On n-fold $L(j, k)$-and circular $L(j, k)$-labelings of graphs ${ }^{\star}$

Wensong Lin*, Pu Zhang
Department of Mathematics, Southeast University, Nanjing 210096, PR China

ARTICLE INFO

Article history:

Received 10 January 2012
Received in revised form 6 June 2012
Accepted 9 June 2012
Available online 4 July 2012

Keywords:

$L(j, k)$-labeling number
Circular $L(j, k)$-labeling number
n-fold $L(j, k)$-labeling number
n-fold circular $L(j, k)$-labeling number
Tree
Hexagonal lattice
p-dimensional square lattice

Abstract

We initiate research on the multiple distance 2 labeling of graphs in this paper. Let n, j, k be positive integers. An n-fold $L(j, k)$-labeling of a graph G is an assignment f of sets of nonnegative integers of order n to the vertices of G such that, for any two vertices u, v and any two integers $a \in f(u), b \in f(v),|a-b| \geq j$ if $u v \in E(G)$, and $|a-b| \geq k$ if u and v are distance 2 apart. The span of f is the absolute difference between the maximum and minimum integers used by f. The n-fold $L(j, k)$-labeling number of G is the minimum span over all n-fold $L(j, k)$-labelings of G.

Let n, j, k and m be positive integers. An n-fold circular $m-L(j, k)$-labeling of a graph G is an assignment f of subsets of $\{0,1, \ldots, m-1\}$ of order n to the vertices of G such that, for any two vertices u, v and any two integers $a \in f(u), b \in f(v), \min \{|a-b|, m-|a-b|\} \geq j$ if $u v \in E(G)$, and $\min \{|a-b|, m-|a-b|\} \geq k$ if u and v are distance 2 apart. The minimum m such that G has an n-fold circular $m-L(j, k)$-labeling is called the n-fold circular $L(j, k)$ labeling number of G.

We investigate the basic properties of n-fold $L(j, k)$-labelings and circular $L(j, k)$ labelings of graphs. The n-fold circular $L(j, k)$-labeling numbers of trees, and the hexagonal and p-dimensional square lattices are determined. The upper and lower bounds for the n-fold $L(j, k)$-labeling numbers of trees are obtained. In most cases, these bounds are attainable. In particular, when $k=1$ both the lower and the upper bounds are sharp. In many cases, the n-fold $L(j, k)$-labeling numbers of the hexagonal and p-dimensional square lattices are determined. In other cases, upper and lower bounds are provided. In particular, we obtain the exact values of the n-fold $L(j, 1)$-labeling numbers of the hexagonal and p-dimensional square lattices.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Motivated from the channel assignment problem introduced by Hale [13], Griggs and Yeh [12] were the first to propose and study the $L(2,1)$-labelings of graphs. Since then the $L(2,1)$-labelings and the general case $L(j, k)$-labelings of graphs have been studied extensively; refer to the surveys [2,25,10]. In Griggs and Yeh's model, vertices of the graph represent transmitters, and the label of a vertex represents the radio channel assigned to the corresponding transmitter. Each transmitter is assigned exactly one radio channel. However, in practice, each transmitter may demand more than one radio channel. From this case, the multiple $L(j, k)$-labeling of a graph arises. In this paper, we assume that each transmitter demands the same number of channels. For a positive integer n, the n-fold $L(j, k)$-labeling of a graph G is defined as follows.

For two sets of nonnegative integers I and I^{\prime}, the distance between I and $I^{\prime}, d\left(I, I^{\prime}\right)$, is defined as $\min \left\{\left|i-i^{\prime}\right|: i \in I, i^{\prime} \in I^{\prime}\right\}$. Let n, j, k be positive integers. An n-fold $L(j, k)$-labeling of a graph G is an assignment f of sets of nonnegative integers of

