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Abstract

The nonlinear eigenvalue probleﬂ?uk,l +Mugl¥ =0, k=1,2,...,nunder the Di-
richlet boundary conditionsp = 0 = u,,41 is studied. An existence and uniqueness theorem
is proved. Qualitative properties of solutions are also given. © 2000 Elsevier Science Inc. All
rights reserved.
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1. Introduction

Nonlinear differential boundary value problems of the form (see e.qg. [1])
W' (1) + uf@@®) =0 0<t<1,

u(0) =0=u(),

arise in steady state temperature distribution problems in a material bounded by two
infinite parallel planes. By applying finite difference methods, a discrete eigenvalue
problem naturally arises:

Uyl — 2ugp +up—1+Af(up) =0, k=212,...,n,
uo =0=up1,
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which calls for the attention to the usual questions of existence and uniqueness of
solutions. The above discrete boundary value problem can also be viewed as mod-
elling a discrete time oscillator which is subject to nonlinear forces. More specifi-
cally, assuming that the coordinatigsof an oscillator are sampled at discrete times
k=...,-2,-1,0,1,..., itis then natural to conside#; 11 — uy = Auj andu; —

ur—1 = Auy_1 asthe average velocities of the oscillator over the time pefiads+

1] and[k — 1, k], and consideti; 1 — ug — (ux — up—1) = A%u;_1 as the average
acceleration at time. If the oscillator is subjected to a force of the fornguy), then

by Newton'’s law, the equation of motion is

APup_1 = Fup).

Assuming that the oscillator is projected from the origin at time 0, a natural question
then arises as to whether the oscillator will return to its initial state at some future
timen + 1. In caseF (u) is generated by an elastic spring, then by the linear Hooke’s
law, F (1) = —\u, wherex is a positive proportionality constant which reflects the
characteristic of the spring. Our boundary problem is then given by

Aup_ 1+ g =0, k=1,2,....n, A>0,

ug=0= Up+1-

This problem can be expressed in the form

Ayu = Au,
whereu = col(u, us, ..., u,) and
2 -1 0o ... 0
-1 2 -1 ... 0
J, =
o ... -1 2 -1
o ... 0 -1 2

nxn
Thus, nontrivial solutions can only be found wheis equal to one of the eigenvalues
(2]
in
2n+1)°
of J,,, and are given by the nontrivial constant multiples of the corresponding eigen-
vectors

@) 2 . im . 2in . oniw )
u' = col[sin ——,sin ——, ..., sin , 1=1,2...,n.
n+1 n+1 n+1 n+1

A strange conclusion then seems to be that only certain springs could generate the
right forces for the oscillator to return to the origin at time- 1. This is not entirely
satisfactory, since intuitively we expect nontrivial solutions for any spring constant
A > 0. In this paper, we will assume a nonlinear Hooke’s law that asg&its =

A = 4 sir? i=12....n,
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—Xlul”, wherey is any fixed number between 0 and 1. The boundary problem is
now

Aup_1+rugl? =0, k=1,2,....n, A>0, y € (0,1), Q)

uo=0=u,q1. 2

We will show that for eaclh > 0, there is a unique solution to our problem. Then
we treati, y andn as parameters of our unique solution, and derive several com-
parison theorems for it. We will assume throughout the rest of our paper thdd,
ye(@Oandn=12,...

We remark that it is also of interest to assume a nonlinear Hooke’s law that takes
on other forms. In particular, the forcing functiéi(u) = —iu |u|” 1 is closely re-
lated to the one given above and the corresponding problem seems to be much more
involved but interesting for future considerations.

2. Existence and uniqueness

To motivate the following, we first consider the simple case whea 1 and
A = 1. Then the boundary problem (1), (2) is reduced to the single equation

—2u1 + |u1|” =0.

One of the solutions is clearly; = 0. We can also find a unique nontrivial positive
solution

(n\Ya
Uy = > .

