylindrical coordinates, (x, r, 0) with corresponding 
velocity components (u, v, w), as follows, 

±(u, ur) 
uux + vur = - P x  + Re ~, ' + r ' (40) 

w w  
- -  = P r ,  (41) 

r 

uw~ + vw, + - -  = - -  Wr, + - -  -- , (42) 
• r R e  r 

/3 
ux + vr + - = 0. (43) 

r 

Obtaining the complete symbol of the above equation set as before we get, 

det ~ (.4) = i ~ X  + igR + Re / i f fX + igR + --r -~ Re - " 

Clearly there are no negative imaginary roots, if we can once again preclude the singular point 
R = 0 and require ti to be positive. Therefore the equation set is well-posed as an initial-value 
problem in space. 

As can be seen the equation set is similar to that obtained in cartesian coordinates, except that 
the cross-stream pressure gradient is no longer set equal to zero, but retains its component that 
balances the centrifugal force, which will not in general be insignificant. This term actually arises 
from the Christoffel symbol associated with the vvr term. The fact that this term may be retained 
without affecting the existence of  initial value solutions is because the condition of axisymmetry 
is enforced, and therefore there can be no 0 dependent pressure continuity interaction. 

4.2.2. M e t h o d  o f  Briley.  Another interesting reduced form of the Navier-Stokes equations to 
consider is that presented by Briley and McDonald [10]. In this paper the authors split the 
cross-stream velocity into a potential component and a rotational component in the following 
manner. 

v = v  ~ + v  ~, w = w  ~ + w  g', 

where .~ is the potential component, and .~ is the rotational component. They relate these 
components as, 

v* = ~ , ,  w* = ~ ,  v* = q,~, w* = - q , y ,  

with v the velocity in the y direction, and w the velocity in the z direction. 
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Briley and McDonald further correct the velocities by using a known potential flow, which 
introduces down stream influence. However since the potential flow is already known, and not 
solved concurrently, it does not affect the present analysis. 

The authors demonstrate that if the streamwise diffusion terms, and the potential component 
of the cross-stream velocity, are dropped, on an order of magnitude basis, the resulting equation 
set is well-posed as an initial-value problem in the dominant velocity direction, the x direction. The 
equation set is as follows, 

1 
UUx + VUy + wu~ = - P x  + Ree (uyy + u~), 

1 
u(flv ¢' + v*)x + v(flv* + V*)y + w(flv* + v*), = - p y  - Ree (Dz)' 

1 
u(13w* + w*)x + v(~w* + w% + w(~w~' + W*)z = - p z  + Ree (ny), 

ux + ( v %  + (w*): = 0.0, 

(v% - ( w %  = 0.0, 

(V*)y + (w% = 0.0, 

- ( v %  + (w% = ta. 

Symbolic analysis is applied to the systems of equations in the following way. After linearizing, 
and taking Fourier transforms, as before, the above equations set may be written in matrix form 
as, 

Li 0 0 0 0 iX  0 
iZ  

0 f lL 2 L 2 0 0 i Y 
Re 

- i Y  
0 0 0 ilL2 L 2 iZ  

Re 
iX  i Y  0 iZ  0 0 0 
0 iZ  0 - i Y  0 0 0 
0 0 i Y  0 iZ  0 0 
0 0 - i Z  0 i Y  0 - 1  

ft 

P 
fi 

" 0 "  

0 

0 

0 
0 

' 0 
0 

Where in the above expression we have, 

L~ = ftiX + ~iY  + f f iZ  + I---(Y 2 + Z2), 
Re 

L 2 = ftiX + # iY  + ff~iZ. 

Once again obtaining the symbol of the above equation set we get, 

det(p) = L 2 ( y  2 + Z2) 2 + Ll f lL2X2(y:  + Z2). 

It is clear that if we set fl to be zero then the above equation will have roots of the form, 

y2 + Z 2 t7 
X = / - -  Re ~ y  - - z .  

Hence there are no negative imaginary roots and so the problem is well-posed as an initial-value 
problem in the positive x direction, provided t~ is positive. 

Briley and McDonald found that if fl is set to be 1 then the inviscid version of the equation set 
will be ill-posed as an initial-value problem in the positive x direction, but found, using a first order 
characteristics analysis, that the viscous version is well-posed. When fl is set equal to 1 in the above 
expression it has not been possible to obtain an analytic representation for the roots. However 
numerical experimentation has demonstrated the existence of a root unbounded below in the 
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complex plane, and therefore we suggest the above equation set, with /~ ffi 1, is ill-posed as an 
initial-value problem in the positive x direction. 

