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Abstract

The nonlinear eigenvalue problemD2uk−1 + λ |uk |γ = 0, k = 1, 2, . . . , n under the Di-
richlet boundary conditionsu0 = 0 = un+1 is studied. An existence and uniqueness theorem
is proved. Qualitative properties of solutions are also given. © 2000 Elsevier Science Inc. All
rights reserved.
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1. Introduction

Nonlinear differential boundary value problems of the form (see e.g. [1])

u′′(t) + µf (u(t)) = 0, 0 < t < 1,

u(0) = 0 = u(1),

arise in steady state temperature distribution problems in a material bounded by two
infinite parallel planes. By applying finite difference methods, a discrete eigenvalue
problem naturally arises:

uk+1 − 2uk + uk−1 + λf (uk) = 0, k = 1, 2, . . . , n,

u0 = 0 = un+1,
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which calls for the attention to the usual questions of existence and uniqueness of
solutions. The above discrete boundary value problem can also be viewed as mod-
elling a discrete time oscillator which is subject to nonlinear forces. More specifi-
cally, assuming that the coordinatesuk of an oscillator are sampled at discrete times
k = . . . ,−2,−1, 0, 1, . . . , it is then natural to consideruk+1 − uk ≡ Duk anduk −
uk−1 ≡ Duk−1 as the average velocities of the oscillator over the time periods[k, k +
1] and[k − 1, k], and consideruk+1 − uk − (uk − uk−1) ≡ D2uk−1 as the average
acceleration at timek. If the oscillator is subjected to a force of the formF(uk), then
by Newton’s law, the equation of motion is

D2uk−1 = F(uk).

Assuming that the oscillator is projected from the origin at time 0, a natural question
then arises as to whether the oscillator will return to its initial state at some future
timen + 1. In caseF(u) is generated by an elastic spring, then by the linear Hooke’s
law, F(u) = −λu, whereλ is a positive proportionality constant which reflects the
characteristic of the spring. Our boundary problem is then given by

D2uk−1 + λuk = 0, k = 1, 2, . . . , n, λ > 0,

u0 = 0 = un+1.

This problem can be expressed in the form

Anu = λu,

whereu = col(u1, u2, . . . , un) and

Jn =




2 −1 0 . . . 0
−1 2 −1 . . . 0

. . . . . . . . .

0 . . . −1 2 −1
0 . . . 0 −1 2




n×n

.

Thus, nontrivial solutions can only be found whenλ is equal to one of the eigenvalues
[2]

λi = 4 sin2 ip

2(n + 1)
, i = 1, 2, . . . , n,

of Jn, and are given by the nontrivial constant multiples of the corresponding eigen-
vectors

u(i) =
√

2

n + 1
col

(
sin

ip

n + 1
, sin

2ip

n + 1
, . . . , sin

nip

n + 1

)
, i = 1, 2, . . . , n.

A strange conclusion then seems to be that only certain springs could generate the
right forces for the oscillator to return to the origin at timen + 1. This is not entirely
satisfactory, since intuitively we expect nontrivial solutions for any spring constant
λ > 0. In this paper, we will assume a nonlinear Hooke’s law that assertsF(u) =
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−λ |u|γ , whereγ is any fixed number between 0 and 1. The boundary problem is
now

D2uk−1 + λ |uk|γ = 0, k = 1, 2, . . . , n, λ > 0, γ ∈ (0, 1), (1)

u0 = 0 = un+1. (2)

We will show that for eachλ > 0, there is a unique solution to our problem. Then
we treatλ, γ andn as parameters of our unique solution, and derive several com-
parison theorems for it. We will assume throughout the rest of our paper thatλ > 0,
γ ∈ (0, 1) andn = 1, 2, . . .

We remark that it is also of interest to assume a nonlinear Hooke’s law that takes
on other forms. In particular, the forcing functionF(u) = −λu |u|γ−1 is closely re-
lated to the one given above and the corresponding problem seems to be much more
involved but interesting for future considerations.

2. Existence and uniqueness

To motivate the following, we first consider the simple case whenn = 1 and
λ = 1. Then the boundary problem (1), (2) is reduced to the single equation

−2u1 + |u1|γ = 0.

One of the solutions is clearlyu1 = 0. We can also find a unique nontrivial positive
solution

u1 =
(

1

2

)1/(1−γ )

.

When n = 2 andλ = 1, our boundary problem is reduced to a pair of nonlinear
equations:

u2 − 2u1 + |u1|γ = 0,

−2u2 + u1 + |u2|γ = 0.

