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Functional—differential equations with linearly compressed arguments and poly-
nomial coefficients are considered. We prove, under some mild restrictions on
the coefficients, that each solution y(s) of such an equation, satisfying estimate
Iy(0)] = C exply In? 1|} (t > =), where 0 < y < ¥, is polynomial. © 1995 Academic

Press, [nc.
[. INTRODUCTION
Recently there has been considerable interest in problems concerning

functional-differential equations (FDE) with linearly transformed argu-
ments of the form

m-—

i
y(r) = ZO . ajky(k)(ajt + ,Bj) (1.1)
=

ajkEC, aj,ﬁJER,—°°<t<°°

k=

{1, 4-11, 13-17, 19-24}. Such equations form a wide and natural class of
general FDE [2, 12] and have diverse applications in areas ranging from
number theory to astrophysics [10].

Provided A = max |o;| < 1, each solution of (1.1) is an entire function
of order zero and is hence unbounded both on R, and R_ [16, 6]. This
result cannot be strengthened in general due to the existence of polynomial
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solutions of (1.1). It was proved in [3, 6] that a necessary and sufficient
condition for the existence of polynomial solutions is that

!
2 apal =0 (1.2)
j=0

for some n € N.

Under the assumption that Eq. (1.1) has no polynomial solutions and
B;=0forallj =0, ...,1, one can prove a stronger result. Roughly speaking,
every nontrivial solution of (1.1) grows as ¢ — <« faster then
exply In’ 1 for some y > 0. More precisely, every solution of Eq. (1.1)
which satisfies estimate

ly(0)] = C exply In¥(1 + |¢))} (1.3)
for some C > 0 and

_ 1

where o = min |a;|, vanishes identically [5, 6].

The goal of this paper is to prove a similar result for FDE with polyno-
mial coefficients. The paper continues the study of FDE with linearly
compressed arguments and polynomial coefficients initiated in [4, 17,
22, 23).

2. ASYMPTOTIC BEHAVIOR OF THE SOLUTIONS

Let us consider the equation

I m~1 r
Y =2, D 2 4y "y Pleyt). Q.1
j=0 k=0 v=0
Denote
a = min |a], A = max |a]
Osj<! O=<j=<l!

and assume that A < 1,
We begin with the following general

THEOREM | [4, 23]). Every (classical) solution of (2.1) is an entire
Sfunction of order zero.
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It is a well-known fact from complex analysis that any entire function

of order p < {is unbounded on any ray in the complex plane [18]. Therefore
an immediate consequence of Theorem 1 is

CoroLLARY 1. Every nonconstant solution of (2.1) is unbounded both
onR,and R_.

The main result of the paper is
THEOREM 2. Suppose that A < 1 and, beginning with some n

!
D a,al#0  (n=N). (2.2)
Jj=0

Then each nontrivial solution of Eq. (2.1), which satisfies the estimate

[y(0)| = C exp{y In¥(1 + |¢])} (2.3)

forallt € R, (orallt € R_), where C > 0 and

1

is a polynomial.

Proof of Theorem 2. The proof is based on the Wiman-Valiron theo-
rem (18] and Lemma I, following below. We divide the proof into 4 steps

(a) Let us differentiate Eq. (2.1) n times, where n > r. We obtain

{ m~-1 r
y(m+n)(t 2 Z ajkv[tvy(k)(ajt)](n)
J=0 k=0 »=0
PP IPLILL B
— a an uy(k+n v)(a f)
505 M e — o)) 0!
J=0 &=0 v=0 ) (25)
I m~1 r n! "
+ n v+lt k+n— u+])at
L=0 &b Z kv (n — v+ 1), y ( )

I m r
+ > 2 2 ajk,,aj’-’t"y("*"’(ajt)].
720 £<6 »20

Denote b, = y™(0) and insert ¢ = 0 in (2.5). Taking into account the fact

that the expression in the brackets on the right-hand side of (2.5) vanishes
for t = 0, we obtain
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I m-1

— n! n-p

bm+n _j;) ’;) ,;)ajkv (n _ V)' aj bk+n~u (26)

or
r=1 m—1
- (n+n)! v
bn+m+r - vzo(n + - V)' 2 E bn+k+(r—v)
2.7
(n+r) n

+——-——n! (J;aju,aj>b,,.

LeEMMA 1. Suppose {b,}g is a nonfinite solution of the difference equa-
tion (2.7) (i.e., there exist infinitely many b, # 0 (n = 0, 1, ...)).

Suppose also that beginning with some N = N inequality (2.2) holds.
Then for each sufficiently large N(N = N, = N,) there exists an n:
Nm+r)+ 1 =n< N+ )m + r)such that

|b,| = D"a"*"2 2.8)

In order not to interrupt the presentation, the proof of Lemma 1 will
be given at the end of the paper.

Now we deduce Theorem 2 from Lemma 1 by means of the Wiman-Vali-
ron theorem.