Whenn = 2 andA = 1, our boundary problem is reduced to a pair of nonlinear
equations:

up — 2ug + |lug|” =0,

—2u +u1+ |lupl¥ =0.

The only nontrivial solution can easily be found and is givemby= us = 1.

To simplify our presentations, we will use standard matrix notations and opera-
tions. We will also need notations for nonlinear operations defined componentwise.
In particular, ifx is a column vector c@éky, . . ., x,), we write|x| andx” to represent
col(x1l, ..., [xs]) and colx],...,x, ), respectively. We will also write: > 0 to
denotex; > 0, ..., x, > 0. The notations > 0,x > y, etc., wherexandy can also
be matrices, are similarly defined.

In terms of the notations just mentioned, our boundary problem can be written in
the compact form

Jaw = Alul?, 3
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whereu = col(us, ..., u,) and the Jacobi matri¥, has been given before. The
boundary problem (1), (2) is equivalent to (3) in the sense{thats, uo, ..., u,, 0}
is a solution of (1), (2) if, and only if, c@k1, u>, ..., u,) is a solution of (3).

The Jacobi matrix is invertible, as is well known, and its inver,$é = (gij) Is
given by

[in 1=+ D),
8 = im+1—j)/(n+1),

J

1

1 <n,
<

<
S

1<
1<
Clearly, each component dtﬂ‘l is positive. As a consequencﬁ;l,‘lx > 0 for any
nonnegative and nontrivial column vectarThis implies that if we write (3) in the
equivalent form

w= At ul”, (4)
then we see that a nontrivial solutien= col(u1, ua, . . ., u,) of (3) must be positive,
i.e.,u > 0.

We first derive an existence and uniqueness theorem for the positive solutions of
(4) whena = 1.
Theorem 1. The nonlinear system
u=J (5)
has a unique positive solution.
Proof. Since the eigenvalues and eigenvectors of the Jacobi niateise known, it
is easily checked that the eigenvalue problem
J,;lv =TV

has a positive eigenvalueand a corresponding eigenvectos 0. Let

wo =t/ (L)“V

max v
and
1
wo = t /@7 ( v ) .
min v

Further let

Umtl = J,,_lbl%, m=20,1,2,... (6)
and

Wyt =J twh, m=0,12,... @)

We assert that

0 <uo < up <up1 < w1 < wi < wo
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foranyk = 1,2, ... The fact that O< up < wo is clear from the definitions ofg
andwg. Next,

v

7Ly _ _y/A-y) -1
ur=J, u, =1 J —
n =0 " maxv
v v 1/y
— 7/ 2,1/(1fy>< ) = uo.
max v max v

Now that we have showmy < u1. Thenuy = J,tug < J1us = up. By induction,
it is then clear thaty; < ugy1 fork =0, 1, ... Similarly, we can show thab; 1 <
wy fork =0,1,...Finally,u; = J, Yuo < J, wo = w1 and by inductiony; < wy
fork =1, 2,3,...0urassertion is thus true.

Let u be the (positive) limit of the nondecreasing and bounded sequenge
and letw be the (positive) limit of the nonincreasing and bounded sequengé
Taking limits on both sides of (6) and (7), we see that J, u” andw = J,1w?,
and hence they are positive solutions of (5).

In order to show uniqueness, ket= col(u, ..., u,) andw = col(wi, ..., w,)
be the two positive vectors such that< w; for somei in {1, 2, ..., k}. We assert
that there exists a positive numidgre (0, 1) such that: > Sow andu 25w if § > So.
Indeed, take

8o = min Mk _ u—d,
1<k<n Wy Wy
which belongs td0, 1) sinceu; < w;. Thenu > §ow since

U
Uy = —wr = dowr, k=12,...,n.
Wi

Furthermore, i6 > 8o, thenuy = Sowa < Sw,, which shows that 2 sw.

