
Developmental Cell

Resource
A Genomic Multiprocess Survey of Machineries
that Control and Link Cell Shape, Microtubule
Organization, and Cell-Cycle Progression
Veronika Graml,1,2,3,6,7 Xenia Studera,1,2,3,6,8 Jonathan L.D. Lawson,1,2,6 Anatole Chessel,1,2,6 Marco Geymonat,1,2

Miriam Bortfeld-Miller,3,9 Thomas Walter,4 Laura Wagstaff,1,5 Eugenia Piddini,1,5 and Rafael E. Carazo-Salas1,2,3,*
1The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
2Genetics Department, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
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SUMMARY

Understanding cells as integrated systems re-
quires that we systematically decipher how single
genes affect multiple biological processes and how
processes are functionally linked. Here, we used
multiprocess phenotypic profiling, combining high-
resolution 3D confocal microscopy and multipara-
metric image analysis, to simultaneously survey the
fission yeast genome with respect to three key
cellular processes: cell shape, microtubule organiza-
tion, and cell-cycle progression. We identify, vali-
date, and functionally annotate 262 genes controlling
specific aspects of those processes. Of these, 62%
had not been linked to these processes before and
35% are implicated in multiple processes. Impor-
tantly, we identify a conserved role for DNA-damage
responses in controlling microtubule stability. In
addition, we investigate how the processes are func-
tionally linked. We show unexpectedly that disrup-
tion of cell-cycle progression does not necessarily
affect cell size control and that distinct aspects of
cell shape regulate microtubules and vice versa,
identifying important systems-level links across
these processes.

INTRODUCTION

In many ways, the genomes of most organisms remain as black

boxes, with the function of the majority of genes and gene prod-

ucts still unknown. This is the case foremost in humans, where, a

decade after publication of the human genome sequence, we

still have no direct experimental evidence of the function of

over half of all the proteins it encodes (http://www.ebi.ac.uk/

QuickGO/GAnnotation). Yet this is just the tip of the iceberg
Developm
because many genes and proteins play roles in multiple biolog-

ical processes, themselves functionally linked, with most of

those multiple roles and links awaiting discovery.

Fission yeast (Schizosaccharomyces pombe) is excellently

placed for that discovery, with a genome of �4,900 protein cod-

ing genes (26.1% essential), 40% of which have a function only

inferred from homology and another 20% completely uncharac-

terized (Aslett and Wood, 2006; Wood et al., 2002). Over the

past four decades, classical genetic screening using S. pombe

has allowed the discovery of numerous molecules and path-

ways controlling many essential eukaryotic processes thanks

to the genetic tractability, simple morphology, and uniform

growth and division pattern of S. pombe cells (Forsburg, 2003).

Recently, a genome-wide library of knockout (KO) haploid

strains—where each of 3,004 nonessential genes across the S.

pombe genome was systematically deleted—became commer-

cially available (Kim et al., 2010), opening the possibility to poten-

tiate that discovery power using ultrasensitive image-based

phenotypic screening strategies (Chia et al., 2012; Collinet

et al., 2010; Cotta-Ramusino et al., 2011; Laufer et al., 2013;

Mercer et al., 2012; Neumann et al., 2010; Rohn et al., 2011;

Simpson et al., 2012; Yin et al., 2013).

Here, we used fission yeast to carry out a 3D image-based

genomic screen monitoring cell shape, microtubule organiza-

tion, and cell-cycle progression to find genes involved in these

processes, identify genes controlling multiple processes, and

determine how processes are functionally linked. We describe

the identification, large-scale validation and quantitative annota-

tion of 262 putative regulators, with 62% newly implicated in

the processes studied and 35% implicated in more than one.

As a result of in-depth validation of one hit class, we identify a

conserved role of the DNA damage response in controlling

microtubule stability, revealing a link between those two thera-

peutically relevant cell biological machineries. Moreover, by

exploiting the richness of the multidimensional feature sets ob-

tained from the screen, we investigate statistically and in detail

the functional links across processes. We show that disruption

of cell-cycle progression does not necessarily affect cell size
ental Cell 31, 227–239, October 27, 2014 ª2014 Elsevier Inc. 227
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Figure 1. 3D Image-Based Multiprocess Screening Pipeline and Multiparametric Hit Detection

(A) A 23 genomic screen input; 3,004 gene KO strains were imaged in 96-well microplates. 3D z stack images were collected from six locations per well in two

fluorescence channels to detect cell outlines and GFP-microtubules.

(B and C) Cell shape (B) and microtubule (C) hit detection strategy, using single feature p value measurements to detect extreme hits in one feature (left) or

multifeature profile analysis to detect subtle changes across many features (right).

(D) Cell-cycle progression hit identification, by comparison for each mutant of the proportion of its cells assigned to each cell-cycle stage compared to a

bootstrapped reference wild-type.

(E) 10-fold high-throughput hit validation using the strategies in (B)–(D). Hits were ranked based on the fraction of independent screening rounds where they were

coincidently identified as hits (confidence value). Hits with R35% confidence value were subsequently analyzed.

Scale bar represents 10 mm. See also Figures S1–S6 and Tables S1, S2, and S3.
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control and that the causal links between cell shape and micro-

tubule regulation in S. pombe are directional and complex, with

distinct cell shape and microtubule features having defined

epistatic relationships in this species.

The multiprocess screen images and gene annotations are

available online as a resource for the community at http://

www.sysgro.org as well as linked to the centralized fission yeast

repository PomBase http://www.pombase.org.

