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Abstract Seryl-tRNA synthetases (SerRSs) fall into two dis-
tinct evolutionary groups of enzymes, bacterial and methano-
genic. These two types of SerRSs display only minimal
sequence similarity, primarily within the class II conserved mo-
tifs, and possess distinct modes of tRNASer recognition. In order
to determine whether the two types of SerRSs also differ in their
recognition of the serine substrate, we compared the sensitivity of
the representative methanogenic and bacterial-type SerRSs to
serine hydroxamate and two previously unidentified inhibitors,
serinamide and serine methyl ester. Our kinetic data showed
selective inhibition of the methanogenic SerRS by serinamide,
suggesting a lack of mechanistic uniformity in serine recognition
between the evolutionarily distinct SerRSs.
� 2005 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Aminoacyl-tRNA synthetases (aaRSs) catalyze acylation of

transfer RNAs with their cognate amino acids, and thus pos-

sess a central role in assuring faithful transmission of genetic

information. Essentiality of their function has made aaRSs

attractive targets for drug design, while their structural and

evolutional diversity provides a constructive foundation that

is readily exploited in the identification of species-specific en-

zyme inhibitors.

Evident lack of phylogenetic uniformity is observed among

seryl-tRNA synthetases (SerRSs), which diverge into two

major and disparate types of enzymes. The bacterial-type SerRS

is present in bacteria, eukaryota and a majority of archaea,

whereas methanogenic archaea, with the exception ofMethano-

sarcina mazei and Methanosarcina acetivorans, possess the

methanogenic-type SerRS [1] (Fig. 1). Most conspicuous differ-

ences between the two types of SerRSs include insertions in the

N-terminal domain of methanogenic proteins and a deletion

within the motif 2 loop, which was demonstrated to participate
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in both tRNASer and serine recognition inThermus thermophilus

[2]. Such dissimilarity suggests that modes of substrate recogni-

tionmay differ between the two types of SerRSs. In this respect it

is also noteworthy that only a single residue involved in serine

recognition of the bacterial-type SerRSs (Glu279 of T. thermo-

philus, which interacts with both serine hydroxyl and amino

groups) preserves its identity in the methanogenic sequences

(Fig. 1).On the other hand, despite the conservation of the active

site residues within the bacterial-type SerRSs, eukaryotic en-

zymes are characterized by the presence of a C-terminal exten-

sion that affects optimal serine recognition: reportedly,

C-terminal deletion in the yeast SerRS impaired tRNA-facili-

tated serine recognition, as shown by a 3-fold increase of the ser-

ine KM value [3]. Moreover, functional implications of the

structural differences between methanogenic, bacterial and

eukaryotic SerRSs may be observed in their respective modes

of tRNASer recognition, which display notable disparities [1,4].

In order to assess whether the differences between the SerRS

enzymes also pertain to serine recognition we analysed the sen-

sitivity of the coexisting bacterial and methanogenic-type Met-

hanosarcina barkeri SerRSs to serine hydroxamate, a known

inhibitor of the Escherichia coli and yeast SerRSs [5–9], and

two previously unidentified inhibitors, serine methyl ester

and serinamide. Additionally, the E. coli and S. cerevisiae en-

zymes were examined as representative bacterial-type SerRSs

of bacterial and eukaryotic origin, respectively. We show that

distinct types of SerRSs display differential inhibitory profiles,

and propose that such dissimilarity is both consequential and

informative in respect of their evolutionary origin.
2. Materials and methods

2.1. Cloning and expression of seryl-tRNA synthetases
Methanogenic and bacterial-type SerRS genes were cloned as de-

scribed [1]. E. coli serSwas amplified by PCR using Expand High Fidel-
ity polymerase (Roche), and cloned into the pET15b vector (Novagen).
N-terminally His6-taggedM. barkeri andE. coli proteins were produced
according to the published procedure [10]. The yeast SerRS gene SES1
waspreviously cloned into vector pCJ11 for the expression in theSaccha-
romyces cerevisiae strain S2088 [3]. S. cerevisiae SerRS was purified on a
series of chromatographic columns, as described [11].
2.2. Aminoacylation assay
Aminoacylation was performed in 50 mM HEPES–KOH pH 7.2,

