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Soil conservation and ecosystem services 

Rattan Lal1 

 

Abstract 

Accelerated soil erosion, driven by anthropogenic activities such as conversion of natural ecosystems 
to agroecosystems and mechanical tillage, has numerous adverse impacts on ecosystem services. In addition 
to degrading soil quality and reducing agronomic/biomass productivity on-site through a decrease in 
use-efficiency of inputs, off-site impacts of accelerated erosion include eutrophication and contamination, 
sedimentation of reservoirs and waterways, and emissions of greenhouse gases (e.g., CO2, CH4 and N2O). 
While advancing food and nutritional security, adoption of restorative land use and recommended 
management practices are important to strengthening numerous ecosystem services such as improving water 
quality and renewability, increasing below and above-ground biodiversity, enhancing soil resilience to 
climate change and extreme events, and mitigating climate change by sequestering C in soil and reducing 
the emission of CO2, CH4 and N2O. An effective control of accelerated erosion is essential to sustainable 
development and improving the environment. 

Key Words: Gaseous emission, Climate change mitigation, Sustainable development, Accelerated soil 
erosion, Geologic erosion, Food security, Eutrophication, Sedimentation, Water quality, Biodiversity 

1  Introduction 
Natural or geological soil erosion is a constructive process with numerous ecological functions: formation 

of alluvial and Aeolian (loess) soils, weathering of alumino silicates and sequestration of atmospheric CO2, 
formation and evolution of the landscape with distinct soil types in relation to landscape position, 
biogeochemical recycling, etc. Some of the world’s most fertile soils (e.g., Indo-Gangetic Plains; the Nile Delta; 
U.S. Great Plains) have been formed through the slow rate of geologic erosion by water, wind and other agents. 
However, anthropogenic perturbations have drastically accelerated the process leading to severe negative effects 
on ecosystem functions and services and adverse transformation/dissection of the landscape.Being a work 
function, as defined by the product of force (kinetic energy of water and/or wind) and the distance over which 
the soil is transported, the soil impacted by erosion-induced work is subject to several processes. These include: i) 
detachment of particles from aggregates or soil mass, ii) entrainment of detached particles, iii) redistribution of 
soil over the landscape, iv) sedimentation and deposition (or burial) of soil in depressional sites following 
Stoke’s law (settling velocity α r2, where r is the radius of the particles), and v) long distance transport of fine 
particles (colloidal material) and the light (low-density) fraction such as soil organic carbon (SOC) and fine clay. 
In view of these five processes, soil erosion is a reverse of aggregation (Eq. 1): 

 (1) 

Where Aggr. refers to aggregation involving flocculation, cementation, and stabilization of floccules into 
micro and macro-aggregates. 

Formation of stable micro-aggregates, according to the hierarchy model (Tisdall and Oades, 1982), 
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encapsulates SOC and other soil organic matter (SOM) within it and physically protects it from microbial/ 
enzymatic attack. In contrast, slaking or disruption of an aggregate exposes hitherto protected SOC/SOM to 
microbial/enzymatic processes and aggravates the rate of decomposition leading to emission of CO2 (oxidizing 
or aerobic conditions), CH4 (reducing or anaerobic conditions) and N2O (nitrification/denitrification reactions). 

Thus, the objectives of this review article is to describe multi-functions and numerous ecosystem services 
provisioned and strengthened through adoption of conservation effective measures and restoration of eroded and 
degraded landscapes. 

2  On-site and off-site effects of accelerated erosion 
Being a complex transformational process, accelerated soil erosion has numerous on-site and off-site 

impacts. On-site impacts are those that occur at the site of erosion. In contrast, off-site impacts are those that 
occur where sediments (eroded material) are being carried to and deposited (Fig. 1). 