RESULTS AND DISCUSSION

Establishment of a 3D Image-Based, Yeast Phenotypic
Profiling Pipeline
To carry out a multiprocess phenotypic screen in fission yeast,

we developed a live cell, 3D fluorescence image-based pheno-

typic profiling pipeline combining automated high-resolution

spinning disk confocal microscopy and large-scale, quantitative

multiparametric image analysis. We used confocal microscopy

and 3D (xyz) imaging to extract high-resolution subcellular infor-

mation from individual yeast cells, allowing us to screenwith high

sensitivity and to obtain refined phenotypic cell biological anno-

tations. Details of the experimental and computational imple-

mentation of the pipeline are described in the Experimental

Procedures.
228 Developmental Cell 31, 227–239, October 27, 2014 ª2014 Elsev
We chose to screen for genes controlling cell shape, microtu-

bules, and cell-cycle progression because they are fundamental,

well-studied processes for which an extensive, yet likely not

exhaustive, list of regulators is known. In addition, all three pro-

cesses can be monitored simultaneously in live cells expressing

only fluorescently labeled tubulin, minimizing manipulation of

their genetic background. Indeed, microtubules can be used

as bona fide reporters of the cell-cycle state, as they take defined

stereotypical patterns across the cell cycle (Hagan, 1998); in

turn, cell shape can be simply monitored using extracellular fluo-

rescent dyes (see below). Thus, we generated a version of the

genome-wide KO library expressing GFP-tagged endogenous

alpha tubulin 2 (GFP-Atb2; Figure 1 and Figure S1A available on-

line), allowing us to visualize microtubules and cell-cycle stage

‘‘live’’ in all mutants. Because the different KO mutants arrayed

in 96-well plates had different growth proficiencies compared

to the wild-type (Kim et al., 2010), prior to imaging we used a se-

rial dilution and manual repooling strategy to ensure all mutants

grew exponentially and were hence physiologically comparable

(Figure S1B; Protocol). Then, in preparation for high-throughput

imaging, cells were immersed in Cascade blue dextran-contain-

ing fluorescent growth medium. This allowed visualization of

live cell morphology without the need to express a cytoplasmic

fluorophore (Figure 1). Thereafter, mutants in the 96-well plates
ier Inc.
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Figure 2. Quality Control

(A) Spearman correlation of cell shape features for all mutants and for cell shape hits between the two genomic screening rounds. Only features consistent

between both screens were used for analysis.

(B) Similar to (A) for microtubule features.

(C) Arrangement of knownmicrotubule mutants and wild-type cells in plates used in proof-of-method experiments, designed to test for plate location effects and

reproducibility of positive and negative control phenotypes.

(D) Percentage of correct identification of mutant versus wild-type populations within and between test plates.

(E) Known mutants used and features for which they were picked.

(F) Rates of incorrect identification of a mutant as wild-type (false-negative rate) for four mutants versus the rate of incorrect identification of wild-type controls as

mutant (false-positive rate).
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were filmed with two-color (405 nm, 488 nm) automated high-

throughput confocal microscopy at high magnification (603

1.2NA) and in 3D (xy and 16 z planes), and their images compu-

tationally analyzed and phenotyped using custom-made image

analysis software.

Quantitative Phenotyping of Cell Shape, Microtubules,
and Cell-Cycle Stage
First, we segmented images in the Cascade blue channel, and

extracted 57 shape and gray-level features from each 2D cell

object (length, width, area, convexity, concavity, topological

skeleton, fluorescence intensity along the object’s contour,

etc.; Figures 1B and 2A; Figure S2 and Table S1). Then, using

Machine Learning (Jones et al., 2009; Sommer and Gerlich,

2013), specifically a Random Forest classifier trained with both

wild-type shaped and strongly misshapen mutant cells, we iden-

tified and rejected poorly segmented objects and kept only well-

segmented cells for further analysis (9.28% out-of-bag error

rate).
Developm
Subsequently, we detected microtubules in the GFP channel

xyz image stacks, reconstructed microtubule orientation within

every cell in 3D, and extracted 24 geometrical and grey level

microtubule features (number, length, fluorescence intensity,

orientation, etc.; Figures 1C, 2B, and S3A–S3D; Table S2).

Finally, we identified the cell-cycle stage for each cell based

on 3D microtubule pattern, using a four-class support vector

machine classifier (Jones et al., 2009; Sommer and Gerlich,

2013),. The classifier, trained with wild-type cells and cells from

four knownmicrotubule mutants (lacking Tip1/CLIP170, Brunner

and Nurse, 2000; Mto1/Centrosomin, Sawin et al., 2004; Ase1/

PRC1, Loı̈odice et al., 2005; and Pkl1/Kinesin-14A, Troxell

et al., 2001) distinguished four cell-cycle-related microtubule

patterns: interphase microtubule array (IP; characteristic of G2

phase in our exponential growth conditions), metaphase spindle

(SP; characteristic ofMphase), postanaphase array (PAA; reflec-

tive of G1 phase), and postmitotic interphase microtubule array

(called IP2 for ‘‘interphase2’’; likely reflective of G1-S phases).

The classifier accuracy was 93.78% across the wild-type and
ental Cell 31, 227–239, October 27, 2014 ª2014 Elsevier Inc. 229
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four mutants combined, indicating that we could achieve robust

cell-cycle stage assignment even when microtubules had an

abnormal phenotype. This was partly thanks to the use of 3D

microtubule features,whichallowedamoreaccurate assignment

of cell-cycle stage than 2D features (see Supplemental Experi-

mental Procedures). Theoutputwasa signature of four scores re-

flecting the proportion of cells assigned to each cell-cycle stage,

for eachwild-type (typically 70% IP, 10%SP, 10%PAA, and10%

IP2) and mutant cell population, indicative of their cell-cycle pro-

gression characteristics (Figures 1D, S3E, and S3F).

Hit Detection, 10-Fold Validation, and Selection
We used two complementary strategies for detecting KO mu-

tants with aberrant cell shape or microtubules (hits; Figures 1B,

1C, andS4). The first strategy identifiedmutantswith a prominent

alteration in a single feature (p value; Figure 1). The second strat-

egy identified mutants with multiple subtle feature alterations

(multiparametric profile scoring, Figure 1). In proof-of-principle

experiments prior to screening, the use of both strategies com-

bined led to highly consistent detection of the wild-type and of

four known microtubule mutants within and across 96-well mi-

croplates (Figures 2C–2F), validating the quality and reproduc-

ibility of our hit detection strategy. The combined hit detection

procedure was optimized independently for cell shape and mi-

crotubules based on the results of visual screening by a human

observer of one genomic image data set (Figures S5 and S6).

To detect KO mutants (hits) with altered cell-cycle progres-

sion, we used bootstrap statistics to estimate the typical propor-

tions of wild-type cells in each cell-cycle stage, scoring as hits

KOs where at least two cell-cycle stages were statistically

disproportionate with respect to the wild-type (i.e., under- or

overrepresented; Figure 1D). That criterion ensured only detec-

tion of hits where general cell-cycle progression was affected.

