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We call cp a V3 sentence if and only if q is logically equivalent to a sentence of 
the form Vx 3y $(x, y), where $(x, y) is a quantifier free formula constructed with 
logical and arithmetical symbols. Now let rp be a V3 sentence in conjunctive or 
disjunctive normal form. We show that given an arbitrary algebraic number field K 
there is a polynomial time algorithm to decide whether rp is true in K or not. We 
also show that ther are polynomial time algorithms to decide whether or not cp is 
true in every algebraic number field or every radical extension field of Q. 0 1992 
Academic Press, Inc. 

An arithmetical sentence is a sentence constructed from the language of 
rings and usual logical symbols. Godel’s incompleteness theorem shows 
that there is no algorithm to decide whether an arithmetical sentence is 
true in the set of natural numbers N or not. It follows that there is no 
algorithm to decide whether an arithmetical sentence is true in the ring of 
integers 2 or not. The same is true for the rational number field Q 
(J. Robinson, 1949), the algebraic number field (J. Robinson, 1959), the 
purely transcendental extension of Q (R. M. Robinson, 1964), and fields 
(J. Robinson, 1949). With the same arguments as in J. Robinson (1949), 
there is no algorithm to decide whether or not an arithmetical sentence is 
true in every field with characteristic 0. Having all these negative results, we 
may ask for what subsets of arithmetical sentences there are algorithms to 
decide the truth. Also, what are the computational complexities of these 
algorithms? 

We call cp a V3 or 3V sentence if and only if cp is logically equivalent to 
a sentence of the form Vx 3y $(x, y) or 3x Vy $(x, v), respectively, where 
+(x, y) is a formula containing no quantifiers and no other free variables 
except x and y. There are algorithms to decide the truth of ‘El or 3’ senten- 
ces in N, 2, and Q (Tung, 1986). The decision problems of 3V sentences of 
the form 3x Vy f(x, v) #O, f(x, y)~Z[x, y], true in N or Z are 
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NP-complete (Tung, 1987), whereas the similar problem over Q can be 
decided in polynomial time (Tung, 1987). With logical methods, it has been 
shown that there are algorithms to decide the truth of Q3 sentences over 
algebraic number fields and related decision problems (Tung, 1990). With 
this approach we also obtain other interesting results and we use some of 
these results in this paper. However, we do not know the computational 
complexities of these problems. In this paper we show that there are 
polynomial time algorithms to decide these problems if sentences are in 
conjunctive or disjunctive normal form. Every formula can be transformed 
to one in conjunctive or disjunctive normal form. In general, this trans- 
formation will cause the size of formulas to grow exponentially. 

The main tools we used in this paper are polynomial time algorithms 
for factorization of polynomials (Lenstra, 1987 or Landau, 1985) and 
Theorem A (Tung, 1990) below. Theorem A is deduced from Scbinzel’s 
theorem (1982) on Diophantine equations with parameters. 

THEOREM A. Let K be an algebraic number $eld and q(x, y) a formula 
in disjunctive normal form, i.e., 

where fj,Jx, y) and gj,Jx, y) are polynomials over K. If for every 
arithmetic progression P in Z there exist integers x’ of P and y’ of K such 
that ~(x’, y’) is true in K then there exist an i and polynomials F(x), 
G(x) f 0 over K such that G(x) y -F(x) is an irreducible common factor 
of the polynomials &(x, y) (1 < j < mi) but not the factor of any one of 
the polynomials g, &, y) (1~ k < ni) over the ring K[x, y]. 

In another paper to appear elsewhere (Tung, 1991), we discuss similar 
problems over algebraic integer rings. For example, we show that the 
decision problem of 3Q sentences in conjunctive or disjunctive normal form 
in an algebraic integer ring is NP-complete. We also prove that there is a 
polynomial time algorithm to decide whether or not a Q3 sentence is true 
in every algebraic integer ring. 

1. PRELIMINARIES 

The language L used in this paper contains all the usual logical symbols, 
arithmetical symbols + , ., and variables and constants of Q. If the decision 
problem is posed over a specified field then L is augmented with all the 
constants of the field. A formula $ is in conjunctive normal form if it has 
the form $=$r A ti2 A ... A $,, where I,,+~=v~,~ \I cpsz v ... v (Pi,,,; and 
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each ‘pi,j is an equation f = 0 or inequality g ~0. A disjunctive normal 
form formula is defined analogously except the symbols v and A are 
interchanged. When the computational complexity of the sentences is 
measured, the polynomials are input in non-sparse form. That is, for the 
polynomial f(x, y), if f(~, y) contains the monomial ax”y” with a # 0 and 
the monomial bx’y’ with i < m, j < n, then b must be input even if b = 0. 