 

Fig. 1  Adverse effects of accelerated erosion on ecosystem functions and services 

Principal among on-site impacts are decline in soil quality because of the loss of key soil constituents (e.g., 
SOC, clay, and silt), reduction in available water capacity and nutrient reserves, truncation of soil profile and 
shallowing of topsoil depth, decline of use-efficiency of inherent and applied resources and depletion of 
ecosystem C pool. Among off-site impacts are burial of topsoil, runon of agricultural chemicals, 
contamination/eutrophication of natural waters, inundation, anaerobiosis and emission of greenhouse gases 
(GHGs). Combined, on-site and off-site impacts of accelerated erosion curtail ecosystem functions and services, 
reduce biomass/agronomic productivity, and create positive feedback to climate change by aggravating 
emissions of CO2, CH4, and N2O. While some sediment-born C may be buried and protected (Van Ooste et al., 
2007), the net effect is increase in the gaseous emission with positive feedback to climate change (Lal, 2003). 
Numerous goods and services provided by soil (Blum et al., 2004) are severely curtailed when soil is prone to 
accelerated erosion. In contrast, therefore, adoption of conservation-effective measures has numerous ecological 
benefits by improving ecosystem functions and services. 

2.1  Accelerated erosion and fate of soil carbon 
Erosion-induced transport and redistribution of C over the landscape disrupt the C cycle at multiple scales 

(Table 1; Ito, 2007; Kuhn et al., 2009). Transport, redistribution and deposition affect SOC dynamics (Cheng et 
al., 2010; Haring et al., 2013a; Harper et al., 2010; Nie et al., 2013; Page et al., 2004; Wiaux et al., 2014; Zhang 
and Li, 2013; Ran et al., 2014).However, some of it is buried (Chaopriche and Marin-Spiotta, 2014; Hoffman et 
al., 2013; Ran et al., 2014) and is partially protected against decompositional processes.  
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Table 1  Soil erosional impacts on carbon cycle 
Processes Reference 

1 Erosion, sedimentation and the C cycle Kuhn et al. (2012) 

2 Erosion impact on the global C budget Lal (2003) 

3 Accelerated export of C from landscape Glandell and Brazier (2014) 

4 Soil erosion from agricultural lands and the global C cycle Kuhn et al. (2009) 

5 Agricultural soil erosion and the C cycle Van Oost et al. (2007) 

6 Erosion and C balance of continental China Gao(2007); Hu et al. (2004) 

7 Implications of soil erosion on C cycle over 2 centuries (1901 – 2100) Ito (2007) 

8 Erosion/deposition impacts on C dynamics (1870 – 1997) Liu et al. (2003) 

One of the consequences of burial and redistribution is the increase in spatial variability in SOC 
concentration in the surface layer (Chaplot et al., 2009) and the attendant impacts on biogeochemical and 
microbial properties (Park et al., 2014). Erosion-induced transport of SOC over the eroding landscape can 
accentuate gaseous flux (Page et al., 2004; Smith et al., 2007) with an attendant loss of SOC pool (Boix-Fayos et 
al., 2009); Glendaell and Brazier, 2014; Hancock et al., 2010; Liang et al., 2009; Korup and Rixen, 2014; 
Martinez-Mena et al., 2008; Quinton et al., 2006; Yan et al., 2005). Thus, it is argued by pedologist and 
agronomist, that landscapes subjected to accelerated soil erosion are a major source of GHGs (Fig. 2; Table 2; 
Chappell et al., 2013; Lal, 2013; Lal and Pimentel, 2008) with a strong adverse impact on the C cycle (Ito, 2007; 
Lal, 2003; Kuhn et al., 2009) and ecosystem C budget (Gao, 2007; Lal, 2003). 

 

Fig. 2  Processes making eroding landscape as a source of greenhouse gases with  
accelerated emissions of CO2, CH4, and N2O 

Similar losses of SOC pool are also observed in landscapes subject to wind erosion (Table 3; Wang et al., 
2006). Therefore, specific methodologies have been developed to detect soil C degradation during erosion 
(Alwell et al., 2009) including the use of δ13C and δ15N (Bellanger et al., 2004), use of the vis-NIR spectroscopy 
and geomorphological analysis (Conforti et al., 2013; Jouqueta et al., 2010) and by modeling studies (Yadav and 
Malanson, 2009; Yoo et al., 2005) (Table 4). 
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Table 2 Soil erosion as a source of carbon 
Erosion as source/sink of CO2 Country/Region Ecosystem Reference 

1 Released to the atmosphere USA, Illinois Timberland, cropland, Pastureland Olson et al. (2014) 

2 Snow-caused erosion Europe, Alps Cryosphere, wet snow avalanches Korup and Rixon (2014) 

3 Released to the atmosphere China Yellow River Ran et al. (2014) 

4 Erosion-induced source Global  Modeling Lal (2003) 

5 Removal of C Ecuador Rio Chimbo/ Andean Andisols Henry et al. (2013) 

Table 3 Examples of the effects of wind erosion on soil carbon dynamics 
Soil C impact Region/County Ecosystem/Biome Reference 