In particular, this allowed us to screen for genes distinct from

classical cell-cycle regulators which, when mutated, often lead

to checkpoint-mediated delay in just one cell-cycle stage or

transition.

We grew, imaged, and computationally screened the entire

library twice independently (Figures S1C–S1F), analyzing

1,880,064 images and making and analyzing 1,707,870 cell,

5,597,165 microtubule, and 1,607,406 cell-cycle stage assign-

ments. This identified 372 cell shape hits, 449 microtubule hits,

and 199 cell-cycle progression hits (note: hit identification for

each process was independent of the others). To generate a

high-confidence hit list, we then rescreened all hits at large-scale

to obtain ten biologically independent screening rounds (also see

the Protocol online) and ranked hits according to the fraction of

repeats in which they were detected (confidence value; Fig-

ure 1E). Only hitswithR35%confidence—the percentage corre-

sponding to a well-established but weak phenotype hit (tea1D;

Figure 2F) added as positive control in all repeats—were selected

for further analysis. Altogether, this led to identification of 143 cell

shape, 186 microtubules, and 35 cell-cycle progression high-

confidence hit genes (Table S3) described next.

Genes and Pathways Controlling Cell Shape and Cell
Size Control
Genes whose KO affected cell shape (cell shape genes;

Figure 1E) included expected regulators of cell morphology,
230 Developmental Cell 31, 227–239, October 27, 2014 ª2014 Elsev
cell polarity and growth (Tea3, Pom1, Arf6, Rga2, Tea2, Sla2/

End4, Myo1, Efc25, Scd2; for genes’ annotations see http://

www.pombase.org/) but also many genes related to a wide

range of other processes such as trafficking or cell-cycle control,

and 17 altogether unannotated genes. Forty-one percent (58/

143) of genes implicated in cell shape regulation had not been

previously reported as such, to our knowledge. Importantly,

they were not identified in a recent visual screen of the S. pombe

KO library (Hayles et al., 2013). This is likely due to the very

different physiological conditions used in that study (nonexpo-

nential growth on solid medium) and our use of sensitive compu-

tational hit detection.

Similar to previously published studies (Bakal et al., 2007;

Fuchs et al., 2010), cell shape hit classification was done using

eight support vector machine classifiers trained to recognize

eight basic phenotypic classes on an individual cell basis

(Figures 3A, 3B, and S4A): stubby (wide), banana (curved), orb

(round), kinky (S-shaped), long (elongated), skittle (with one

side wider than the other), and T-shaped (branched). Classically,

cell shape mutants are thought to display only one aberrant

shape phenotype, such as being round or curved (Hayles

et al., 2013). Surprisingly we found that, instead, all strains

including the wild-type did not display only a single shape

phenotype but rather could be defined as a mixture of those

eight phenotypes (Figures 3A, 3B, and S4A). Thus, even within

a genotypically uniform cell population, the genome allows S.

pombe cells to explore multiple morphogenetic states. These

might be brought about by cell-to-cell differences in the content

of key shape-controlling proteins due, for example, to nonexact

equipartition of cellular material—polarity landmarks, secretory

machinery, cell wall composition/properties, etc.—between

daughter cells at cell division or from stochastic gene

expression.

Quantitatively, themost common aberrant cell phenotype was

stubby (Figure 3C), indicating it may be the most general mani-

festation of compromised cell shape; conversely the least com-

mon was orb (i.e., completely nonpolarized), consistent with the

finding that known genes whose disruption leads to complete

rounding are essential (Hayles et al., 2013) and with the notion

that complete loss of polarity may be incompatible with viability.

We clustered mutants based on their shape phenoprint and

found that KOs of specific pathways shared characteristic

morphological signatures (Figure 3D). One major cluster of pre-

dominantly stubbymutants comprised regulators of endocytosis

and exocytosis (Vps25, Vps32, Vps36, Shd1, Dip1, Did4, Sla2/

End4, and Sft1; likely involved in apical restriction of cellular

growth zones), genes involved in ubiquitin/COP9 signalosome-

mediated protein degradation (Csn1, Csn2, Pub1, and Ubi1),

and several uncharacterized factors. Another major cluster

comprised significantly longer mutants (note: cell elongation,

usually associated with cell-cycle deregulation, was scored in

our screen as a cell shape defect), corresponding to factors

involved in the DNA damage response (DDR; Mre11, Rad50,

Rad55, Set1, Ccq1, Cdt2, and Ctp1; the DDR leads to cell-cycle

delay and cell elongation), transcriptional regulators (Cuf1 and

Rep2), elongator complex subunits (Elp3, Elp4, Elp6, and

Dph3; this complex has been involved in negatively regulating

exocytosis), histone modifiers (Brl2, Cph1, Cph2, Dep1, and

Rtx2), and other putative regulators.
ier Inc.
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Figure 3. Cell Shape Genes and Deregulation of Cell Size Control

(A) Example cell shape hits.

(B) Corresponding cell shape hit shape profiles illustrating the comanifestation of multiple cell shape phenotypes within the genotypically uniform mutant

populations.

(C) Phenotypic trait abundance (pie chart) illustrating the proportion of cells from all shape hit populations combined into stereotyped categories.

(D) Phenoprint clustering of cell shape hits based on the shape profiles in (B) and major functional gene ontology (GO) groups.

(E) Distributions of cell size at division (top) and its coefficient of variation (bottom) for cell shape mutants. Mutants with greater coefficient of variation than wild-

type are shown in gray with selected gene names.