An element a is algebraic over K if cc satisfies an equation with coef- 
ficients in the field K. Otherwise the element a is transcendental over K. An 
extension field F is algebraic over K if every element of F is algebraic 
over K. It is well known that every finite extension of a field is algebraic; 
the finite extensions of Q are called the algebraic number fields. Every 
algebraic number field is expressible as Q(a) for a suitable CI. The held Q(a) 
is isomorphic to Q[ t-J/F(t), where F(t) is the minimal (irreducible) polyno- 
mial for M. In our algorithms we work with the algebraic number field in 
its formulation as Q[ t] /F(t), although certain of our proofs will be in 
terms of Q[a]. 

Let cp(x, y) be a formula in disjunctive normal form, i.e., q(x, y) = 
VT= 1 IX~L I .&(A VI = 0 * AZ-1 g, Ax, Y) f 01, where J;:,j(x, Y) and 
g&X, y) are polynomials over an algebraic number field K. We may also 
interchange the symbols V and A, v and A, and make rp(x, y) a 
conjunctive normal form. In this paper we show that there is a polynomial 
time algorithm to decide whether Vx 3y cp(x, y) is true in K or not. In 
order to analyze the time complexity more precisely, we give all the 
parameters used in the analysis. Here we follow Lenstra’s notations 
(Lenstra, 1987) closely, because we use his algorithm several times. Let 
K= Q(a) and F(f) =cf=, a$~Z[t], uI= 1, be the minimal polynomial of 
CI over Q, and define IFI = (Ci=0 (ai)2)1’2. For any polynomial 

If1 is defined as (Ci, xi, cj (Ui,,iz,i)2)1’2, Nf= (tl+ l)(t2 + l), and 
S, = t, + t,. Also let df be the positive integer such that f~ (l/&) 
Z[a][x, y]. Let cp(x, y) be a normal form formula as above. 
We then define Id =max,j,dlfi,jl, Ig,d), N=maxi,j,k(Nfj,Ng,,k), 
d= LCM,j, ,(dfcj, d&, and M= CT= I (CAL r Sh j + x2= r h?,,). We prove 
that we can decide whether Vx 3y cp(x, y) is true in K or not m O(M’(IN)’ 
(IN + log(d 1 cp I ) + I log(1 14 ))) arithmetic operations on integers having 
binary length 0(M(1N)2 (IN+ log(d IcpI) + Ilog(1 IFI))). 

2. SENTENCES OVER A FIELD 

In this section we study the sentences over an algebraic number field K. 
A sentence q is called a V or 3 sentence if and only if cp is logically 
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equivalent to a sentence of the form Vx t&x) or 3x e(x), respectively, 
where t&x) is a formula containing no quantifiers and no other variables 
except x. We first show that there is a polynomial time algorithm to decide 
whether a 3 sentence in disjunctive or conjunctive normal form is true in 
K or not. We need this to prove our main results. 

We emphasize that sentences in this section may contain the constants of 
K. This is, we extend the language L to contain all constants of K. 

LEMMA 1. Let K be an algebraic number field and 3x q(x) a 3 sentence 
in conjunctive or disjunctive normal form; then there is a polynomial time 
algorithm to decide whether 3x q(x) is true in K or not. This algorithm needs 
O(M(IN)” (IN-i- log(d Iql) + Ilog(1 IFI))) arithmetic operations on integers 
having binary length 0((N)* (IN+ log(d 1~1) + Ilog(1 /$‘I))). 

Proof: We first prove the case of 3x q(x) in conjunctive normal form, 
i.e., 

g,,(X)#O 1 ) 

where fi,j(x) and gi,Jx) are polynomials over K. If for every i there is a 
k such that g,,(X) f 0 then 3x q(x) is true. Now suppose that there is an 
i such that g, k(X) = 0 for every k < ni. Without loss of generality, we may 
write that 

q(X)= A \\I;; fi,j(X)=OV 3 g,k(x)#o 
i= 1 [ j=l k=l I[ A lql f&)=0]. 

We apply Lenstra’s algorithm (Lenstra, 1982) to solve the equation 
fi(x) = 0, i.e., to find linear factors x - /I of f!(x) with /I E X, for every I< t 
in K. Let A be the set of all these solutions. If there is a p of A such that 

a r mi ni 1 

is true then 3x q(x) is true in K. Otherwise, 3x q(x) is false in K. Since the 
evaluations of polynomials can be done fast (cf. Knuth, 1981), the time 
complexity is dominated by C;= I mi < M times factorizations of polyno- 
mials. With Lenstra’s algorithm (Lenstra, 1982), we need O(M(IN)5 (IN-t 
log(d 1~1) + 1 log(1 (PI ))) arithmetic operations on integers having binary 
length O((UQ2 (IN+log(d I~l)+llog(l IPI))). 