1 Erosion impacts soil C pool Shelihu Lake Basin/ China Desertification regions Lian at al. (2013) 

2 
Dust as a source of C and the net loss from 
ecosystems 

Australia Rangelands Chapell et al. (2013) 

3 
Erosion caused loss of 3% of soil C pool to 
1-m depth (3.6 Mg/ha) 

Western Australia Dryland farming systems Harper et al. (2010) 

4 Loss of soil C and nutrients Northern China Dust storms Wang et al. (2006) 

5 Loss of 75 Tg C/yr by wind erosion China Wind erosion at national level Yan et al. (2005) 

Table 4 Techniques and approaches of addressing coupled transport of carbon and sediments by erosional processes 
Technique Country Biome/Region References 

1 Geochemical approaches Czech Republic Loess-covered sub-catchment De Baets et al. (2013) 

2 Cs137(Pb210) Japan Run-off plots under forests Teramage(2013) 

 Cs137 China Tibetan Plateau Nie et al. (2010) 

 Cs137 Switzerland Central Alps Alewell et al. (2009) 

 Cs137 China Yangtze River Wei et al. (2008) 

 Cs137 U.K. Point and field scale Quine and Van Oost (2007)

 Cs137 Northeast China Black soil region Fang et al. (2012) 

3 Black Carbon Cypres Mediterranean island Brauneck et al. (2012) 

4 Vis-NIR spectroscopy Italy Mediterranean Belt Conforti et al. (2013) 

5 δC13 China Three Gorges Reservoir Haring et al. (2013b) 

 δC13 (N15) Venezuela Andean region Bellanger et al. (2004) 

6 Near infrared reflectance spectroscopy Northern Vietnam Steep slope ecosystems  Jouqueta et al. (2010) 

7 Vertical profile of soil carbon Northeast China Black soils Liang et al. (2009) 

8 Modeling U.K. Bedfordshire Quinton (2006) 

 Modeling (Erosion-Deposition carbon model) USA Mississippi Liu et al. (2003) 

The slow process of geological erosion, however, can lead to C sequestration in sediments, aquatic 
ecosystems and oceans over the millennial and short-term temporal scale. Indeed, SOC buried in depressional 
sites and transported into aquatic ecosystems (e.g., lakes and oceans) is taken out of the C cycle. However, this 
fraction (20% of the total transported according to some estimates; Lal, 2003) cannot be technically termed 
“sequestration” (Olson et al., 2014; Bernoux et al., 2006). Because it is taken out of the C cycle, it is termed by 
some as a “C sink” (Table 5; Obame et al., 2014; Quine and Van Oost, 2007; Van Oost et al., 2005, 2007, 2009). 
Yet, even the “sink hypothesis” is questionable because of the assumption based on “dynamic replacement of C” 
at the eroding site. A severe decline in soil quality reduces agronomic productivity and decreases the input of 
biomass C, which can be replaced on a decadal scale under restoration landuse and best management practices. 

Table 5 Soil erosion and carbon storage on land as a sink 
Experimental Approach Region/Country Ecosystem/Biome Reference 

1 Inland river sediments Central Europe Riverine systems Hoffman (2013) 

2 Literature synthesis Global  – McPherson (2009) 

3 Discussion/comments Global – Van Oost et al. (2008) 

4 Modeling Africa Sahelian Lakes Obame et al. (2014) 

5 Soil C burial in deep horizons 
Global soil burial by volcanic, Aeolian, 
alluvial, colluvial and glacial processes 

Paleosols 
Chaopricha and Marin- 
Spiotta (2014) 
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3  Soil conservation for carbon sequestration 
In contrast to accelerated soil erosion, adoption of conservation-effective measures on eroded landscape 