[^0]order n to the vertices of G such that, for any two vertices u and $v, d(f(u), f(v)) \geq j$ if $u v \in E(G)$ (this is called the distance 1 condition), and $d(f(u), f(v)) \geq k$ if u and v are distance 2 apart (this is called the distance 2 condition). Given a graph G, for an n-fold $L(j, k)$-labeling f of G, the images of f are called label sets and the numbers used by f are called labels, and we define the span of $f, \operatorname{span}(f)$, to be the absolute difference between the maximum and minimum numbers used by f. Without loss of generality we shall assume that the minimum number used in an n-fold $L(j, k)$-labeling f of G is always 0 , implying that the span of the labeling is the maximum number assigned to a vertex under f. The n-fold $L(j, k)$-labeling number of G, denoted by $\lambda_{j, k}^{n}(G)$, is the minimum span over all n-fold $L(j, k)$-labelings of G. The onefold $L(j, k)$-labeling number of $G, \lambda_{j, k}^{1}(G)$, is equivalent to the $L(j, k)$-labeling number of $G, \lambda_{j, k}(G)$, which has been studied extensively $[2,7,8,16,15]$.

A useful approach in investigating the n-fold $L(j, k)$-labeling of a graph G is to consider the circular $L(j, k)$-labeling of G which we define below. Suppose m is a positive integer. Let $S(m)$ denote a circle of circumference m. We fix a point on $S(m)$ and label it with 0 . We label each point on $S(m)$ with a real number $x \in[0, m)$ according to the length of the arc from 0 along the clockwise direction on $S(m)$ to this point. For any $r \in \mathbb{R},[r]_{m} \in[0, m)$ denotes the remainder of r upon division of m.

In this paper, we are interested in the integer points $0,1, \ldots, m-1$ on the circle $S(m)$. Let l be an integer and n a positive integer. We use $S_{m}^{n}(l)$ to denote the set of n consecutive integer points $[l]_{m},[l+1]_{m}, \ldots,[l+n-1]_{m}$ on $S(m)$. Let a and b be two integers with $0 \leq a, b<m$. We use $[a, b]_{m}$ to denote the set of integer points $a, a+1, \ldots, b$ on $S(m)$, where additions are taken modulo m. Let $(a, b)_{m}$ denote the set of integer points $a+1, a+2, \ldots, b-1$ on $S(m)$. $[a, b)_{m}$ and ($\left.a, b\right]_{m}$ are defined similarly. We call $[a, b]_{m}\left((a, b)_{m}\right)$ a closed interval (an open interval) of $S(m)$. A sequence $\left(a_{0}, a_{1}, \ldots, a_{s}\right)$ of different points on $S(m)$ is said to be in cyclic order if the sets $\left(a_{0}, a_{1}\right)_{m},\left(a_{1}, a_{2}\right)_{m}, \ldots,\left(a_{s-1}, a_{s}\right)_{m},\left(a_{s}, a_{0}\right)_{m}$ are pairwise disjoint.

The circular distance of two numbers (or two points on $S(m)$) a and b with $0 \leq a, b<m$ on $S(m)$, denoted by $|a-b|_{m}$, is defined as $\min \{|a-b|, m-|a-b|\}$. Suppose S and Q are two sets of points on $S(m)$. The circular distance between P and Q, denoted by $d_{m}(P, Q)$, is defined as $\min \left\{|p-q|_{m}: p \in P, q \in Q\right\}$.

Let n, j, k and m be positive integers. An n-fold circular $m-L(j, k)$-labeling of a graph G is an assignment f of subsets of $\{0,1, \ldots, m-1\}$ of order n to the vertices of G such that, for any two vertices u and $v, d_{m}(f(u), f(v)) \geq j$ if $u v \in E(G)$, and $d_{m}(f(u), f(v)) \geq k$ if u and v are distance 2 apart. The minimum m such that G has an n-fold circular m - $L(j, k)$-labeling is called the n-fold circular $L(j, k)$-labeling number of G and is denoted by $\sigma_{j, k}^{n}(G)$. The onefold circular $L(j, k)$-labeling number of $G, \sigma_{j, k}^{1}(G)$, is equivalent to the circular $L(j, k)$-labeling number of G, which has been investigated in many papers; see [23,19,24,20,17,16,21].