Now let q(x) be a formula in disjunctive normal form, i.e., 

z fi,j(x)=oA A g,k(x)#o 9 
j=l k=l 1 
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where fi, j (x) and g, Jx) are polynomials over K. We apply Lenstra’s algo- 
rithm to solve the equation fi, j(x) for every i and j. (If m,> 1 for some i, 
it will be more efficient to find the greatest common divisor, GCD, of the 
polynomials fi, j(x) for 1~ j < mi, then find the roots of GCD.) Now let Ai 
be the set of common roots of h, j(~) = 0 for 16j Q mi. Then for every /I 
of Ai we check whether /Q=r gi,&?) #0 or not. If there are an i and a /I 
of Aj such that A2-r g, &I) #O then 3x q(x) is true. Otherwise, 3x p(x) 
is false in K. It should be easy to see that the computational complexity for 
this case is exactly the same as for the previous case. 1 

What we do in general is as follows. Given an arithmetical V’3 sentence 
V’x 3y qo(x, y), we eliminate the initial quantifier by constructing the set S, 
so that 

vx JY dx, Y)-= A 3Y da, Y), 
U6.s 

and then each existential sentence 3y ~(a, y) can be solved by the method 
of Lemma 1. To obtain the set S we need to apply the Theorem A men- 
tioned before. The statement of this theorem is similar to, but more general 
than, what we have in Tung (1990). The proofs are analogous. For the sake 
of completeness, we give the proof here. 

THEOREM A. Let K be an algebraic number field and cp(x, y) a formula 
in disjunctive normal form, i.e., 

cPtx2 Y)” c 
i=l 

[ 7 h,jtx9 Y)=O * 5 gi,kCX, Y)#“]9 
j=l k=l 

where fis j(x, y) and g, k(x, y) are polynomials over K. Zf for every arithmetic 
progression P in Z there exist integers x’ of P and y’ of K such that q(x’, y’) 
is true in K then there exist an i and polynomials F(x), G(x) f 0 over K such 
that G(x) y - F(x) is an irreducible common factor of the polynomials 
J;., j(x, y) (1 <j< mi) but not the factor of any one of the polynomials 
g, k(~, y) (1 <k < ni) over the ring K[x, y]. 

Proof If for some i, j, and k the polynomials fi, j(x, y) exist and have 
common factors then we can omit the common factors from the polyno- 
mial fj, j(x, y). This will not affect the truth of the formula cp(x, y). Hence, 
without loss of generality, we ‘may assume that for every i, j, and k the 
polynomials fi, j(x, y) and g, k(X, y) are relatively prime. For every x’ and 
y’ of K, if (p(x’, y’) is true then VT= 1 fi, r(x’, y’) = 0 or n;= 1 J;:, 1(x’, y’) = 0 
is true. Hence for every arithmetic progression P in Z there exist integers 
x’ of P and y’ of K such that n;= 1 fi, r(x’, y’) = 0. By Schinzel’s theorem 
(Schinzel, 1982, Theorem 34) there exists a rational function r(x) over K 
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such that l-J;= 1 fi, r(x, r(x)) SO. Let r(x) = F,(x)/G,(x), where F;(x) and 
G,(x) f 0 are relatively prime polynomials over K. Since K[x] is a unique 
factorization domain, by the Gauss Lemma (Lang, 1971) G,(x) y -I;i(x) 
is an irreducible factor of nf= I fi, 1(x, y). Then G,(x) y-F,(x) must be an 
irreducible factor of the polynomial fi, 1(x, y) for an Z, 1~ IQ s. Since 
fi, 1(x, y) and g&x, y) are relatively prime G,(x) y -F,(x) is not a factor 
of any one of the polynomials gr, Jx, y) for 1 < k < IZ,. Now suppose that 
G,(x) y-F,(x) is not a factor of one of the polynomials fij(x, y) for 
1 < j < ml. Let A be the set of the x’s of the common roots of the equations 
G,(x) y -F,(x) =0 and fiLj(x, y) = 0, A a finite set. If a set T intersects 
every arithmetic progression in 2, then T intersects every arithmetic 
progression with infinitely many terms. Let R be the set of x’ of K such that 
there exists an integer y’ of K, (p(x’, y’) is true. By our assumption, R inter- 
sects every arithmetic progression in 2. Therefore R-A still intersects 
every arithmetic progression in 2. For every x’ of R-A there exists an 
integer y’ of K such that h(x’, y’) = 0, where h(x, y) = ni A., 1(x, y)/ 
(G,(x) y-I;,(x)). By Schinzel’s theorem again, there must exists an 
irreducible factor G2(x) y - F2(x) of the polynomial IJ, f;:, r(x, y)/ 
(G,(x) y - F,(x)). The polynomials F*(x), G*(x) might not satisfy the 
condition of conclusion; then with the same arguments there must exist 
another irreducible factor G3(x) y - F3(x) of the polynomial I-J, f;:, 1(x, y)/ 
((G,(x)y-F,(x)).(G,(x)y-F*(x)). Since the degree of y of the polyno- 
mial nj J;:, 1(x, y) is finite, there must exist polynomials F(x), G(x) 
satisfying our conclusion. i 

Now we are able to prove our first main theorem. 