It is of interest to consider the method of Briley and McDonald, with/} -- 0, in axisymmetric 
cylindrical coordinates. If we write the equations in cylindrical coordinates, and enforce the 
condition of axisymmetry, we obtain, 

w ~b = 0, 

v ~ =0,  

w ~ 
ta  = ( w ~ ) ,  + - - ,  

r 

and we thus obtain the set of equations, 

,(u) 
u u ~ + v u , = - P ~ + ~ e  e u . +  r , 

- T =  - 7 : '  

u(w~)x + v(w*), ~ v(w~) = Ree (w~). + - -  
r r r 2 ] '  

u~ + (v*)r + (v*) = 0.0. 
r 

Since v * and w * are zero we see that this is the same equation set as equations (40)--(43) above 
with v = v * and w = w *. Evidently the approximation made for internal swirling flow to enable 
the Navier-Stokes equations to be well-posed as an initial-value problem is a specialization of the 
general method of Briley and McDonald. 

5. C O N C L U D I N G  R E M A R K S  

Our analysis started with the classical theory of scalar second order PDEs, which are divided 
into elliptic, parabolic and hyperbolic categories, based on the sign of the discrimant. That such 
a classification is complete, and divides all second order PDEs into those that must be solved as 
boundary-value problems, and those that may be solved as initial-value problems, makes it a useful 
tool in determining numerical methods for solving such equations. However, as we have pointed 
out, problems arise in the extension of such a classification to higher order systems. If we are to 
satisfactorily deal with higher order systems we must be able to determine whether such systems 
are well-posed as initial-value problems. This has been the motivation behind our development of 
the symbolic analysis presented in this paper. In particular it is used to analyse some of the various 
forms of the Navier-Stokes equations currently employed in the field of computational fluid 
dynamics. 

In Section 2 the constraint that must be placed on the roots of the symbol in order to guarantee 
the existence of initial-value solutions is given without proof; an extremely good exposition of this 
proof is given in Schecter [7]. Section 3 establishes the usefulness of this analytic tool, by showing 
that it is readily extended to higher order systems, such as the Navier-Stokes equations (Section 4). 

As has been shown symbolic analysis is a valuable tool for determining when higher order 
systems of PDEs provide well-posed initial-value problems. In relation to steady fluid flow 
problems, reduced forms of the Navier-Stokes equations are analysed to see if they permit stable 
computational solutions to be obtained in a single march in the time-like direction. 

Acknowledgement--The authors are grateful to the Australian Research Grants Committee for their continuing support. 



Development of symbolic analysis 65 

R E F E R E N C E S  

1. R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol 2. Interscience, New York (1962). 
2. H. Schlicting, Boundary Layer Theory. McGraw-Hill, New York (1968). 
3. S. Rubin, A review of marching procedures for parabolized Navier-Stokes equations. Proc. 1st. Syrup. Numer. Aspects 

Aero. Flows (Ed. T. Cebeci), pp. 171-186. Springer, Berlin (1981). 
4. S. Armfield and C. Fletcher, Pressure related instabilities of reduced Navier-Stokes equations. Communs appl. Numer. 

Methods 2, 377-383 (1986). 
5. A. Brandt and N. Dinar, Multigrid solutions to elliptic flow problems. Numerical Methods for Partial Differential 

Equations pp. 53-147. Academic Press, New York (1978). 
6. B. Gustafsson and A. Sundstrom, Incompletely parabolic problems in fluid mechanics. SIAMJlappl. Math. 35, 343-357 

(1978). 
7. M. Schecter, Modern Methods in Partial Differential Equations. McGraw-Hill, New York (1977). 
8. Z. Szmydt, Fourier Transformation and Linear Differential Equations. Reidel, Dordrecht, Holland (1977). 
9. S. Armfield and C. Fletcher, Numerical simulation of swirling diffuser flow. Int. J. Numer. Methods Fluids 6, 541-556 

(1986). 
10. W. Briley and H. McDonald, Three-dimensional viscous flows with large secondary velocity. J. Fluid Mech. 144, 47-77 

(1984). 