In an n-fold $L(j, k)$-labeling f of a graph G, if each vertex of G receives n consecutive integers (that is for each vertex u of G there is some integer $t \geq 0$ such that $f(u)=\{t, t+1, \ldots, t+n-1\})$, then we get an n-fold consecutive $L(j$, $k)$-labeling of G. The n-fold consecutive $L(j, k)$-labeling number of G, denoted by $\bar{\lambda}_{j, k}^{n}(G)$, is the minimum span over all n-fold consecutive $L(j, k)$-labelings of G. We have $\lambda_{j, k}^{n}(G) \leq \bar{\lambda}_{j, k}^{n}(G)$ for any graph G.

In an n-fold circular $m-L(j, k)$-labeling f of a graph G, if each vertex of G receives n consecutive integer points on $S(m)$ (that is for each vertex u of G there is some integer $t \in[0, m-1]$ such that $f(u)=S_{m}^{n}(t)$), then we get an n-fold consecutive circular $m-L(j, k)$-labeling of G. The minimum m such that G has an n-fold consecutive circular $m-L(j, k)$-labeling is called the n-fold consecutive circular $L(j, k)$-labeling number of G and is denoted by $\bar{\sigma}_{j, k}^{n}(G)$. It follows that $\sigma_{j, k}^{n}(G) \leq \bar{\sigma}_{j, k}^{n}(G)$ for any graph G.

Throughout this paper j, k and n are positive integers with $j \geq k$. Let a and b be two integers with $a \leq b$. We denote by $[a, b]$ the set of integers $a, a+1, \ldots, b$.

In the next section, we investigate basic properties of n-fold $L(j, k)$-labelings and circular $L(j, k)$-labelings of graphs. In particular, we establish the relationship between $\lambda_{j, k}^{n}(G)$ and $\lambda_{j+n-1, k+n-1}(G)$, and the relationship between $\sigma_{j, k}^{n}(G)$ and $\sigma_{j+n-1, k+n-1}(G)$. In Section 3, we present a class of graphs with $\sigma_{j, 1}^{n}(G)<\bar{\sigma}_{j, 1}^{n}(G)$ and $\lambda_{j, 1}^{n}(G)<\bar{\lambda}_{j, 1}^{n}(G)$. In Section 4, we determine $\sigma_{j, k}^{n}(T)$ for any tree T and provide upper and lower bounds for $\lambda_{j, k}^{n}(T)$. The upper bound is attainable in many cases and is sharp in the case $k=1$. The n-fold circular $L(j, k)$-labeling numbers and n-fold $L(j, 1)$-labeling numbers of the hexagonal and p-dimensional square lattices are determined in Sections 5 and 6 , respectively. We mention that the n-fold $L(j, 1)$-labeling number and n-fold circular $L(j, 1)$-labeling number of a triangular lattice were investigated in [26].

2. Some basic properties and notation

Let f be an n-fold consecutive $L(j, k)$-labeling of a graph G with span λ. We may obtain an $L(j+n-1, k+n-1)$-labeling f^{\prime} of G with span $\lambda-n+1$ by letting $f^{\prime}(u)=t$ if $f(u)=[t, t+n-1]$ for each vertex u of G. Conversely, we may obtain an n-fold consecutive $L(j, k)$-labeling of a graph G with span λ from an $L(j+n-1, k+n-1)$-labeling of G with span $\lambda-n+1$. In a similar way, one can find a one-to-one correspondence between an n-fold consecutive circular $m-L(j, k)$-labeling and a circular $m-L(j+n-1, k+n-1)$-labeling of a graph G. Therefore we have the following lemma.