THEOREM 1. Let K be an algebraic number field and q~ be a El or 3V 
sentence in conjunctive or disjunctive normal form; then there is a polynomial 
time algorithm to decide whether cp is true in K or not. This algorithm 
need 0(M”(IN)5 (IN+ log(d Iq[) + Zlog(Z IFI))) arithmetic operations on 
integers having binary length O(M(IN)* (IN-t log(d 1~1) + Zlog(Z IFI))). 

ProoJ: The negation of a ‘~‘3 sentence is a 3V sentence. Also, the 
negation of a conjunctive normal form formula is a disjunctive normal 
form formula and vice versa. It suffices to prove the cases of V3 sentences. 
We first prove the case where Vx 3y cp(x, y) is in disjunctive normal form. 
Let 

i;; f&5 v)=O * h &,k(X, Y)fO , 
j=l k=l 1 

where fi,Jx, y) and g,,(x, y) are polynomials over K. 
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(S,) We apply Lenstra’s polynomial time algorithm (Lenstra, 1987) 
to factor each fi, i(x, y) and g, Jx, y) over K. We need to factorize polyno- 
mials CT= i (m,+ ni) times. Because CI=l (mi + ni) 6 M, this step can be 
done in O(M2(ZN)5 (ZN+log(d IcpI)+Zlog(ZlPI))) arithmetic operations 
on integers having binary length O(M(ZN)* (IN+ log(d 1ql) + 
Zlog(Z IFI))). By Theorem A if Vx 3y cp(x, v) is true then there exist an i 
and polynomials F(x), G(x) $ 0 over K such that G(x) v--F(x) is an 
irreducible common factor of the polynomials fi, Jx, v) (1 Q j Q m,) but not 
the factor of any one of the polynomials g, ,Jx, JJ) (1 < k < ni) over the ring 
K[x, y]. Now we suppose that this is the case, otherwise Vx 3y cp(x, u) is 
false in K. 

C%) Let G, k(X) = g, /AX, I;(xYG(x)) . CG(x)l”; then G, AX) is a 
polynomial over K. We solve the equations G(x) =0 and GJx) = 0, 
1 <k < ni, in K. Let A be the set of roots of these equations. Note that if 
x’ is not in A then we can take y’=F(x’)/G(x’) and ~(x’, v’) is true in K. 
Now we check the sentence 3y (p(x’, y) in K for every x’ of A. Since the 
number of the elements of A is bounded by O(M), this step can be done 
in O(M2(ZN)5 (IN+ log(d 191) + Zlog(Z IFI))) arithmetic operations on 
integers having binary length O((ZZV)* (IN+ log(d Irpl) + Zlog(Z IFI))) by 
Lemma 1. Clearly, if there is an x’ of A such that 3y q(x’, y) is false in K 
then Vx 3y cp(x, JJ) is false in K. If 3y ~(x’, v) is true in K for every x’ of 
A then Vx 3y ~(x, y) is true in K. 

Now we need to prove the case Vx 3y ~(x, JJ) in conjunctive normal 
form. Let 

7 fi,jcwJ)=ov \;i gi,k(xYY)zo 3 
j=l k=l 1 

where fj,j(X, JJ), gi,k(x, JJ) are POlynOmialS over K. 

(T,) We apply the Euclidean Algorithm (cf. Knuth, 1981) to find the 
greatest common divisor (GCD) of&(x, y) and g, k(x, v) for every i, j, 
and k. We then omit the GCD from g,,(x, JJ). Thus without loss of 
generality, we may assume that for every i the polynomials &(x, y) and 
g, k(x, v), 1 < j < m, and 1 <k < IZ~, are relatively prime. 