50 mM KCl, 15 mM MgCl2, 5 mM dithiothreitol, with 10 mM ATP,
20 lg/lL total tRNA, and [14C] serine at concentrations varying
between 0.2 and 5 timesKM serylationwith theM. barkeri andE. coli en-
zymes was performed at 37 �Cwith E. coli unfractioned tRNA, whereas
blished by Elsevier B.V. All rights reserved.
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Fig. 1. Alignment of motifs 2 and 3 from a number of representative SerRSs. The sequences are from Methanosarcina barkeri-methanogenic-type
SerRS (mMba), Methanococcoides burtonii (Mbu), Methanocaldococcus jannaschii (Mja), Methanococcus maripaludis (Mma), Methanopyrus kandleri
(Mka), Archaeoglobus fulgidus (Afu), Saccharomyces cerevisiae (Sce), Escherichia coli (Eco), Methanosarcina barkeri-bacterial-type SerRS (bMba)
and Thermus thermophilus (Tth). ‘‘s’’ and ‘‘a’’ denote residues in Thermus thermophilus sequence that participate in serine and adenylate recognition,
respectively (Val272 and Arg386 form only main chain interactions). Note that residues involved in adenylate recognition are strictly conserved,
whereas those involved in serine recognition are not.
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yeast unfractioned tRNA was used for aminoacylation with the yeast
SerRS at 30 �C.Enzyme concentrationswere experimentally determined
in order to obtain linear velocities. Radioactive aminoacyl-tRNA syn-
thesized after 2–8 min was quantified as described previously [10]. The
kinetic constants were derived from Hanes–Woolf plots.

2.3. Selection of serine analogues
The following serine analogues (Sigma) were analysed as potential

inhibitors of the methanogenic and bacterial-type M. barkeri enzymes:
serinamide, serine methyl ester, serine hydroxamate, serinol,-methyl
serine, O-methyl serine, phosphoserine, serine ethyl ester and N-acetyl
serine. Aminoacylation was performed at 37 �C with 5 lM [14C] serine,
1 mM serine analogue and 125 nM methanogenic SerRS or 30 nM
bacterial SerRS. The level of inhibition was determined as a ratio of
initial velocities of inhibited and uninhibited reactions. Analogues that
showed different profile of inhibition by the two M. barkeri enzymes
were kinetically analysed with all representative SerRSs.

2.4. Kinetic analysis of inhibition
To determine KI values for serine inhibitors, at least five different

concentrations were first screened in the aminoacylation reaction
under standard conditions with 5 lM [14C] serine. Inhibitor concentra-
tions were then established, at which the initial rate of aminoacylation
was decreased by 20–60% when compared with the uninhibited reac-
tion; these levels were used for KI determinations (three different con-
centrations for each inhibitor). In all cases, stock solutions of
inhibitors were maintained at neutral pH. The enzyme concentrations
were 400 nM for the methanogenic, 225 nM for the bacterial M. bark-
eri SerRS, 53 nM for the E. coli SerRS and 203 nM for the yeast en-
zyme. The kinetic constants were derived from Hanes–Woolf and
KMi/VMi versus I plots [12]. Final individual kinetic parameters are
the average of three independent determinations.
3. Results

3.1. Divergence of SerRSs

Our phylogenetic analysis of available SerRS sequences

(Fig. 2) confirmed the known division between the methano-
genic and bacterial-type sequences [13]. Bacterial-type SerRSs

exhibit lower evolutionary distances, but still preserve a basic

canonical pattern with grouping of archaeal and eukaryotic

proteins and distinction of bacterial sequences. Nonetheless,

horizontal gene transfers are evident within this group: bacte-

rial-type SerRSs in Methanosarcina species and Halobacteria

are almost certainly results of such events, as these enzymes

group with bacterial, rather than archaeal proteins. Accord-

ingly, the original methanogenic-type SerRSs may have been

replaced by the bacterial enzymes in these organisms; in this re-

spect, M. barkeri may represent an intermediate stage in this

process with two types of SerRSs.

3.2. Differential sensitivity to serine analogues

Since the binding of tRNASer induces conformational

changes [2] that facilitate binding of serine to the active site

of bacterial-type SerRS [11], we chose to measure the steady-

state aminoacylation kinetics of representative SerRS enzymes.

Initially, various serine analogues were used as probes for iden-

tification of possible structural and functional differences be-

tween the two major types of SerRSs represented by the two

M. barkeri SerRSs. Our results show that only serine hydroxa-

mate, serine methyl ester and serinamide inhibited serylation

by the methanogenic SerRS to a considerable level (Fig. 3).

Moreover, these compounds showed a seemingly differential

effect on the methanogenic and bacterial SerRSs, and were

accordingly examined in a kinetic analysis with representative

SerRSs of methanogenic, bacterial and eukaryotic origin.