Scale bar represents 10 mm. See also Figures S2 and S4 and Tables S1 and S3.
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We next asked whether, given their geometrical disruption,

cell shape mutants properly control cell size. S. pombe cells

are thought to need to reach a critical cell size at the G1/S

and, most importantly, at the G2/M cell-cycle transition, when

cells engage in cell division only after reaching twice their original

size at birth (Mitchison, 2003). We calculated the average cell

area (as a proxy for size) at mitosis by looking at cells containing

a mitotic spindle and plotted distributions of the average area at

mitosis for all hits (Figure 3E, top) and its coefficient of variation

(Figure 3E, bottom). Ninety percent of cell shape hits had an area

at division lower or higher than wild-type cells, which divide at

an area of �48 mm2. This included KOs of factors known to be

involved in cell size control such as Pom1 (Martin and Berthe-

lot-Grosjean, 2009; Moseley et al., 2009). Strikingly, 30% had a

higher coefficient of variation of the cell area than the 0.12–

0.22 coefficient of the wild-type (gray, Figure 3E), indicative of

lack of precision in cell size control at division. Interestingly,

the latter was enriched for mutants in the ubiquitin/COP9 signal-

osome complex (implicated in cell-cycle and cell size control in

Drosophila melanogaster; Björklund et al., 2006), DDR regula-

tors, and various factors involved in intracellular protein trans-

port. Because the COP9 complex regulates cullin activity in

mammals and cullin (Cul-4) has been implicated in both cell-cy-
Developm
cle control and the DDR (Hu et al., 2004), one possibility is that

ubiquitin/COP9 and the DDR act on cell size control via the

same pathway, possibly via their role in cell-cycle regulation.

Alternatively, each may play a distinct role that needs to be

further explored. Similarly, the role in size control of other factors

identified needs to be clarified.

Genes and Pathways Associated with Characteristic
Microtubule Signatures
Genes whose KO affected microtubules (microtubule genes;

Figure 1E) included known microtubule regulators (Tea2, Tip1,

and Mal3), mitochondrial factors, trafficking-related genes, and

19 altogether unannotated factors. Notably, 93.5% (174/186)

of the genes implicated in microtubule regulation had not, to

our knowledge, been previously reported as such. Mutants in

those genes primarily led to deregulation of microtubule number,

length, or orientation, with most KOs affecting several features

simultaneously albeit in different proportions (Figure 4A). Micro-

tubule length (encompassing the features: length, length vari-

ance, occupancy, occupancy variance; Figures 4B and 4C)

was by far the most common quantitatively affected microtubule

property, demonstrating that microtubule length per se is not

essential for cell viability. In contrast, low microtubule number
ental Cell 31, 227–239, October 27, 2014 ª2014 Elsevier Inc. 231
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Figure 4. Genes Associated with Characteristic Microtubule Signatures
(A) Example microtubule hits.

(B) Phenotypic trait abundance (pie chart) illustrating the proportion of cells from all microtubule mutant cell populations combined displaying a significant

phenotype in the features shown.

(C) Three significant features for all (top), only short (bottom) or only long (middle) mutants.

(D) Phenoprint clustering of microtubule hits based on extracted microtubule features and major functional GO groups.

(E) GFP-tubulin content. Average GFP-Atb2 fluorescence level per cell for each mutant is shown in (D) as a proxy for tubulin concentration with respect to the

average wild-type value. Colors of the gene groups indicate which clusters from (D) they correspond to.

(F) Correspondence between interphase and mitotic phenotype. Top: comparison of interphase and spindle microtubule length changes for all microtubule hits.

Grey: KOs with significantly altered spindle length (spindle hits). Bottom: percentage of cells with a given spindle length, for spindle hits with a spindle shorter/

longer than wild-type (shorter/longer spindle hits). In all three classes of populations shown, cells accumulate with a short spindle, likely corresponding to

prometaphase state during chromosome capture. Long spindle mutants (gray dashed) also accumulate cells with a longer spindle, which may indicate a delay

during or on exiting anaphase B.

Scale bar represents 10 mm. See also Figures S3 and S4 and Tables S2 and S3.
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was a very infrequent feature, consistent with the fact that micro-

tubule nucleation is essential for cell viability.

Clustering of microtubule hits was done using a subset of 12

features selected by visual quality control to optimize for high

interclass variability and low intraclass variability (i.e., to opti-

mally group together KOs judged visually to have the same

phenotype and assign to separate groups KOs with visually

different phenotypes) and identified various pathways, each

associated with a specific microtubule phenoprint (Figure 4D).

Among the most prominent pathways we found were cytoskel-

eton/cell polarity (Tea2, Tip1, Tea4, Mal3; whose KO leads to

short, disoriented microtubules), DDR (Mre11, Rad50, Rad51,

Rad55, Mcl1, Ccq1, Cdt2, Ctp1; slightly elongated, hyperor-

iented microtubules), transport/vesicles and mitochondria

(Vps25, Vps66, Tlg2, Ryh1, SPAC823.10c, Tom7, SPAC1F3.03,

Sat1, and Rrf1, SPAC823.10c, SPAC1610.02c, Cys11,
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SPBC106.07c, Coq5; slightly more microtubules), and tubulin

folding (the Prefoldin complex subunits SPBC1D7.01, Pac10,

SPAC227.10, Bob1; fewer microtubules). We next assessed

whether differences in tubulin content could account for the

mutants’ microtubule feature signatures by quantitating their

intracellular GFP-Atb2 fluorescence. We found that, although

many mutants displayed substantial differences in tubulin con-

tent compared to the wild-type, there was no obvious correlation

between their microtubule feature signatures and GFP-tubulin

fluorescence, suggesting that their microtubule phenotype

arises from deregulation of microtubule assembly rather than

tubulin content (Figure 4E). Interestingly, analysis of the hits’

microtubule length in interphase versusmitosis revealed a corre-

lation between the two in �80% of cases (Figure 4F), indicating

that many genes identified may also play a role in mitotic spindle

control.
ier Inc.



A C

DB

E F

Figure 5. Cell-Cycle Progression Genes and Cell-Cycle Stage Correlation Analysis

(A) Proportional representation of the cell-cycle phases—interphase (yellow), spindle (light blue), PAA (blue), interphase 2 (purple)—for a selection of cell-cycle

progression hits and a reference wild-type (WT).

(B) As in (A) but with distributions scaled by the doubling time of each mutant.

(C) Z score plot showing the significance of deviation from wild-type of cell-cycle stage durations for all hits.

(D) As in (C) for ergodic rate analysis (ERA)-derived progression rates.

(E) Phenoprint clustering based on hits’ ERA rates and major functional GO groups.