(T2) Suppose that for each i there is a k such that g&x, v) = 0. 
Then for every i we are trying to find the number x’ of K such that 
g&x’, JJ) f 0 for all k<ni. This means that for an equation g(x, JJ) = 
Ux) Yrn + se- + h,(x) = 0 we need to find the common solutions of 
(h,(x) = 0, . . . . h,(x) = O}. Therefore we apply the Euclidean Algorithm to 
find the GCD, h(x), of the polynomials h,(x), . . . . h,(x), then solve the 
equation h(x) = 0 in K. Let A, k be the subset of K such that g, k(x’, JJ) = 0 
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if x’EA~,~ and A=&=, n:=, A,,. Note that if for some x’ of K the 
sentence 

3Y ;I 3 fijjx’, Y)=O v \ci gi,ktx’, Y)f:O 
i=l j=l k=l 1 

is false then x’ must be an element of A. Now we check the truth of the 
sentence 3y (p(x’, y) for every x’ of A. The number of the elements of A is 
bounded by O(M); this step can be done in polynomial time by Lemma 1. 
If there is an X’ of A such that 3y (p(x’, y) is false then VX 3y cp(x, y) is 
false. Otherwise, Vx 3y cp(x, y) is true. We can see that (T,) is dominated 
by the last step with its complexity the same as (S,). 

Now we assume that for some i, g, k(X, y) = 0 for every k < ni. Since ‘for 

any a, b of K, a = 0 v b = 0 if and only if a. b = 0, we can combine several 
equations into one and obtain that 

x, y)=o v \ci g&k&, y)#o 
k=l 1 

where fi, j ,  g, k2 F, are polynomials over K and gi,k(X, y) $ 0. (In most 
cases, combining equations will increase the computation time in the 
following steps. However, by our doing so our formulas and proof are 
much simplified. ) 

(T,) We apply the Euclidean Algorithm to find the GCD, G(x, y), of 
the polynomials F/(x, y), 1~ I < p, then factor G(x, y) over K by Lenstra’s 
algorithm (Lenstra, 1987). We may write that 

Gtx, Y)=G& Y) f f  tG&-)Y--&H, 
/?=l 

where G&x, y) has no factor of the form G(x) y --F(x). If 4 =O, i.e., 
G(x, y) has no factor of the form G(x) y - F(X), then Vx 3y 
A$‘= i Fl(x, y) = 0 is false by Theorem A. Hence Vx 3y ~(x, y) is false. The 
complexity of this step is the complexity of factoring G(x, y). Now we 
assume that 4~0. 

tT4) Let ff,k,~(X)=gi,k(X, Fdx)/Gp(~)). EG&IIMt Ti, k h the 

set of polynomials Go(x) y- FB(x) such that H,,,@(x) ~0, and 
T=Uf=, nz=, qk. Let G’(x, Y) = G&G Y) - 11’6 =, (Gdx) Y - lis(x)h 
where G’(x, y) is the polynomial in which any factors G(x) y - F(x) in T 
are omitted from G(x, y). We claim that if r = 0, i.e., G’(x, y) has no factor 
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of the form G(x) y -F(x), then Vx 3y ~(x, JI) is false. Suppose, on the 
contrary, that 

q fi,j(x, VIE0 v \;j gi,k(x, Y)Z” 

j=t k=l 1 I=1 

is true. Now let A be a subset of K such that if a is in A then G,(a) #O 
for a polynomial GB(x) y - Ffl(x) of T and 

/i L;j( a, Fp(a)/Gb(a)> = 0 v $' g, Aa, Fp(a)/Gp(a)) f 0 . 
i=l k=l 1 

This implies that there is an i such that Vy!lfi,j(a, FB(a)/Gp(a)) = 0. 
Since for each i, &(X, v) and g, k(x, JJ) are relatively prime, 
fi, j(x, FP(x)/Gp(x)) $ 0. Hence A is finite. For every x’ of K-A, 

3~ i 7 fi,j(X’, y)=O” q gi,k(X’, y)#O 1 A i;, Fjqx’, y)=O j=t j=l k=l I=1 
is true in K, where F;(x, JJ) is the polynomial from in which any factors 
G(x) y-P’(x) in T are omitted from F,(x, JJ). Then for every x of K-A, 
3y Aj’= I P”;(x’, y) = 0 is true. By Theorem A, G’(x, y) has factors of the 
form G(x) y - F(x). This proves our claim. Now we assume that r # 0. We 
solve G,(x) = 0, H, k, I(x) = 0 for every i, k. Let B be the set of solutions of 
the equation G,(x) =0 and B,, the set of solutions of the equation 
H, k, I(x) = 0. Let D = (U := 1 fizz 1 Bi, k) u B; the number of the elements of 
D is bounded by O(M). Note that if 3y (p(x’, JJ) is false for an x’ of K then 
x’ must be an element of D. We check the truth of the sentence 3yq(x’, JJ) 
for every x’ of D. If there is an x’ of D such that 3y (p(x’, JJ) is false then, 
of course, Vx 3y cp(x, v) is false. Otherwise, VX Iy cp(x, JJ) is true. We can 
see that (T4) is dominated by this step with complexity the same as for 
(S,). Thus the computational complexity of the whole algorithm is 
dominated by (S,). This completes our proof. 1 

A field F is called a purely transcendental extension of a field K if 
F= K(S), where S is algebraically independent over K. For example, K(x), 
the rational function field over K, is a purely transcendental extension of 
the field K. 