Lemma 2.1. For any graph G,

$$
\lambda_{j, k}^{n}(G) \leq \bar{\lambda}_{j, k}^{n}(G)=\lambda_{j+n-1, k+n-1}(G)+n-1,
$$

and

$$
\sigma_{j, k}^{n}(G) \leq \bar{\sigma}_{j, k}^{n}(G)=\sigma_{j+n-1, k+n-1}(G)
$$

In [23] van den Heuvel, Leese, and Shepherd noted that, for any graph G, if $j \geq k$ then

$$
\begin{equation*}
\lambda_{j, k}(G)+1 \leq \sigma_{j, k}(G) \leq \lambda_{j, k}(G)+j \tag{1}
\end{equation*}
$$

We point out that an n-fold circular $m-L(j, k)$-labeling of a graph is an n-fold $L(j, k)$-labeling with span $m-1$, and an n-fold $L(j, k)$-labeling with span λ is an n-fold circular $(\lambda+j)-L(j, k)$-labeling. Thus we have

$$
\begin{equation*}
\lambda_{j, k}^{n}(G)+1 \leq \sigma_{j, k}^{n}(G) \leq \lambda_{j, k}^{n}(G)+j \tag{2}
\end{equation*}
$$

By Lemma 2.1 and formula (2),

$$
\begin{equation*}
\lambda_{j, k}^{n}(G) \leq \min \left\{\lambda_{j+n-1, k+n-1}(G)+n-1, \sigma_{j+n-1, k+n-1}(G)-1\right\} \tag{3}
\end{equation*}
$$

Let G and H be two graphs. The lexicographic product of G and H is the graph $G[H]$ with vertex set $V(G) \times V(H)$ and two vertices (u, x) and (v, y) are adjacent in $G[H]$ if and only if $u v \in E(G)$ or $u=v$ with $x y \in E(H)$. Let \bar{K}_{n} denote the empty graph on n vertices. If G is nontrivial and nonempty, then it is clear that an n-fold $L(j, 1)$-labeling of a graph G corresponds to an $L(j, 1)$-labeling of $G\left[\bar{K}_{n}\right]$, and so $\lambda_{j, 1}^{n}(G)=\lambda_{j, 1}\left(G\left[\bar{K}_{n}\right]\right)$. Similarly, an n-fold circular $m-L(j, 1)$-labeling of a graph G corresponds to a circular $m-L(j, 1)$-labeling of $G\left[\bar{K}_{n}\right]$, and so $\sigma_{j, 1}^{n}(G)=\sigma_{j, 1}\left(G\left[\bar{K}_{n}\right]\right)$.

Let G be a graph and u a vertex of G. We call a vertex v a d-neighbor of u in G if $d_{G}(u, v)=d$.
Let f be an n-fold $L(j, k)$-labeling of G with span λ. For any vertex u of G and a positive integer $t \geq 2$, we define the t-closure of $f(u)$, denoted by $[f(u)]^{t}$, as

$$
[f(u)]^{t}=\{h \pm i: \text { for each } h \in f(u) \text { and } i=0,1, \ldots, t-1\} \cap[0, \lambda]
$$

It follows that $[f(u)]^{t}$ is the disjoint union of the sets $\left[a_{1}, b_{1}\right],\left[a_{2}, b_{2}\right], \ldots,\left[a_{p}, b_{p}\right.$] for some positive integer p, where $a_{1}<b_{1}<a_{2}<b_{2}<\cdots<a_{p}<b_{p}$ and $\left|\left[b_{i}, a_{i+1}\right]\right| \geq 3$ for $i=1,2, \ldots, p-1$. It is clear that, for each $i \in[2, p-1]$, there are at least $2(t-1)$ labels in $\left[a_{i}, b_{i}\right] \backslash f(u)$. All labels in the j-closure of $f(u)$ are forbidden for any neighbor of u and all labels in the k-closure of $f(u)$ are forbidden for any 2-neighbor of u.