Now letu = col(uz, ..., u,) andw = col(wi, ..., w,) be two positive solutions
of (5) if u # w. We may assume without loss of generality that w; for somei
in{1,2,...,n}. Letdo € (0, 1) such thau > Sow andu # w if § > g. Then

u=J, > J Gow) = 8%, w? = shw.
But since(Sg)’ > §p, a contradiction is obtained. The proof is complete.

Next, note that if we let

= My,
then substituting it into (4), we have

WYA=y — 5yt ‘Al/a—y)v‘y
or

v=J 1.

This shows that ib is a solution of (5), theal/ =)y is a solution of (4). Itis easily
shown that the converse is also true. As a consequence, fokeadh the nonlinear
system (4) has a unique (positive) solutiarwhich is given by
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1\ VA7)
v= <X) u, (8)

whereu is the unique positive solution of (5).

As an application, we remark that “symmetry” shows up in our boundary problem
(1), (2). Indeed, ift = col(uy, ..., uy) is the unique positive solution of (5), then the
vector colu,, ..., u1) is also a positive solution of (5), as can be verified directly.
Thus,uy = u,11-¢ fork =1, ..., n. In other wordsy is a symmetric vector. [J

3. Comparison theorems

The unique nontrivial solutiom of (4) and the unique positive solutienof (5)
depend on the parametersy andn. We will derive several results for comparing
solutions corresponding to different values of the parameters. First of all, whed
n are fixed, it is clear from (8) that when® A1 < 12, the corresponding nontrivial
solutionsv(r1) andv(i2) of (4) satisfy

v(A1) < v(A2).
Next, let0< y1 < y2 < 1. We assert that the corresponding positive solutioiyg)
andu(y») of (5) satisfy

u(y) < u(y2).
To see this, recall from the proof of Theorem 1 thgt;) = lim,, o 1, (y1), Where

/-y ( v )1/ "

=T
uo(y1) pe—

Um1(y1) = J, it (), m=0,1,2,...
andu(yz) = lim, .« u,(y2), where

1/(-y2) ( v )1/ 2

u =T
0(y2) max

um1(y2) = J, i (y2), m=0,12 ...
Sinceuo(y1) < uo(y2), we see that

u1(yr) = Jy, ulbt(yn) < Jy tul(ve) = ualy2)
and by induction that,, (y1) < u,(y2) form = 1,2, ... Henceu(y1) < u(y2). To
see thatt(y1) < u(y2), we assume to the contrary thaty1) = u; (y1) for somei in
{1,2,...,n}. Then

wiv1(y1) — 2ui(y1) + ui—1(y1) + ul*(y1) =0
and
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wi+1(v2) — 2ui(y2) + ui-1(y2) +u;*(y2) = 0,
so that
0 < uip1(y2) — uiva(y1) + ui—1(y2) — ui—1(y1) = u*(y1) — u*(y2) < 0.
But then
ul*(y1) = ul*(y2),
which is contrary to our assumption that < y». Now that we have showin(y1) <
u(y2) when0< y1 < y2 < 1. Inview of (8), we see that the corresponding nontrivial

solutionsv(y1) andv(y2) of (4) satisfyv(y1) < v(y2).
Next, letn, m be positive integers such thatln < m, and letu(n) = col(u1(n),

..., up(n)) andu(m) = col(us(m), ..., u,, (m)) be the corresponding positive solu-
tions of (5). We assert that
ur(n) <ur(m), k=212, ...,n. (9)

Indeed, assume to the contrary that (9) is not true. Singe(n) = 0 < u,11(m),
we see that there is an integen {1, 2, ..., n} such that

un(m) > um(n), up—1(m) > upm—1(n), ..., ujt1(m) > ujy1(n),
but
uj(m) < ujn).