would reverse the degradation trends and increase soil and ecosystem C pools. In this context, soil conservation 
must be viewed in an ecosystem perspective. It implies maintaining pedological processes, reducing losses of 
soil and water, and strengthening cycling of C and other elements (e.g., N, P, S) especially the coupled cycling of 
elements including that of C and the hydrologic cycle (H2O). Thus, conversion to a restorative land use and 
adoption of conservation-effective measures would sustain/ improve soil and ecosystem C pools, enhance soil 
quality, and increase net primary productivity (NPP), among numerous ecological benefits (Fig.3). Over and 
above the beneficial impacts on water quality, a principal ecological benefit of soil conservation and restoration 
is the increase in the C pool in the soil and the terrestrial biosphere with the attendant negative feedback on 
climate change. Improvement in soil quality would enhance resilience against climate change by dampening the 
effects of extreme events, moderating fluctuations in microclimate, reducing diurnal/annual variations in soil 
temperature and moisture, and mitigating the climate change (Fig. 3).  

 

Fig. 3  Ecological benefits of soil conservation 

Impacts of conservation-effective measures on climate change mitigation stem from an increase in quantity 
and quality of SOC and ecosystem C pools. Specific benefits of these are those related to restoration of 
drastically disturbed/ degraded/ desertified lands, cycling of C and other elements along with H2O, enhancing 
ecosystem functions and services, increasing biodiversity and creating plant-soil feedback with positive impact 
on the biosphere (Table 6). 

Table 6 Ecological benefits of soil carbon enhancement and sequestration 
Parameter Ecosystem Reference 

1 Restoration of drastically disturbed lands Mined Soil Bodlak et al. (2012) 

2 Biodiversity Arid/semi-arid rangelands Witt et al. (2011) 

3 Soil restoration Atlantic Forest Ecosystem-Brazil Nogueira, Jr. et al. (2011) 

4 Land restoration Mountainous terrain, NW China An et al. (2010) 

5 Combat desertification Communal grazing land, Ethiopia Mekuria et al. (2011) 

6 Sustainable wetlands management Tropical African wetlands Saunders et al. (2012) 

7 Sustainable agriculture South Africa’s degraded rangelands du Preez et al. (2011) 

8 Elemental cycling Natural and managed ecosystems Battle-Aguilar et al. (2011) 

9 Global carbon cycle Gulf of Mexico Hansen and Nestlerode (2014) 

10 Ecosystem restoration Temperate steppe Jiang et al. (2010) 

11 Ecosystem services Pedosphere Otte et al. (2012) 

12 Plant-soil feedback Global Van der Putten et al. (2013) 
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4  Soil carbon cycling within the biosphere 
Pedospheric processes, strongly impacted by soil conservation and restoration, are inter-connected with the 

atmosphere, biosphere, lithosphere, and hydrosphere (Fig. 4). Pedospheric processes impact biospheric processes 
such as photosynthesis, respiration, NPP and net biome productivity, and elemental cycling; lithospheric 
processes including rate of weathering and soil formation as impacted by volcanism and metamorphism; 
hydrospheric processes including components of the hydrologic cycle, and specifically soil water storage (green 
water), surface runoff and deep seepage (blue water); and atmospheric processes including temperature, 
precipitation and extreme events (Fig. 4). 

 

Fig. 4  Soil C cycling within the ecosphere 

The SOC pool and its dynamics also impact soil properties and processes (Table 7), with a strong 
moderatory impact on soil quality and the attendant ecosystem functions and services. Important properties 
impacted by SOC dynamics include: i) physical (e.g., aggregation, bulk density, surface area, porosity and pore 
size distribution and continuity, gaseous exchange by mass flow and diffusion, water retention and transmission, 
thermal conductivity and heat capacity), ii) chemical (e.g., buffering capacity, pH, CEC, exchangeable cations, 
leaching, nutrient reserves, elemental transformations), iii) biological (e.g., SOC concentration, microbial 
biomass, activity and species diversity of soil fauna and flora, respiration, enzymatic activity), and iv) ecological 
(e.g., biogeochemical cycling, ecosystem functions) (Table 7). Optimization of these properties and processes is 
essential to goods and services provisioned by soils.  