The only nontrivial solution can easily be found and is given byu1 = u2 = 1.

To simplify our presentations, we will use standard matrix notations and opera-
tions. We will also need notations for nonlinear operations defined componentwise.
In particular, ifx is a column vector col(x1, . . . , xn), we write|x| andxγ to represent
col(|x1|, . . . , |xn|) and col(xγ

1 , . . . , x
γ
n ), respectively. We will also writex > 0 to

denotex1 > 0, . . . , xn > 0. The notationsx > 0,x > y, etc., wherex andy can also
be matrices, are similarly defined.

In terms of the notations just mentioned, our boundary problem can be written in
the compact form

Jnu = λ |u|γ , (3)
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whereu = col(u1, . . . , un) and the Jacobi matrixJn has been given before. The
boundary problem (1), (2) is equivalent to (3) in the sense that{0, u1, u2, . . . , un, 0}
is a solution of (1), (2) if, and only if, col(u1, u2, . . . , un) is a solution of (3).

The Jacobi matrix is invertible, as is well known, and its inverseJ−1
n = (gij ) is

given by

gij =
{

j (n + 1 − i)/(n + 1), 1 6 j 6 i 6 n,

i(n + 1 − j)/(n + 1), 1 6 i 6 j 6 n.

Clearly, each component ofJ−1
n is positive. As a consequence,J−1

n x > 0 for any
nonnegative and nontrivial column vectorx. This implies that if we write (3) in the
equivalent form

u = λJ−1
n |u|γ , (4)

then we see that a nontrivial solutionu = col(u1, u2, . . . , un) of (3) must be positive,
i.e.,u > 0.

We first derive an existence and uniqueness theorem for the positive solutions of
(4) whenλ = 1.

Theorem 1. The nonlinear system

u = J−1
n uγ (5)

has a unique positive solution.

Proof. Since the eigenvalues and eigenvectors of the Jacobi matrixJn are known, it
is easily checked that the eigenvalue problem

J−1
n v = τv

has a positive eigenvalueτ and a corresponding eigenvectorv > 0. Let

u0 = τ1/(1−γ )
( v

max v

)1/γ

and

w0 = τ1/(1−γ )
( v

min v

)1/γ

.

Further let

um+1 = J−1
n u

γ
m, m = 0, 1, 2, . . . (6)

and

wm+1 = J−1
n w

γ
m, m = 0, 1, 2, . . . (7)

We assert that

0 < u0 6 uk 6 uk+1 6 wk+1 6 wk 6 w0
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for anyk = 1, 2, . . . The fact that 0< u0 6 w0 is clear from the definitions ofu0
andw0. Next,

u1=J−1
n u

γ

0 = τγ/(1−γ )J−1
n

v

max v

=τγ/(1−γ )τ
v

max v
> τ1/(1−γ )

( v

max v

)1/γ = u0.

Now that we have shownu0 6 u1. Thenu1 = J−1
n u0 6 J−1

n u1 = u2. By induction,
it is then clear thatuk 6 uk+1 for k = 0, 1, . . . Similarly, we can show thatwk+1 6
wk for k = 0, 1, . . . Finally,u1 = J−1

n u0 6 J−1
n w0 = w1 and by induction,uk 6 wk

for k = 1, 2, 3, . . . Our assertion is thus true.
Let u be the (positive) limit of the nondecreasing and bounded sequence{um},

and letw be the (positive) limit of the nonincreasing and bounded sequence{wm}.
Taking limits on both sides of (6) and (7), we see thatu = J−1

n uγ andw = J−1
n wγ ,

and hence they are positive solutions of (5).
In order to show uniqueness, letu = col(u1, . . . , un) andw = col(w1, . . . , wn)

be the two positive vectors such thatui < wi for somei in {1, 2, . . . , k}. We assert
that there exists a positive numberδ0 ∈ (0, 1) such thatu > δ0w andu�δw if δ > δ0.

Indeed, take

δ0 = min
16k6n

uk

wk

= ud

wd

,

which belongs to(0, 1) sinceui < wi. Thenu > δ0w since

uk = uk

wk

wk > δ0wk, k = 1, 2, . . . , n.

Furthermore, ifδ > δ0, thenud = δ0wd < δwd, which shows thatu � δw.

Now letu = col(u1, . . . , un) andw = col(w1, . . . , wn) be two positive solutions
of (5) if u /= w. We may assume without loss of generality thatui < wi for somei
in {1, 2, . . . , n}. Let δ0 ∈ (0, 1) such thatu > δ0w andu � δw if δ > δ0. Then

u = J−1
n uγ > J−1

n (δ0w)γ = δ
γ

0 J−1
n wγ = δ

γ

0 w.