There are two cases to consider. First suppoge:) < u;(n) andu;;1(m) >
ujy1(n). Then there is a positive numbgrand a nonpositive numbersuch that

ujri1(m) = B+ ouj(m)

and
ujra(n) = B+ auj(m).
Thus {0, uy(m), ..., ujr1(m)} and{0, u1(n), ..., u;11(n)} are two solutions of the
boundary problem
Awp_14+w) =0, k=12...,], (10)
wo =0, wjt1 =P+ aw;. (12)
The boundary problem (10), (11) can be written as
Jiw = w” +col,...,0,p), (12)
wherew = col(wy, wz, ..., w;) and
2 -1 o ... 0
y -1 2 -1 ... 0
Jj= cee e
o ... -1 2 -1
0o ... 0 -1 22—«

JxJ
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It is easily shown that the matrii(j is invertible and its inverse has positive compo-
nents [3]. As in the proof of Theorem 1, we now show that the two positive solutions
i(m) = col(uy(m), ..., uj(m)) andi(n) = col(uy(n), ..., u;(n)) of (12) must be
identical. Otherwise, we may assume without loss of generalityittiat) > i;(n)
forsomei in {1, 2, ..., j}. Then there exists & < (0, 1) such thati(m) > doii(n),
butii(m) # 8ii(n) if § > 8o. Thus,

ﬁ(m):fj_l (@ (m) + col(, ..., 0, B))
> T (857 (n) + 83 colO, ..., 0, B))

=807 (@ (n) + col(©, ..., 0, B))

which is a contradiction. Finally, the fact thatm) = i(n) is contrary to our as-
sumption thatt ; (m) < u;(n).

Next, if the caser;(m) = u;(n) holds, then by arguments similar to those just
described, we see that(m) = ux(n) fork =1, ..., j. Butthen,

ujy1(m)=2u;(m) —u;_1(m) + u?;(m)
=2uj(n) —uj-1(n) + M?(”)
=uj+1(n),

which is contrary to our assumption that, 1 (m) > uj1(m).
We summarize the above discussions as follows.

Theorem 2. Letv = v(}, y,n) = col(vi(A, v, n), ..., v, (A, y,n)) be the unique
nontrivial (positive solution of(4). Then

v(dly, y,n) <v(kz,y,n), 0< 1< Ay,
v(A,y1,n) <v(A,y2,n), O<pyr<yr<l,

A, y,n) < vk, y,m), k=212,....,n, 1<n<m.

4. Additional properties and remarks

We have already shown that the unique nontrivial solutiarfi (4) is positive and
symmetric. We have also shown in the proof of Theorem 1 that the unique positive
solution of (5) is bounded between

L1/A-y) (L)”V
max v
and
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LA (L)”y
min v

wherev is a positive eigenvector of, ! andr its corresponding positive eigenvalue.

There are a number of additional properties which may be useful. Eetol(u1,
..., up) be the unique positive solution of (5). Sind@u;_1 = —u,): <0fork=
1,2,...,n, uis a strictly concave vector. It is not difficult to see that any symmet-
ric, positive and strictly concave vector must be symmetrically decreasing. In other
words, ifn = 2m, thenuy < up < -+ < upm—1 < thyy = U1 aANAup 11 > U2 >

>u,; f n=2m+1 then ui<ups<---<upy_1<u, and u, >
U4l > Ump42 > -+ > Up.
We can also establish an a priori bound for the unique positive solutien
col(uy, ..., u,) of (5). First of all, since
u,}: = —up_1+2ur —up+1, k=12,...,n,

if we divide both sides by}fl, we obtain

W t=2- (”k‘l + ”k”), k=12 ....n.
Uk Uy

Thus,

n
_ u u u Uy—
Syicm (e 2) e (25

=1 ui uz Up—1 Un

<2n—1{24---+2}
=2

We remark that the number 2 is sharp whwes 2. This is due to the fact, as seen at
the beginning of Section 2, that the corresponding unique solution, wheg, is
given by colui, up) = (1, 1).
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