Table 7 Processes and properties moderated by soil organic carbon 

Properties/Processes Ecosystem Reference 

1 Soil hydrological properties Semi-arid region, Turkey Yusek and Yusek (2011) 

2 Physical/chemical properties Sodic soil Singh et al. (2012) 

3 Soil aggregation Eroded lands Tang et al. (2010) 

4 Spatial heterogeneity  Sand dune Zuo et al. (2008) 

5 Soil chemical properties Arable land Valtinat et al. (2008) 

6 Enzymatic activities Sodic soil Singh et al. (2012) 

7 Soil physical properties Grasslands Yuan et al. (2012) 

8 Microbial population Deserts Bashan and de-Bashan (2010) 
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5  Strategies of restoring degraded soils 
Reversing degradation trends necessitates identification and implementation of site-specific strategies. 

There exists neither a panacea nor a silver bullet that has a universal applicability. Thus, choice of strategies 
depends on biophysical (climate, geology, soil type, drainage patterns, vegetation, land use) and human 
dimension factors (demography, infrastructure, land tenure, access to credit and market). Examples of a few 
strategies are outlined in Fig.5. The objective is to: i) minimize losses of water and nutrients out of the 
ecosystem,ii) create positive ecosystem C, nutrient and water budgets, iii) enhance biodiversity (above and 
below ground), iv) strengthen plant-soil feedback, and v) minimize soil disturbances.  

Restoration of drastically disturbed lands requires specific strategies. Drastically disturbed lands include 
mined soils, severely dissected gullied land, land prone to sand dune formation etc. Some strategies to reclaim 
drastically disturbed lands (Table 8) include mechanical land forming to create gentle slope gradients and 
increasing micro-relief. Increasing SOC pool, by recycling biomass/biosolid carbon (e.g., compost, manure, 
mulch, sludge, grey/black water after treatment) is always useful to set-in-motion the restorative process. 
Enhancing available water capacity, deceasing bulk density and soil strength, improving availability of essential 
nutrients (N, P, K, Zn, B, Cu) and improving bioturbation are generic options of wider applicability. 

 

Fig. 5  Approaches to conservation of eroded/degraded soils 

Table 8 Strategies of reclaiming severely eroded soils 
         Strategy Reference 

1 Mechanical land forming (bulldozers) Phillips (1998) 

2 Bioturbation (earthworms) Butt (2008) 

3 Creating microtopography Simmons et al. (2011) 

4 Local soil knowledge Lemercier et al. (2012) 

5 Enhancing SOC pool Lal (1977) 

6  Towards broadening the scope of soil conservation 
Adverse impacts of accelerated erosion on agronomic productivity have long been recognized, and recorded 

in the literature since the days of Virgil (1 A.D.) in Rome, ancient Greece (Andel and Zangger, 1990; Papnastasis 
et al., 2010), in Indus Valley (Lal, 2008) and elsewhere. Many once-thriving ancient civilizations collapsed 
because of the erosion of soil that supported them (Montgomery, 2012). Adverse impacts of erosion on water 
quality and non-point source pollution were considered major issues during the 1970s (Dinnes, 2004; Johnson et 
al., 1979; Laflen and Tabatbai, 1984; Seta et al., 1993; Angle et al., 1984). The importance of erosion and SOC 
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sequestration as a source or sink of atmospheric CO2 emerged as a global issue during the 1990s (Lal et al., 
1999).  

Soil conservation and restoration of eroded soils/landscape has a wide range of benefits (Table 9). 

Table 9  Benefits of soil conservation and restoration of eroded soils 
Parameter Beneficial Impact 

1 Pedological Soil Quality, elemental cycling, horizonation 

2 Ecological Ecosystem function and services 

3 Hydrological Reductions in non-point source pollution, component of hydrological cycle 

4 Climatological C sequestration, reduction in gaseous emissions decline in hidden C costs of inputs (fertilizers, pesticides, irrigation) 

5 Agronomic Productivity, sustainability, use-efficiency of input, profitability 

6 Sociological Human well being, land value, aesthetical and moral issues 

7  Conclusions 
Whereas accelerated soil erosion and erosion-induced degradation have plagued humanity since the dawn of 

settled agriculture, its importance to environmental and food security issues is more than ever before. Global 
issues linked to accelerated soil erosion include water quality and renewability events, SOC sequestration to 
off-set anthropogenic emissions and mitigate global warming, food and nutritional security and 
biodiversity.Therefore, soil conservation, erosion control and restoration of eroded soils have important policy 
imperatives. The goal is to incentivize farmers and land managers to adopt to restorative land use and 
recommended soil/crop/animal management practices for improving soils and the environment. 
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