COROLLARY 1. Let I; be a purely transcendental extension of the 
algebraic number field K and cp a V3 or 3V sentence over K in conjunctive or 
disjunctive normal form; then there is a polynomial time algorithm to decide 
whether q is true in F or not. This algorithm needs O(M’(IN)’ (IN+ 
log(d 1 q I) + Z log(1 1 FI ))) arithmetic operations on integers having binary 
length O(M(IN)2(IN+log(d~cpI)+Ilog(ZIFI))). 
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ProoJ A V3 or 3V sentence cp is true in K if and only if cp is true in F 
(Tung, 1990). Our result follows from Theorem 1. 1 

Note that in Corollary 1, we do not have to know what the field F really 
is. We need only know that P is a purely transcendental extension of K, 
Hence we only input the sentence cp and the polynomial F(t) such that 
K= QCfl/J’(t). 

3. SENTENCE OVER A CLASS OF FIELDS 

In this section we apply Theorem 1 to show that the decision problems 
of El sentences in conjunctive or disjunctive normal form true in many 
different classes of fields are in polynomial time. These classes include 
algebraic number fields, radical extension fields of Q, abelian extension 
fields of Q, and cyclic extension fields of Q. It is well known that with the 
order of this list every class properly contains the next one and there are 
equations solvable in fields of the former classes but not solvable in all 
fields of the latter classes. Hence there are sentences of the form VJX f(x) # 0 
true in every field of the latter classes but not of the former classes. There- 
fore the sets of El sentences true in different classes are different, However, 
we show that there are similar algorithms to decide these different sets of 
V3 sentences and all in polynomial time if sentences are in conjunctive or 
disjunctive normal forms. 

The basic idea of Theorem 2 below is as follows. Given an arithmetical 
tJ3 sentence Vx 3y cp(x, y), we find a finite set T of algebraic number fields 
such that Vx 3y cp(x, y) is true in every algebraic number field if and only 
if Vx 3y cp(x, y) is true in every field in T. We then apply Theorem 1 to 
check whether or not Vx 3y ~(x, y) is true in every field in T. Since the 
arguments have much in common with Theorem 1, we will omit some 
reasonings. 

THEOREM 2. There is a polynomial time algorithm to decide whether or 
not an V3 sentence Vx 3y q(x) in conjunctive or disjunctive normal form is 
true in every algebraic number field. This algorithm needs O(M4(h4N)5 
(N + ii4 + log 1 q I)) arithmetic operations on integers having binary length 
O(M4N2(N+ M+ log 1~1)). 

ProojY We prove the case of disjunctive normal form first. Let Vx 3y 
q(x, y) be a V3 sentence and 

where &(x, y) and gj,k(X, y) are polynomials over Q. 

643/97/2-10 
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(S,) We factor each &(x, y) and g&x, y) in Q[x, y]. With 
Lenstra’s algorithm (Lenstra, 1987) this can be done in O(M’N’(N+ 
log 1 q I)) arithmetic operations on integers having binary length 
O(MN*(N+log 191)). If Vx 3y cp(x, y) is true in every algebraic number 
field then it is true in Q. (Q is an algebraic number field too.) By 
Theorem A, there exist an i and polynomials F(x), G(x) f 0 over Q such 
that G(x) y -F(x) is an irreducible common factor of the polynomials 
fij(x, y) (1 <j< mi) but not the factor of any one of the polynomials 
gi,Jx, y) (1 <k < ni) over the ring Q[x, y]. Now we assume that this is 
the case. 

(S,) We factor G(x) and gi,Jx, F(x)/G(x)). [G(x)]” over Q for 
every k <ni. This can be done in polynomial time (Lenstra et al., 1982). 
Let S be the set of all irreducible factors of these polynomials. Note that 
if 3y (p(x’, y) is false for an x’ in an algebraic number field K then there 
must exist an h(x) in S such that h(x’) = 0. 