Let u be a vertex and $[f(u)]^{t}$ be the disjoint union of the sets $\left[a_{1}, b_{1}\right],\left[a_{2}, b_{2}\right], \ldots,\left[a_{p}, b_{p}\right]$ with $a_{1}<b_{1}<a_{2}<b_{2}<$ $\cdots<a_{p}<b_{p}$ and $\left|\left[b_{i}, a_{i+1}\right]\right| \geq 3$ for $i=1,2, \ldots, p-1$. The net t-closure of $f(u)$, denoted by $[\widehat{f(u)}]^{t}$, is defined as the union of the sets $\left[\min f(u), b_{1}-t+1\right],\left[a_{2}+t-1, b_{2}-t+1\right], \ldots,\left[a_{p}+t-1, \max f(u)\right]$. Clearly $f(u) \subseteq[\widehat{f(u)}]^{t}$.

Let f be an n-fold circular $m-L(j, k)$-labeling of G. For any vertex u of G and a positive integer $t \geq 2$, we define the circular t-closure of $f(u)$, denoted by $[f(u)]_{m}^{t}$, as

$$
[f(u)]_{m}^{t}=\left\{[h \pm i]_{m}: \text { for each } h \in f(u) \text { and } i=0,1, \ldots, t-1\right\}
$$

It follows that $[f(u)]_{m}^{t}$ is the disjoint union of the sets $\left[a_{0}, b_{0}\right]_{m},\left[a_{1}, b_{1}\right]_{m}, \ldots,\left[a_{p-1}, b_{p-1}\right]_{m}$ for some positive integer p with $\left(a_{0}, a_{1}, \ldots, a_{p-1}\right)$ in cyclic order on $S(m)$ and $\left|\left[b_{i}, a_{i+1}\right]_{m}\right| \geq 3$ for $i=0,1, \ldots, p-1$ (where " + " in the subscript is taken modulo p). For each i, there are at least $2(t-1)$ labels in $\left[a_{i}, b_{i}\right]_{m} \backslash f(u)$. All labels in the circular j-closure of $f(u)$ are forbidden for any neighbor of u and all labels in the circular k-closure of $f(u)$ are forbidden for any 2-neighbor of u.

Let u be a vertex and $[f(u)]_{m}^{t}$ be the disjoint union of the sets $\left[a_{0}, b_{0}\right]_{m},\left[a_{1}, b_{1}\right]_{m}, \ldots,\left[a_{p-1}, b_{p-1}\right]_{m}$ (where $\left(a_{0}, a_{1}, \ldots, a_{p-1}\right)$ is in cyclic order) on $S(m)$. The net circular t-closure of $f(u)$, denoted by $[\widehat{f(u)}]_{m}^{t}$, is defined as the union of the sets $\left[a_{0}+t-1, b_{0}-t+1\right]_{m},\left[a_{1}+t-1, b_{1}-t+1\right]_{m}, \ldots,\left[a_{p-1}+t-1, b_{p-1}-t+1\right]_{m}$. Clearly $f(u) \subseteq[\widehat{f(u)}]_{m}^{t}$.

3. $\operatorname{Graphs} \boldsymbol{G}$ with $\bar{\sigma}_{j, k}^{n}(G)>\sigma_{j, k}^{n}(G)$ and $\bar{\lambda}_{j, k}^{n}(G)>\lambda_{j, k}^{n}(G)$

In general $\lambda_{j, k}^{n}(G)$ (respectively, $\sigma_{j, k}^{n}(G)$) is not equal to $\bar{\lambda}_{j, k}^{n}(G)$ (respectively, $\bar{\sigma}_{j, k}^{n}(G)$), though in many cases as we shall see later they are equal to each other.

To illustrate, consider K_{p}, the complete graph on p vertices. Since any two vertices of K_{p} are adjacent, in an n-fold $L(j, k)$-labeling (respectively, n-fold circular $L(j, k)$-labeling) of G, any two vertices of K_{p} have label sets that are at distance (respectively, at circular distance) at least j. It follows that $\sigma_{j, k}^{n}\left(K_{p}\right)=\lambda_{j, k}^{n}\left(K_{p}\right)+j=(n+j-1) p$.