(F) Correlation analysis among the four cell-cycle stages’ durations and ERA progression rates. The graphs show correlation plots of the duration (left graph,

bottom half) and rate (right graph, bottom half) of each cell-cycle stage against every other, for all hits. Spearman (and maximal information coefficient, in

parentheses) correlation coefficients are shown for each combination in the top half of the graphs. Black boxes indicate significant anticorrelation between the

duration and ERA rate of IP and PAA. The diagonal shows the distribution of Z score values for the durations (left) and ERA rates (right) across all hits, for each cell-

cycle stage quantitated. A diagram representation of the implications of that anticorrelation for the overall cell-cycle is illustrated beneath (pointy arrows:

accelerated progression; blunt arrows: delayed progression).

See also Figure S3 and Table S3.
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Cell-Cycle Progression Genes Reveal Temporal Linkage
between Nonconsecutive Cell-Cycle Phases
Genes whose KO affected cell-cycle progression (cell-cycle pro-

gression genes; Figure 1E) comprised a diverse range of factors

and, as expected, did not include classical cell-cycle regulators.

To look for interesting functional groups, we measured the cell-

cycle duration of all cell-cycle progression hits. This allowed us

to convert for each KO the proportions of cells in each cell-cycle

stage into average times spent in each stage (Figures 5A and

5B). We then calculated the Z score of all four stage times

(durations) with respect to the wild-type, for all hits (Figure 5C).

Subsequently, we used ergodic rate analysis (ERA; Kafri et al.,
Developm
2013) to estimate the average rate of progression from each

cell-cycle stage to the next (i.e., the rate of exit from each stage)

and calculated the ERA rates’ Z score with respect to the wild-

type rates for all cell-cycle progression hits (Figure 5D).

Clustering of the KOs based on their ERA rate Z scores (Fig-

ure 5E) revealed groups of factors whose KO mainly results in

accelerated exit from: IP into SP (Mal3, Pom1, Pac10: cytoskel-

eton/polarity related), SP into PAA (for example Pxa1: intracel-

lular trafficking; Tos4, Iws1: transcription), PAA into IP2 (the

largest group, including Pop3, Gar2, Dph3, Dbp7; RNA process-

ing and metabolism), and IP2 into IP (including Twf1, Apl4: actin

and endocytosis). Genes from the first cluster could be involved
ental Cell 31, 227–239, October 27, 2014 ª2014 Elsevier Inc. 233
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Figure 6. Genes Regulating Multiple Processes and Role of the DDR in Inducing Interphase Microtubule Stabilization

(A) Venn diagram illustrating cell shape, microtubule, and cell-cycle progression hits.

(B) The DNA repair defective mutants mre11D and rad55D display highly elongated microtubules.

(C) Hydroxyurea (HU) induces disproportionate microtubule elongation in wild-type cells. Microtubule occupancy is the ratio of average microtubule length to cell

length. Contrary to 15 mM HU-treated cells, 3 mM HU-treated cells and cell-cycle-arrested cdc2-as cells do not disproportionately elongate microtubules.

(D) Images of 3 mM HU- (top) and 15 mM HU-treated cells (bottom).

(E) HU treatment does not induce enhanced microtubule stabilization in the DNA damage checkpoint mutants rad3D and tel1D.

(F) Left: effect on microtubules of UV-induced DNA damage in human cultured cells (Hc3716-hTERT). Right: gH2AX staining showing extent of DNA damage.

(G) Contrary to UV-untreated cells, UV-treated cells contain denser (right: quantitations) microtubule bundles that resist cold-induced depolymerization,

indicative of microtubule stabilization.

(H) UV-treated cells contain significantly higher acetylated tubulin levels (right: quantitations) than UV-untreated cells.

Scale bars represent 10 mm.
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in regulating the IP-SP transition via the Pom1 cell size control

pathway (Martin and Berthelot-Grosjean, 2009; Moseley et al.,

2009). Some genes from the fourth cluster could control the

IP2-IP transition via regulation of the cytokinetic actomyosin

ring (Rincon and Paoletti, 2012). It will be interesting to determine

how all other genes, known and uncharacterized, are linked to

cell-cycle progression control.

Analysis of correlations in durations/rates among the four

cell-cycle stages (Spearman or maximal information coefficient;

Reshef et al., 2011; Figure 5F) for our hits revealed a strong

anticorrelation between IP and PAA, i.e., KOs with an extended

IP tend to have a shorter PAA and vice versa. Because IP and

PAA reflect G2- and G1-phases, respectively, this suggests

that an accelerated G1/S transition (PAA-IP2 exit) causes de-

layed G2/M transition (IP-SP exit) and vice versa. Because S.

pombe has been shown to possess two apparently independent

cell size control mechanisms acting at G2/M (the dominant one)

and G1/S (revealed in small wee1-50 mutants; Fantes, 1977;

Fantes and Nurse, 1978; Mitchison, 2003), which secure that
234 Developmental Cell 31, 227–239, October 27, 2014 ª2014 Elsev
nuclear division does not occur before cells reach a critical

size, the observed anticorrelation might reflect compensation

in cell-cycle progression caused by one of the mechanisms

when the other fails. Interestingly, because the cell-cycle pro-

gression mutants identified here did not display altered size at

cell division (Figure 6B and next section; contrary for example

to wee1-50 mutants), this suggests that both mechanisms exist

and are active even in normally sized cells.

Genes Involved in Multiple Processes
Of the 262 genes identified for the three processes investigated,

168 (64%) were associated with a single process and 94 (36%)

had multiple functional assignments (Figure 6A). Only ten (4%)

genes were shared between cell shape and cell-cycle progres-

sion and 16 (6%) between microtubules and cell-cycle progres-

sion, implying that those processes are largely independent.

In contrast, 84 (32%) genes were shared between cell shape

and microtubules, implying a potentially significant coregulation

of both processes, as expected. These included factors involved
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in cell morphogenesis and polarity (Aah3, Efc25, Tea2, Tip1),

endocytosis (Did4, Vps25, Vps36, Snf7), but also transcriptional

regulation (Pof3, Pmc6, Rep2, Rxt2, Tup12), chromatin remodel-

ing (Rsc4, Set1, Arp42, Spp1, Swd1), and DDR (Mre11, Rad50,

Rad55, Ctp1, Set1, Mcl1, Ubi1). Notably, 60/143 (42%) cell

shape genes and 106/186 (57%) microtubule genes had a role

in a single process alone. This implies that a link between cell

shape and microtubule deregulation is not obligatory in cells

and may be specific to particular machineries.