Kinetic analysis revealed increased KM values upon inhibi-

tion, thus confirming the competitive nature of serine ana-

logues. The data also showed a marked variation of

serinamide KI values between the representative SerRSs

(Fig. 4): the sensitivity to serinamide is significantly more



Fig. 2. Unrooted phylogenetic tree of seryl-tRNA synthetases implied by the neighbor-joining method. Archaeal sequences are shown in bold italics,
bacterial in grey italics, and eukaryotic as plain text. m M. barkeri denotes the methanogenic, and b M. barkeri bacterial-type protein.

Fig. 3. Activity of the methanogenic and bacterial M. barkeri seryl-
tRNA synthetases in the presence of serine analogues. Aminoacylation
was performed with 5 lM serine and 1 mM analogue. % activity is
calculated from initial velocity, relative to the uninhibited reaction.

Fig. 4. Inhibition profiles of representative seryl-tRNA synthetases. KI

values are plotted on logarithmic scale.
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pronounced in the methanogenic M. barkeri SerRS than in

other, bacterial-type enzymes. The most striking differences

are observed for the yeast and the bacterial M. barkeri SerRS,

whose KI values differ from the methanogenic M. barkeri

SerRS inhibition constant by several orders of magnitude.
Thus, the relative serinamide KI values (Fig. 4) reveal an

approximately 5000-fold difference between the yeast and

methanogenic M. barkeri SerRSs, and a 300-fold distinction

in the case of the bacterial and methanogenic M. barkeri en-

zymes. On the other hand, the KI values of serine hydroxamate

and serine methyl ester display a lesser degree of variation be-

tween different SerRSs (18-fold for serine hydroxamate and 35-

fold for serine methyl ester at the most) (Fig. 4). Our current

studies do not reveal a notable difference in sensitivity to serine

hydroxamate between by the E. coli and yeast enzymes, as re-

ported previously [8]; the discrepancy is mostly due to the sig-

nificantly higher KI value for the E. coli SerRS, determined
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recently in our laboratory (2.1 ± 0.3 mM), in comparison with

the published data (30 lM) [6].

Apparently, the methanogenic SerRS is more susceptible to

inhibition by all three serine analogues than are the bacterial-

type enzymes from M. barkeri, E. coli or yeast (although the

difference is much less pronounced for serine hydroxamate

and serine methyl ester; Fig. 4). However, with respect to the

efficacy of the inhibition, neither serine hydroxamate nor serine

methyl ester displayed affinities for the target enzymes that are

comparable to the affinities of the natural substrate serine

(Fig. 4): whereas theKM values of all four enzymes are in micro-

molar range (25 lM for the methanogenic M. barkeri SerRS,

34 lM for the bacterial M. barkeri SerRS, 60 lM for the

E. coli SerRS and 62 lM for the yeast SerRS), the KI values

of serine hydroxamate and serine methyl ester fall into the

(sub-)millimolar range. The same applies to serinamide; the

only exception is the methanogenic M. barkeri SerRS, whose

KI value of 3.2 lM signifies that serinamide is apparently pref-

erable to serine (KM = 25 lM) with respect to the binding

affinity.
4. Discussion

4.1. Mechanistic implications of inhibition studies

Among the serine analogues used in this study, only serine

hydroxamate, serine methyl ester and serinamide were success-

ful in conferring inhibition. As confirmed by the crystallo-

graphic evidences of the T. thermophilus SerRS, the binding

pocket effectively assures serine specificity by disallowing over-

sized side chains, and we may speculate that such strategy is

unanimous among the SerRSs, despite their evolutionary

divergence. Presumably, whereas steric clashes preclude bind-

ing of a-methyl serine, O-methyl serine, phosphoserine and

N-acetyl serine, causing their inhibitory incompetence, serinol

is unlikely to induce steric hindrance; the fact that it is ineffi-

cient in inhibiting serylation activity suggests that its initial

binding to the SerRS pocket is disfavoured due to the reduced

capacity of hydrogen bond formation, i.e., the absence of the

carbonyl oxygen.