But sinceδγ

0 > δ0, a contradiction is obtained. The proof is complete.
Next, note that if we let

u = λ1/(1−γ )v,

then substituting it into (4), we have

λ1/(1−γ )v = λJ−1
n

∣∣∣λ1/(1−γ )v

∣∣∣γ
or

v = J−1
n |v|γ .

This shows that ifv is a solution of (5), thenλ1/(1−γ )v is a solution of (4). It is easily
shown that the converse is also true. As a consequence, for eachλ > 0, the nonlinear
system (4) has a unique (positive) solutionv, which is given by
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v =
(

1

λ

)1/(1−γ )

u, (8)

whereu is the unique positive solution of (5).
As an application, we remark that “symmetry” shows up in our boundary problem

(1), (2). Indeed, ifu = col(u1, . . . , un) is the unique positive solution of (5), then the
vector col(un, . . . , u1) is also a positive solution of (5), as can be verified directly.
Thus,uk = un+1−k for k = 1, . . . , n. In other words,u is a symmetric vector. �

3. Comparison theorems

The unique nontrivial solutionv of (4) and the unique positive solutionu of (5)
depend on the parametersλ, γ andn. We will derive several results for comparing
solutions corresponding to different values of the parameters. First of all, whenγ and
n are fixed, it is clear from (8) that when 0< λ1 < λ2, the corresponding nontrivial
solutionsv(λ1) andv(λ2) of (4) satisfy

v(λ1) < v(λ2).

Next, let 0< γ1 < γ2 < 1. We assert that the corresponding positive solutionsu(γ1)

andu(γ2) of (5) satisfy

u(γ1) < u(γ2).

To see this, recall from the proof of Theorem 1 thatu(γ1) = limn→∞ um(γ1), where

u0(γ1) = τ1/(1−γ1)
( v

max v

)1/γ1
,

um+1(γ1) = J−1
n u

γ1
m (γ1), m = 0, 1, 2, . . .

andu(γ2) = limn→∞ um(γ2), where

u0(γ2) = τ1/(1−γ2)
( v

max v

)1/γ2
,

um+1(γ2) = J−1
n u

γ2
m (γ2), m = 0, 1, 2, . . .

Sinceu0(γ1) < u0(γ2), we see that

u1(γ1) = J−1
n u

γ1
0 (γ1) 6 J−1

n u
γ2
0 (γ2) = u1(γ2)

and by induction thatum(γ1) 6 um(γ2) for m = 1, 2, . . . Hence,u(γ1) 6 u(γ2). To
see thatu(γ1) < u(γ2), we assume to the contrary thatui(γ1) = ui(γ1) for somei in
{1, 2, . . . , n}. Then

ui+1(γ1) − 2ui(γ1) + ui−1(γ1) + u
γ1
i (γ1) = 0

and
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ui+1(γ2) − 2ui(γ2) + ui−1(γ2) + u
γ2
i (γ2) = 0,

so that

0 6 ui+1(γ2) − ui+1(γ1) + ui−1(γ2) − ui−1(γ1) = u
γ1
i (γ1) − u

γ2
i (γ2) 6 0.

But then

u
γ1
i (γ1) = u

γ2
i (γ2),

which is contrary to our assumption thatγ1 < γ2. Now that we have shownu(γ1) <

u(γ2) when 0< γ1 < γ2 < 1. In view of (8), we see that the correspondingnontrivial
solutionsv(γ1) andv(γ2) of (4) satisfyv(γ1) < v(γ2).

Next, letn,m be positive integers such that 16 n < m, and letu(n) = col(u1(n),

. . . , un(n)) andu(m) = col(u1(m), . . . , um(m)) be the corresponding positive solu-
tions of (5). We assert that

uk(n) < uk(m), k = 1, 2, . . . , n. (9)

Indeed, assume to the contrary that (9) is not true. Sinceun+1(n) = 0 < un+1(m),

we see that there is an integerj in {1, 2, . . . , n} such that

un(m) > um(n), um−1(m) > um−1(n), . . . , uj+1(m) > uj+1(n),

but

uj (m) 6 uj (n).

There are two cases to consider. First supposeuj (m) < uj (n) anduj+1(m) >

uj+1(n). Then there is a positive numberβ and a nonpositive numberα such that

uj+1(m) = β + αuj (m)

and

uj+1(n) = β + αuj (m).