Future work will be needed to clarify which genes the associ-

ated with multiple processes actually correspond to factors that

actively couple those processes.

The DDR Induces Stabilization of Interphase
Microtubules
The largest functional group of KOs co-deregulating cell shape

andmicrotubules was that of genes related to the DDR.Whereas

the role of DDR genes in cell shape control (specifically in cell

length and, hence, size control; Figures 3D and 3E) could be un-

derstood as resulting from DDR-induced cell-cycle arrest and

elongation (Melo and Toczyski, 2002; Zhou and Elledge, 2000),

a link between DDR and microtubules (Figure 4D) was unex-

pected and raised the question of whether DDR gene KOs lead

to microtubule deregulation indirectly (via cell shape deregula-

tion) or directly.

Therefore, we decided to investigate this link further and use

this as a means to validate the predictions of our phenoprint

clustering analysis. Inspection of cells lacking the DNA repair

factors Mre11 and Rad55 revealed that in those mutants inter-

phase microtubules are elongated compared to wild-type cells,

often curling around cell ends, indicating increased microtubule

stability (Figure 6B, quantitation not shown). In contrast, in cells

lacking the ATR and ATM checkpoint kinases Rad3 and Tel1 mi-

crotubules were of wild-type length (not shown). This suggested

that impaired DNA repair functions, and ensuing DDR arising

from unrepaired DNA damage, may induce microtubule stabili-

zation via the ATM/ATR pathway. To test this directly, we treated

wild-type cells with different doses of hydroxyurea (HU) to

induce the DDR in a primarily ATR-dependent manner, and we

quantitated the effect of HU dosage on the average length of

cellular microtubules and how it scales with cell length (microtu-

bule occupancy). Cells untreated with HU displayed a range of

microtubule lengths that varied proportionately with the wild-

type range of cell lengths (Figure 6C, 0 mM HU). Similarly,

following treatment with a low dose of HU, cells became elon-

gated due to cell-cycle arrest and their microtubules became

longer proportionally with cell length increase (Figures 6C and

6D top, 3 mM HU). In contrast, at a higher dose of HU, microtu-

bules became disproportionately longer than cells, indicating

an increase in microtubule stability induced specifically by the

DDR (Figures 6C and 6D bottom, 15 mM HU). In agreement

with this, in elongated G1- and G2-arrested cdc2-as mutant

cells—where in principle no DDR activation occurs—microtu-

bule elongation was also proportional to cell elongation (Fig-

ure 6C quantitations). Furthermore, the enhanced HU-induced

microtubule stabilization was specifically DDR dependent,

because microtubules did not become stabilized in cells lacking

Rad3 or Tel1 treated with 15 mM HU (Figure 6E). Altogether,

these data suggest that DNA damage induces microtubule
Developm
lengthening in an ATR-dependent manner. To test whether this

functional link is conserved, we then asked whether induction

of DNA damage in human (Hc3716-hTERT) cells by UV treatment

(30 J/m2) also elicited a similar effect. We found that in those

cells, induction of DDR often causes microtubules to organize

in dense bundles around the cell nucleus (Figure 6F and not

shown), suggestive of microtubule stabilization. To test this

further, we then induced partial microtubule depolymerization

by cold (4�C) treatment in both UV-untreated and UV-treated

Hc3716 cells. We found that whereas not many UV-untreated

cells contain thick bundles after cold depolymerization (1.22%,

n = 575 cells; 15% of cell fields scored), many UV-treated cells

still contain thick bundles (5.89%, n = 577 cells; 45%of cell fields

scored) of much more connected microtubules (Figure 6G). In

addition, microtubules in DDR-activated cells contain a much

higher amount of acetylated tubulin (Figure 6H), indicative of

increased microtubule stability (Hammond et al., 2008). We

conclude that the DDR specifically induces stabilization of inter-

phase microtubules, revealing a conserved link between the

DDR and cytoskeletal control in cells. Although some links be-

tween those two machineries have been reported (Baschal

et al., 2006; Lee et al., 2010, 2011; Xie et al., 2011), the conserved

link described here points to a more general connection, whose

exact physiological role and mechanistic details—in particular

the cytoskeletal DDR target(s) involved—will need to be clarified.

Thismight be of particular therapeutic relevance because a com-

bination of cytostatic doses of DNA-damaging drugs with micro-

tubule drugs has been shown to result in selective cytotoxicity

and radiation/chemosensitization in some cancer cells (Baum-

gart et al., 2012; Blagosklonny et al., 2000; Lee et al., 2011).

Systems-Level Functional Relationships between
Processes
One important aspect of our quantitative, multiprocess

screening strategy is that it allowed us, beyond hit identification

and phenotypic clustering, to obtain rich multidimensional

feature sets characterizing all three processes simultaneously

in cells, for hundreds of different KO conditions. Hence, we ex-

ploited the richness of those multidimensional feature sets to

investigate statistically the systems-level functional relationships

across processes.

We first turned to cell-cycle progression hits—selected as

having at least two disproportionate cell-cycle stages with

respect to the wild-type (Figure 1D)—and asked whether their

cell-cycle progression defect quantitatively affected their cell

size. Remarkably, we found that their cell size distribution—as

assessed by measuring cells undergoing division—was indistin-

guishable from that of wild-type cells (Figure 7A). This is in

contrast with mutants in conventional cell-cycle genes, which

have traditionally been identified by virtue of their abnormal cell

size phenotype, and indicates that the cell-cycle progression

genes uncovered here likely constitute a mechanistically distinct

class of cell-cycle regulators. Likewise and importantly, it dem-

onstrates that disruption of cell-cycle progression does not

necessarily affect cell size control.