(S,) We check the sentence Vx 3y cp(x, y) in Q and Q[x]/h(x) for 
every h(x) of S. Without loss of generality, we may assume that h(x) is 
manic. If h(x) = a,x” -I- a,- l~n-l + ... +a, with u,#l, let H(x)=x”+ 
u,-lXn-l +u,u,~,~“~~+u~u,~,~“-~$ o-e +~“,-‘a,, thenQ[x]/h(x)1: 
Q[x]/H(x) (Pollard and D iamond, 1975). Note that the degrees of h(x) 
and H(x) are the same, and log IH( = O(n + log IhI). Thus the estimate of 
complexity will not be affected. The number of the elements of S is O(M); 
so is the degree of h(x). Mignotte’s Theorem (Mignotte, 1974) implies that 
log Ihl < O(M + log 1 cp I ). With Theorem 1 this step needs arithmetic opera- 
tions on integers having binary length O(M4N2(N+ M+ log 1~1)). Clearly, 
if Vx 3y cp(x, y) is false in Q or a certain field Q[x]/h(x) then Vx 3y 
q(x, y) is not true in every algebraic number field. Now we claim that if 
Vx 3y cp(x, y) is true in Q and Q[x]/h(x) for every h(x) of S then Vx 3y 
q(x, y) is true in every algebraic number field. Suppose that Vx 3y cp(x, y) 
is false in an algebraic number field K. Let x’ be the element of K such that 
3y q(x’, y) is false in K. Then there is an h(x) of S such that h(Y) = 0. 
Since Vx 3y q(x, y) is true in Q[x]/h(x) N Q(x’), 3y (p(x’, y) is true in 
Q(x’). The field K contains Q(x’), hence the sentence 3y (p(x’, y) is also 
true in K. This is a contradiction. This proves our claim and the case of 
disjunctive normal form. 

Now let cp(x, y) be in conjunctive normal form, i.e., 

fi,j( x~ Y)=ov 3 &Yi,/cCx9 V)#O 3 
k=l 1 

where fi,i(x, y) and g&x, y) are polynomials over Q. 

(T,) We omit from g&x, y) the GCD of fi, j(x, y) and g, k(~, y) 
over Q for every i, j, and k as we did in the step (T,) of Theorem 1. 
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(TJ First, we assume that for every i there is a k such that 
g, k(~, y) f 0. Given the polynomial g, Jx, y) = h,(x) y” -!- ..I +&(x), 
let G, k(~) be the GCD of the polynomials {h,(x), . . . . h,(x)) and Gj(x) the 
GCD of G,,(x) for k<ni. Now we factor Gi(x) over Q (Lenstra et al., 
1982) and let S be the set of all irreducible factors of the polynomials G,(x) 
for l<iids. 

(T3) We check the sentence Vx 3y cp(x, y) in the field Q and 
Q[x]/h(x) for every h(x) of S as we did in the step (S,) of this proof, With 
similar arguments, Vx 3y cp(x, y) is true in the field Q and Q[x]/h(x) for 
every h(x) of S if and only if Vx 3y cp(x, y) is true in every algebraic num- 
ber field. Thus we settle the case that for every i there is a k, g,,(x, y) f 0. 
Now we may assume that for some i, g,,(x, y) r0 for every k Q nj. We 
may combine several equations into one and write that 

cpk Y)’ /I (7 fi,j(X, y)=O v (7 g,,(x, y)#O 
i=l j=l k=l I 

(T4) We apply the Euclidean Algorithm to find the GCD, G(x, y), of 
polynomials .Fl(x, y) for 1 d Zdp, then factor G(x, y) over Q. We may 
write that 

G(x, Y) = Wx. 4) fi (G&4 Y - Wdh 
@=l 

where G,(x, y) has no factors of the form G(x) y-F(x). If q=O, then 
Vx 3y A$‘= 1 r;i(x, y) = 0 is false in Q by Theorem A. Hence ‘dx 3y qo(x, y) 
is false in Q. Now we assume that q # 0. 

(Ts) Let Hi, k, b = g, k(x, F,(x)/GB(x)) and Ti, k be the set of polyno- 
mials GP(x) y - FB(x) such that H, k, P(x) = 0 and T= lJf= 1 nz= 1 Ti, k. Let 
G/(x, y) = Go(x, y) I-J:= 1 (G6(x) y - Fa(x)), where G’(x, y) is the polyno- 
mial in which any factors G(x) y -F(x) of T are omitted from G(x, y). 
With the same arguments as in the step (T4) of Theorem 1, we obtain that 
r # 0 or Vx 3y 9,(x, y) is false in Q. 

(T6) Let G(x) y - F(x) be an irreducible factor of G’(x, y). We factor 
G(x) and g, k(x, F(x)/G(x)) . [G(x)]~ over Q for 1 Q ids, 1 <k 6 IQ. Let 
R be the set of all irreducible factors of these polynomials. We then check 
the sentence Vx 3y rp(x, y) in Q and Q[x]/h(x) for every h(x) of R. With 
the same arguments as for the step (S,) of this proof Vx 3y cp(x, y) is true 
in every algebraic number field if and only if Vx 3y &x, y) is true in Q and 
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Q[x]/h(x) for every h(x) of R. This completes our algorithm. Our total 
running time is dominated by (S,), (T3), or (TJ, all of which have the 
same complexity. 1 

COROLLARY 2. There is a polynomial time algorithm to decide whether 
or not an V3 sentence Vx 3y 9(x, y) in conjunctive or disjunctive normalform 
is true in every field with characteristic 0. This algorithm needs O(M4(MN)5 
W+M+log Id)) arithmetic operations on integers having length 
O(M4N2(N+ M+ log 1~1)). 