Thus,{0, u1(m), . . . , uj+1(m)} and{0, u1(n), . . . , uj+1(n)} are two solutions of the
boundary problem

D2wk−1 + w
γ

k = 0, k = 1, 2, . . . , j, (10)

w0 = 0, wj+1 = β + αwj . (11)

The boundary problem (10), (11) can be written as

J̃jw = wγ + col(0, . . . , 0, β), (12)

wherew = col(w1, w2, . . . , wj ) and

J̃j =




2 −1 0 . . . 0
−1 2 −1 . . . 0

. . . . . . . . .

0 . . . −1 2 −1
0 . . . 0 −1 2− α




j×j

.
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It is easily shown that the matrix̃Jj is invertible and its inverse has positive compo-
nents [3]. As in the proof of Theorem 1, we now show that the two positive solutions
ũ(m) = col(u1(m), . . . , uj (m)) and ũ(n) = col(u1(n), . . . , uj (n)) of (12) must be
identical. Otherwise, we may assume without loss of generality thatũi(m) > ũi(n)

for somei in {1, 2, . . . , j }. Then there exists aδ0 ∈ (0, 1) such that̃u(m) > δ0ũ(n),

but ũ(m) � δũ(n) if δ > δ0. Thus,

ũ(m)= J̃−1
j

(
ũγ (m) + col(0, . . . , 0, β)

)
>J̃−1

j

(
δ
γ

0 ũγ (n) + δ
γ

0 col(0, . . . , 0, β)
)

=δ
γ

0 J̃−1
j

(
ũγ (n) + col(0, . . . , 0, β)

)
=δ

γ

0 ũ(n),

which is a contradiction. Finally, the fact thatũ(m) = ũ(n) is contrary to our as-
sumption thatuj (m) < uj (n).

Next, if the caseuj (m) = uj (n) holds, then by arguments similar to those just
described, we see thatuk(m) = uk(n) for k = 1, . . . , j. But then,

uj+1(m)=2uj (m) − uj−1(m) + u
γ

j (m)

=2uj (n) − uj−1(n) + u
γ

j (n)

=uj+1(n),

which is contrary to our assumption thatuj+1(m) > uj+1(m).

We summarize the above discussions as follows.

Theorem 2. Let v = v(λ, γ, n) = col(v1(λ, γ, n), . . . , vn(λ, γ, n)) be the unique
nontrivial (positive) solution of(4). Then

v(λ1, γ , n) < v(λ2, γ , n), 0 < λ1 < λ2,

v(λ, γ1, n) < v(λ, γ2, n), 0 < γ1 < γ2 < 1,

vk(λ, γ, n) < vk(λ, γ,m), k = 1, 2, . . . , n, 1 6 n < m.

4. Additional properties and remarks

We have already shown that the unique nontrivial solutionv of (4) is positive and
symmetric. We have also shown in the proof of Theorem 1 that the unique positive
solution of (5) is bounded between

τ1/(1−γ )
( v

max v

)1/γ

and
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τ1/(1−γ )
( v

min v

)1/γ

,

wherev is a positive eigenvector ofJ−1
n andτ its corresponding positive eigenvalue.

There are a number of additional properties which may be useful. Letu = col(u1,

. . . , un) be the unique positive solution of (5). SinceD2uk−1 = −u
γ

k < 0 for k =
1, 2, . . . , n, u is a strictly concave vector. It is not difficult to see that any symmet-
ric, positive and strictly concave vector must be symmetrically decreasing. In other
words, ifn = 2m, thenu1 < u2 < · · · < um−1 < um = um+1 andum+1 > um+2 >

· · · > un; if n = 2m + 1, then u1 < u2 < · · · < um−1 < um and um >

um+1 > um+2 > · · · > un.

We can also establish an a priori bound for the unique positive solutionu =
col(u1, . . . , un) of (5). First of all, since

u
γ

k = −uk−1 + 2uk − uk+1, k = 1, 2, . . . , n,

if we divide both sides byuγ−1
k , we obtain

u
γ−1
k = 2 −

(
uk−1

uk
+ uk+1

uk

)
, k = 1, 2, . . . , n.

Thus,

n∑
k=1

u
γ−1
k =2n −

{(
u2

u1
+ u1

u2

)
+ · · · +

(
un

un−1
+ un−1

un

)}

62n − {2 + · · · + 2}
=2.

We remark that the number 2 is sharp whenn = 2. This is due to the fact, as seen at
the beginning of Section 2, that the corresponding unique solution, whenn = 2, is
given by col(u1, u2) = (1, 1).
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