We next turned to cell shape and microtubule hits and investi-

gated dependencies between their features using Bayesian

network analysis (Collinet et al., 2010; Yu et al., 2004). Like cor-

relation analysis, Bayesian network analysis allows graphical
ental Cell 31, 227–239, October 27, 2014 ª2014 Elsevier Inc. 235
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Figure 7. Systems-Level Functional Interactions between Processes

(A) Distribution of cell length and area at division for long cell shape hits (orange) versus cell-cycle progression hits (yellow). Note their lack of intersection. Wild-

type controls (black) and other hits (gray) are shown, for comparison.

(B) Bayesian network inference graphs of the conditional correlation between cell shape andmicrotubule features across hits, filtered by cell-cycle stage (top row)

or, for interphase cells only, subdivided by hitlist (cell shape and/or microtubule; bottom row). Correlation coefficients between variables are displayed on top of

network edges (note that correlations were not directly used to obtain the networks).

(C) Diagram summarizing significant Bayesian causal links between cell shape and microtubule regulation in S. pombe.

(D) Causation between cell length and microtubule length. Top: plot of interphase cell length and microtubule length for wild-type and cdc2-as cells. Bottom: the

inverse plot for cells with shorter (tip1D) or longer (klp6D) microtubules. Note that cell length influences specifically microtubule length, not the inverse.

(E) Causation between microtubule number and cell width. Top: plot of microtubule number against cell width for cells with more (ase1D) and fewer (mto1D)

microtubules. Bottom: inverse plot for wider (rga4D) and narrower (rga2D) cells. To aid visualization, points have been artificially displaced along the microtubule

number axis for different genotypes. Note that microtubule number influences specifically cell width, not the inverse.

(F) Plots ofmicrotubule number against microtubule length colored by cell length (different colors signify different cell lengths), illustrating that correlation between

these features is dependent upon cell length. Top: data from genomic screens; each point represents the average of all cells analyzed for a givenmutant. Bottom:

low-throughput validation using cells artificially elongated by cell-cycle arrest.

See also Figure S7.
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representation of the probabilistic relationships between vari-

ables in a data set. However, in addition Bayesian networks

allow inferring conditional dependencies between variables.

Thus, two variables are disconnected in a Bayesian network

graph if they are either independent or conditionally independent

knowing one or several other variables. This allows inference of

direct links between two variables, as opposed to indirect effects

mediated or caused by a third variable.

We focused on five key features quantitated in our screen:

microtubule number, microtubule length, microtubule (dis)orien-

tation, cell length, and cell width. Using data from all cell shape

and microtubule hits together, we constructed three Bayesian

networks corresponding to three different cell-cycle stages (IP,
236 Developmental Cell 31, 227–239, October 27, 2014 ª2014 Elsev
SP, and PAA) by using for each network only cells in the corre-

sponding cell-cycle stage, and compared edges between the

networks. We found that, whereas specific pairs of features

are interdependent in a consistently correlated or anticorrelated

manner, many of those dependencies are cell-cycle stage-spe-

cific (Figure 7B, top three graphs; +, correlation; �, anticorrela-

tion; Figure S7 illustrates the robustness of the analysis). For

example, we found that cell length and microtubule number

are always linked in cells except during postanaphase (PAA),

when a profuse, radial microtubule network assembles in the

cell middle. Similarly, cell width and microtubule (dis)orientation

are always linked except in postanaphase, indicating that in this

species not only interphase microtubule alignment but also
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mitotic spindle orientation relies mostly on cellular geometry

(Théry et al., 2007). Instead, cell length and microtubule length

are interdependent except during mitosis, indicating that mitotic

spindle size is independent of cell size in this species (Wilbur and

Heald, 2013).

We then constructed three different Bayesian networks using

features from KOs deregulated in cell shape, microtubules or

both (Figure 7B, bottom three graphs), and visually compared

the networks to seek to infer directionality in the dependencies

among features. We found that cell length and microtubule

length are linked in hits deregulated in cell shape alone and in

hits deregulated in both cell shape and microtubules. Instead,

the two features are not linked in hits deregulated in microtu-

bules only. We interpret this as implying that the causality is

from cell length to microtubule length (e.g., increased cell length

promotes increased microtubule length). Conversely and unex-

pectedly, we found that microtubule number and cell width are

linked in microtubule-only hits and in cell shape and microtubule

hits, but not in hits only deregulated in cell shape, leading us

to interpret that the causality in this case is from microtubule

number to cell width (e.g., increased microtubule number in

cells promotes increased cell width). These results are summa-

rized in Figure 7C.

To corroborate the inferred statistical relationships, we sought

to externally validate some of its predictions. First, we looked at

cdc2-as cells—which have altered cell length due to cell-cycle

arrest—and found (Figure 6C) that, in this mutant, cell length

changes induce proportional microtubule length changes (Fig-

ure 7D, top). In contrast, in mutants lacking the microtubule sta-

bilizer Tip1/CLIP170 or the catastrophe-promoting kinesin-like

protein Klp6/Kinesin-8—with, respectively, shorter and longer

microtubules—microtubule length changes do not induce cell

length changes (Figure 7D, bottom). Thus, cell length controls

microtubule length and not the reverse, as predicted.

Second, we looked at mutants lacking the microtubule

bundling protein Ase1/PRC1 or themicrotubule nucleation factor

Mto1/Centrosomin—with, respectively, a higher and lower

number of microtubule bundles—and found that in those mu-

tants, microtubule number changes induce cell width changes

(Figure 7E, top). Instead and in contrast, in mutants lacking

the Rho2 GTPase-activating protein Rga2 or the Cdc42/Rho2

GTPase-activating protein Rga4—narrower and wider than

wild-type cells, respectively—cell width changes do not induce

microtubule number changes (Figure 7E, bottom). Hence, micro-

tubule number controls cell width and not the reverse, as

inferred.

Third, we asked whether, as implied by the analysis, microtu-

bule number and microtubule length are not directly linked. The

absence of that direct link is interesting (despite the fact that

microtubule number and length are known to be regulated by

different machineries in cells) because one could expect both

features to be somewhat dependent on one another, given that

both rely on the common pool of tubulin available in each cell.