Not surprisingly, differences in the inhibitory profile of the

tested SerRSs are most striking between the methanogenic-

type and any of the bacterial-type enzymes (Fig. 4). In partic-

ular, binding affinities of the bacterial and methanogenic M.

barkeri SerRSs for serinamide differ by more than two orders

of magnitude. Although the yeast enzyme displays a more dis-

cernible distinction compared to the methanogenic M. barkeri

SerRS, the difference between the two M. barkeri enzymes is

more intriguing because these SerRSs coexist in the same cel-

lular environment. Such differential binding of serinamide

could likely be correlated to the fundamentally different modes

of serine recognition in the methanogenic and the bacterial-

type SerRSs. This assumption is supported by the minimal

conservation of the residues crucial for serine recognition in

bacterial-type enzymes among their methanogenic analogues

(Fig. 1).

Among the bacterial-type enzymes, SerRSs from M. barkeri

and E. coli show apparent similarity in their inhibition profiles,

and their KI values do not differ substantially (Fig. 4). How-

ever, in the case of the yeast enzyme, the pattern of inhibition

is slightly changed: while serinamide seems to be more potent

than hydroxamate against the E. coli and M. barkeri bacterial-
type SerRSs, the situation is reversed for the yeast enzyme.

Such grouping is well supported by the phylogenetic data

(Fig. 2): evidences of horizontal gene transfers in Methanosar-

cina species clearly account for the similar inhibition pattern of

the M. barkeri and E. coli SerRSs, whereas the noted distinc-

tion in the profile between the bacterial versus eukaryotic en-

zymes appears to reflect the apparent evolutionary distance.

Alternatively, this difference could be attributed to the eukary-

ote-specific C-terminal extension, as it was proposed to be

important for serine recognition [3].

Analogously to our results, indolmycin, pseudomonic acid,

thialysine and borrelidin, naturally existing inhibitors of try-

ptophanyl-, isoleucyl-, lysyl- and threonyl-tRNA synthetases,

respectively, were shown to preferentially inhibit only certain

subtypes of their corresponding aminoacyl-tRNA synthetase

targets [14–17]. In this context, evaluation of sensitivity to sub-

strate analogues appears to be a valuable strategy for identify-

ing differences between the evolutionary divergent synthetases,

as well as a means of probing more subtle differences between

related enzymes. Furthermore, it may also provide a more gen-

eral outlook on the biological significance of duplicated aaRS

genes, as discussed below.
4.2. Duplicated aaRSs

Available data do not suggest functional complementarity of

the two M. barkeri enzymes, and it remains unclear why they

coexist in this organism. As suggested, the duplicity of SerRSs

in M. barkeri may represent an evolutionary interphase that

precedes the loss of the redundant serS gene. On the other

hand, additional functions pertaining to either of these en-

zymes cannot be excluded; in this respect it seems noteworthy

that the bacterial SerRS is less stringent in recognition of

tRNASer, as indicated by our study [1]. Moreover, the two serS

genes may be regulated differently, and expression profiles of

these SerRSs may be revealing in terms of their functionality.

Furthermore, differential sensitivity of the two enzymes to

the inhibitory effect of the serine analogues possibly indicates

that the two dissimilar SerRS forms may provide resistance

to a wider spectrum of potential natural or synthetic inhibi-

tors, and hence be of great advantage to their host. It has also

been suggested that the divergence of the LysRS forms pre-

vents infiltration of non-canonical amino acids into the genetic

code, and thus contributes to quality control of protein synthe-

sis [18]. Considering that the duality of aaRS systems in M.

barkeri includes both unrelated SerRS and LysRS enzymes,

we may speculate that such diversity is maintained as a result

of selective pressure. Interestingly, M. barkeri thrives in a vari-

ety of environments, such as anoxic freshwater mud or rumen

of cattle [19]. As the intestinal system of grazing animals in-

volves dramatic changes of concentrations of amino acids,

their analogues and other potential inhibitors, it likely creates

the turbulent and potentially detrimental surrounding to which

essential enzymes, such as aaRSs, are challenged to adjust. In

this respect, alternative SerRS and LysRS systems may be pre-

sumed to facilitate the adaptation of M. barkeri to the distinct

ecological niches.

Lastly, existence in natural environments involves competi-

tion between co-inhabitants that have developed a diversity

of targeted inhibition-resistance strategies. In view of that, it

was reported that Pseudomonas fluorescens produces a specific

inhibitor of the bacterial-type IleRS (pseudomonic acid) to kill
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competing bacteria, whereas it avoids suicide by maintaining a

second copy of IleRS that is of eukaryotic origin and resistant

to pseudomonic acid [15]. Whether M. barkeri uses an analo-

gous strategy with the SerRS system remains an attractive

speculation; size and diversity of its genome certainly leave this

option feasible.
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