Proof A V3 sentence is true in every field with characteristic 0 if and 
only if it is true in every algebraic number field (Tung, 1990). Our result 
follows from Theorem 2. 1 

Remark. There are some classes of fields with characteristic 0; e.g., the 
class of all algebraic extension fields of Q, which contain all algebraic num- 
ber fields. Thus with the same algorithm as Theorem 2, we can decide 
whether or not an ‘El sentence true in every algebraic extension field of Q. 

With similar arguments to those for Theorem 2 we can prove that the 
decision problems of V3 sentences true in some other classes of fields are 
also in polynomial time. We give some well-known definitions on extension 
fields first. An extension field F of Q is cyclic or abelian if and only if F is 
algebraic and Galois over Q and the Galois group of F over Q is cyclic or 
abelian, respectively. An extension field F of the field Q is a radical exten- 
sion of Q if and only if F= Q(,uI, . . . . pL,), some power of p1 lies in Q, and 
for each i 2 2, some power of pi lies in Q(p,, . . . . pi- 1). 

Let f(x) be an irreducible polynomial over Q. Then the equation 
f(x) = 0 is not solvable by radicals if and only if Vxf(x) # 0 (a very simple 
‘d sentence) is true in every radical extension field of Q. Landau and Miller 
(1985) proved that solvability by radicals can be decided in polynomial 
time. This is equivalent to proving that the decision problem of sentences 
of the form Vx f(x) # 0 being true in every radical extension field of Q 
is in polynomial time. Applying this result we extend the result to V3 
sentences. 

THEOREM 3. There is a polynomial time algorithm to decide whether or 
not a V3 sentence in conjunctive or disjunctive normal form is true in every 
radical extension field of Q. 

ProoJ: Since the arguments are analogous to those in Theorem 2, we 
only sketch the proof of an V3 sentence in disjunctive normal form. All the 
steps are similar with what we did in Theorem 2. The only difference is in 
(S,). Now let s’ be the subset of S such that all the polynomials of S’ are 
also solvable by radicals. Solvability by radicals is in polynomial time 
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(Landau and Miller, 1985). We can obtain the set s’ in polynomial time. 
Now we claim that Vx 3y cp(x, y) is true in every radical extension field of 
Q if and only if VX 3y ~(x, y) is true in Q and Q[x]/h(x) for every h(x) 
of S’. Since Q[x]/h(x) is a subfield of the splitting field of h(x), which is 
a radical extension field of Q, Q[x]/h(x) is a radical extension field of Q 
(Lang, 1971). This proves the “only if’ part. Now we prove the other direc- 
tion. Let F be a radical extension field of Q and Vx 3y ~(x, y) be false in 
F. Then there exists a p in F such that 3y cp(p, y) is false in F. This implies 
that either G(b) = 0 or g, &?, F(B)/G(B)) = 0. Hence fl must be a root of 
the equation h(x) = 0 for an h(x) of S. Since F is a radical extension field 
of Q and p is an element of F, /I can be expressed in terms of radicals. If 
h(x) = 0 has a root expressed in terms of radicals, then h(x) = 0 is solvable 
by radicals (Lang, 1971). Hence h(x) must be an element of S’. Clearly, 
Q(P) 1: QCxll4 ) x is a subfield of F. Then 3y cp(fi, y) is false in Q(B), hence 
3y 9(x, y) is false in Q[x]/h(x) by taking x as an element of Q[x]/h(x). 
Therefore Vx 3y cp(x, y) is false in Q[x]/h(x). This proves our claim and 
completes our proof. 1 

The special properties of the radical extension fields of Q used in the 
proof of Theorem 3 are as follows: 

(1) There is a polynomial time algorithm to decide whether the 
Galois group of equation h(x) = 0 is solvable or not. 

(2) Let K be a radical extension over Q. If F is an intermediate field, 
then F is a radical extension field of Q. 

(3) Let K be an radical extension field of Q and h(x) be an 
irreducible polynomial over Q. If h(x) = 0 is solvable in K then the Galois 
group of equation h(x) = 0 is solvable. 

From Galois theory (Lang, 1971) and the results in (Landau, 1985), 
cyclic extension fields of Q and abelian extension fields of Q also share 
these properties. We then obtain the following corollary. 

COROLLARY 3. There is a polynomial time algorithm to decide whether 
or not a V3 sentence in conjunctive or disjunctive normal form is true in every 
cyclic (abelian) extension field of Q. 
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