In fact, plotting microtubule length versus number—both using

the screen data set (Figure 7F, top) and external data from

wild-type, 3mMHU-treated and cdc2-as cells for validation (Fig-

ure 7F, bottom)—showed a positive correlation between both

features, implying a link between them. However, the correlation

was absent among cells of similar length (Figure 7F). This dem-
Developm
onstrates that, as predicted, microtubule number is not directly

linked to microtubule length but rather both features are condi-

tionally independent knowing cell length, i.e., they are coupled

indirectly via the length of the cell.

Thus, the causal relationship between cell shape and microtu-

bule regulation in S. pombe is directional and complex, with spe-

cific cell shape andmicrotubule features having defined epistatic

relationships. Importantly, although our preliminary validation

from Figures 7D–7F suggests that Bayesian analysis is indeed

a useful predictor, given the partial and therefore potentially

misleading nature of the parametrical description we have

used, it will be crucial in the future to carefully validate the other

predictions obtained using this approach.
Conclusions
In an effort to begin deciphering systematically how genes affect

multiple cell biological processes and how processes are func-

tionally linked, we carried out a quantitative multiprocess screen

simultaneously monitoring three fundamental cell biological

processes: cell shape, microtubule organization, and cell-cycle

progression.

Our screen identified and annotated 262 genes, 131 of which

were uncharacterized in S. pombe (of those, 29 had no predicted

function in any species) and 131 had been described in the

context of a different process, including six genes of the ubiqui-

tin/elongator pathways not implicated in cell shape control; 39

membrane trafficking/mitochondrial genes, which we show are

involved in microtubule regulation; and nine RNA processing/

metabolism genes implicated in cell-cycle progression. We

also probed in depth the systemic relationships among those

three processes—identifying 94 genes regulating multiple pro-

cesses and functional relationships linking defined aspects of

such processes, in particular cell shape andmicrotubule control.

This provides a rich, quantitative genomic data set available

for further mining, validation, and mechanistic analysis by the

scientific community (available at http://www.sysgro.org and

http://www.pombase.org).

We extrapolate that an important gain in unexpected mecha-

nistic insights could be obtained from multiprocess screening

across an increasing range of cell biological processes,

using simple unicellular systems with standardized/optimized

genomic KO or siRNA/RNAi libraries (Collinet et al., 2010). A

future challenge therefore lies in developing graphical and statis-

tical modeling approaches (Nicolau et al., 2011; Singh et al.,

2007) suited to cope with the very high dimensionality informa-

tion generated by such screens, in particular to combine infor-

mation from independent studies (Kemmer et al., 2009; Nicolau

et al., 2011; Spalding et al., 2000; Troyanskaya et al., 2003) in a

representable and interpretable manner. Such developments

will be key to obtain a systemic picture of cell function and to

better understand and predict synergistic or antagonistic inter-

actions, including those among clinically relevant compounds

(Horn et al., 2011).
EXPERIMENTAL PROCEDURES

Full methods are available in the Supplemental Experimental Procedures; spe-

cific standards for the synchronization and rescreening of thousands of parallel

yeast strains are included in the Protocol.
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Knockout Screen for Cell Shape, Microtubule, and Cell-Cycle

Progression Genes

The Bioneer haploid deletion (knockout, KO) library v.2 (Bioneer, Korea) was

modified to generate a GFP-tubulin expressing library (Dixon et al., 2008).

KO mutants were grown exponentially for >48 hr and imaged in 96-well micro-

plates (lectin-coated glass bottom, 10 mg/well) containing Cascade Blue

Dextran-labeled YES medium (0.1 mg/ml). Two-color images were acquired

using an automated OperaLX spinning-disk confocal microscope (Perkin

Elmer) with 603 water-immersion objective (NA 1.2). Six stacks of 16 z planes

0.4 mm separation were collected for each well. The entire genomic KO library

was filmed twice. Customized software was used for image analysis and

feature extraction.

Hit Detection, Large-Scale Validation, and Bayesian Analysis

Cell shape or microtubule hits were KO strains with a: (1) low Kolmogorov-

Smirnov p value relative to a mean wild-type for any one feature, or (2) signif-

icant Euclidean distance deviation from a mean wild-type across many

features. Cell-cycle progression hits were KOs with the proportion of cells in

greater than two 2-cell cycle stages outside the 95% bootstrap confidence

interval of the corresponding wild-type stages. Genotypic and visual quality

controls were done for corroboration. Hits were large-scale validated with

ten times independent rescreening (see Protocol) and if picked in R35% of

cases kept as high-confidence hits for analysis. Support vector machine clas-

sifiers assigned eight phenotypic classes to cell shape hits. ERA rates (Kafri

et al., 2013) were calculated for cell-cycle progression hits. Clustering used

R, functional GO assignments DAVID, Bayesian analysis, and the R package

bnlearn (Scutari, 2010).

Investigation of DNA Damage Response and Microtubules

Yeasts were treated with HU 9 hr before filming and every 3 hr afterward and

were imaged on lectin-coated MatTek dishes using a DeltaVision system (GE

Healthcare). Hc3716-hTERT cells were grown to 70% confluence in Hepato-

cyte Medium Bullet Kit, exposed to 30 J/m2 UVC, and grown for 8 hr before

cold treatment or fixing. Immunostaining for b-tubulin or a-acetylated tubulin

was done with ALEXAfluor-conjugated secondary antibodies, and DNA was

DAPI-labeled. Cells were imaged with a Leica SP5 confocal microscope.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

seven figures, three tables, and one protocol and can be found with this article

online at http://dx.doi.org/10.1016/j.devcel.2014.09.005.
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Taipale, J. (2006). Identification of pathways regulating cell size and cell-cycle

progression by RNAi. Nature 439, 1009–1013.

Blagosklonny, M.V., Robey, R., Bates, S., and Fojo, T. (2000). Pretreatment

with DNA-damaging agents permits selective killing of checkpoint-deficient

cells by microtubule-active drugs. J. Clin. Invest. 105, 533–539.

Brunner, D., and Nurse, P. (2000). CLIP170-like tip1p spatially organizes

microtubular dynamics in fission yeast. Cell 102, 695–704.

Chia, J., Goh, G., Racine, V., Ng, S., Kumar, P., and Bard, F. (2012). RNAi

screening reveals a large signaling network controlling the Golgi apparatus

in human cells. Mol. Syst. Biol. 8, 629.
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