(b) Suppose that y(¢) is not polynomial. We shall demonstrate that
in this case (2.3} is satisfied only if y(¢t) = 0.
According to Theorem 1 [4, 23], every solution y(¢) of Eq. (2.1) can be
extended to the complex plane as an entire function y(z) of zero order:

bl bn n
y(2)=b +ﬂz+...+;l_!z + o

Denote, as usual,

m(r)=r|rllinly(z)|, M(r) = rn]aXIy(z)[

It is obvious that

ly®)| = m(r), || =r. (2.9)

According to the Wiman—Valiron theorem, for every entire function of
order p < 1 and every & > 0 there exists a sequence r; — « such that

mr;) = M(r)lcomel, (2.10)
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In particular, for an entire function of order p = 0
m(r) = M(r;)'"* @.11)

It follows from (2.9), (2.11), and the Cauchy inequality that

b -
ly@)] = M(r)' = = Sup (In o ) (2.12)
fort = =*r,.

By our assumption, y(x) is not a polynomial, that is, {b,} is a nonfinite
sequence and Lemma 1 can be applied to estimate b, from below. Then
one obtains from (2.12) and (2.8) that

(Dr)n |'-e
) =s [———-] , 2.13
|y(] = sup (™7 (2.13)
where I = {n,, n,, ...} is a sequence of integers such that
0<nmy—n,=<2s; Nis+1=ng; ni—> o, (2.14)
Here and further s = m + r.
By Stirling’s formula
n! (/o)™ < ¢ (1/a) e,
for each £ > 0 and some ¢, = ¢,(¢) > 0. Thus
nll-¢
ly(®] = c, [sup (E"’;,)z] : (2.15)

with E = (1/a)'*e,
(c) In order to find sup,cq; ((Dr)"/E "12] we introduce the function

fox) = (DrZ,)2 o~ UnEx2+(In Dz (2.16)

of the continuous argument x. The function f(x) attains its maximal value
together with the quadratic polynomial

ex) = — (l—%g) x2+ (InDr)x
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at the point x_,, = In(Dr)/In E. For r sufficiently large x,,, > 0 and
according to (2.14) one can find n o such that

0 <ny —Xpax = 5. .17
Therefore
Dr)"
sup 2= fln,) = g+ 29) @.18)

with the secornd inequality fulfilled since y(x) is monotonically decreasing
for x > x,,.. But

_92 2
f(xmax + 25) =¢ 2s lnEe(l/ZlnE)ln Dr
-23*E . elnzD/ZlnE,DInr/lnE . pln2r/2nE > Ce(]—e)lnzr/Z InE_

(2.19)

=e

From (2.15), (2.18), (2.19), and by the definition of E = ((1/a)**) it follows
that for each nonpolynomial solution y(¢) we have

y(t)l > Ce(l—s)zl(l+s)-(l/21lna|)ln2r > Ce((]—a)/zunamn?r (2.20)

for any & > 0 and big enough r = *r,.
This completes the proof modulo Lemma 1.

(d) Proof of Lemma 1. Rewrite (2.7) in the form

n! S )
" n+ ) EJLU a;,of [ o x;)(” +r—p)!

(2.21)
m-1 1
X Z Z ajkua_]{l+rybn+k+(r‘v):|
k=1j=0
and observe that (2.2) implies the inequality
!
Y ayall=zDa",  n=N, (2.22)
j=0
for N, sufficiently large. It follows from (2.21) and (2.22) that
‘anSDZQVH max lbn+iv HZN], (223)
I<i=s

with s = m + r (and we can assume without loss of generality that D, = 1).
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Denoting

My, = max {IbsNHl’ < Ibs(N+])|}
we obtain

MNI < D;N’a-{s(Nl+N')+[s(Nl+N')—l]+---+(sN|+l)} . MN+N’ (224)

for any positive integer N'. In order to prove (2.24) successively put n
equal s(N; + N'), s(N; + N') — 1, ..., sN, + 1, in (2.23), whence

—5(N+N")
1byn s vl = D™ My in
—sIN;+N)+1 —s(N|+N’
|bgin,+ -1l = Dy max {Dya~ MY My My i}

— D2y SN+N')  ~sIN N+ 1
= Dija NV g7 My v,

SN’ —s(N{+N") ., ,—(sN;+1
lble-HlSDZ a " a NEOM e

which proves (2.24).
It follows from (2.24) that

SN+ N 1+ 5N +N,)
My iy = D Mgl sN T NIp

g o
> D;(N +Nlba(]/2D[S(Nl+N ) MNI

! (2.25)

for some D, > 0 (without loss of generality we may assume that D; < I).

Note that My, #0, because otherwise (according to (2.7)) b, = 0 for
every n = sN,, which is in contradiction with our assumption about the
nonfinitness of {b,};_,. Now (2.8) follows from (2.25). This proves the
lemma.

Remark 1. Strict inequality A < 1 is essential for the validity of Theo-
rem 2. In fact, consider the equation

y'(t) = ay(at) + by(1); 0<a<l; la| < |b| (2.26)

with A = max |a,;| = 1. It was proved by T. Kato and J. B. McLeod
[14,Th.3(i)] that lim,_,,. y(t) = O for any solution of (2.26), in contrast with
the statement of Theorem 2.

Remark 2. A special case of Theorem 2, relating to the equation
y'(¢t) = ay(A?), 0<A<I1

has been proved by N. G. de Bruijn [3] (see also [14]).
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Remark 3. It was proved in [5] that, provided A < 1, every solution

of (1.1) satisfies (2.3) with y = m/(2ln A|). In a similar manner, for FDE
(2.1) with polynomial coefficients analogous upper bound of the solutions
can be obtained. Provided A < 1, there exists y, > (y) such that any
solution of (2.1) satisfies (2.3), where y > y,.
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