Let H be the graph formed by adding a pendant vertex to each of the vertices of K_{5}. Since K_{5} is a subgraph of $H, \sigma_{5,2}^{3}(H) \geq$ $\sigma_{5,2}^{3}\left(K_{5}\right)=35$ and $\lambda_{5,2}^{3}(H) \geq \lambda_{5,2}^{3}\left(K_{5}\right)=30$. On the other hand, Fig. 1 gives a threefold $L(5,2)$-labeling of H with span 30 , which is also a threefold circular 35-L(5, 2)-labeling of H. Therefore $\sigma_{5,2}^{3}(H)=35$ and $\lambda_{5,2}^{3}(H)=30$.

Since in an optimal threefold $L(5,2)$-labeling (respectively, circular $L(5,2)$-labeling) of K_{5} the labeling scheme is unique up to the permutation of vertices, it follows that $\bar{\sigma}_{5,2}^{3}(H)>35$ and $\bar{\lambda}_{5,2}^{3}(H)>30$. In fact, one can prove that $\bar{\sigma}_{5,2}^{3}(H)=37$ and $\bar{\lambda}_{5,2}^{3}(H)=32$. Fig. 2 indicates a threefold consecutive $L(5,2)$-labeling of H with span 32, which is also a threefold consecutive circular 37-L(5, 2)-labeling of H.

Later, we shall present a class of graphs G_{h} and show that the difference $\bar{\sigma}_{j, 1}^{n}\left(G_{h}\right)-\sigma_{j, 1}^{n}\left(G_{h}\right)$ (respectively, $\left.\bar{\lambda}_{j, 1}^{n}\left(G_{h}\right)-\lambda_{j, 1}^{n}\left(G_{h}\right)\right)$ can be arbitrarily large. To obtain $\bar{\sigma}_{j, 1}^{n}\left(G_{h}\right)$ and $\bar{\lambda}_{j, 1}^{n}\left(G_{h}\right)$, by Lemma 2.1 it suffices to determine $\sigma_{j, k}\left(G_{h}\right)$ and $\lambda_{j, k}\left(G_{h}\right)$. In order to do so, we proceed by proving a lemma that is quite useful in determining $\lambda_{j, k}(G)$ and $\sigma_{j, k}(G)$ of graphs G of diameter 2.

Given a graph G, the path covering number of G, denoted by $p_{v}(G)$, is the smallest number of vertex-disjoint paths covering $V(G)$. By G^{c} we denote the complement graph of G. The following result was proved by Georges et al. [9].

Fig. 1. A threefold $L(5,2)$-labeling of H.

Fig. 2. A threefold consecutive $L(5,2)$-labeling of H.

Theorem 3.1. For any graph G,

$$
\lambda_{2,1}(G) \begin{cases}\leq|V(G)|-1, & \text { if } p_{v}\left(G^{c}\right)=1 \\ =|V(G)|+p_{v}\left(G^{c}\right)-2, & \text { if } p_{v}\left(G^{c}\right) \geq 2\end{cases}
$$

We prove a similar result about $\lambda_{j, k}(G)$ and $\sigma_{j, k}(G)$ for graphs G of diameter 2.
Lemma 3.2. Let G be a graph of diameter 2 . If $j \leq 2 k$, then

$$
\sigma_{j, k}(G)= \begin{cases}|V(G)| k, & \text { if } G^{c} \text { has a Hamiltonian cycle } \\ p_{v}\left(G^{c}\right) j+\left(|V(G)|-p_{v}\left(G^{c}\right)\right) k, & \text { otherwise }\end{cases}
$$

and

$$
\lambda_{j, k}(G)=\left(p_{v}\left(G^{c}\right)-1\right) j+\left(|V(G)|-p_{v}\left(G^{c}\right)\right) k
$$

Proof. Let $c=p_{v}\left(G^{c}\right), p=|V(G)|$ and $m=c j+(p-c) k$. Since G is of diameter 2 , it is obvious that $\sigma_{j, k}(G) \geq p k$. If G^{c} has a Hamiltonian cycle $v_{0}, v_{1}, \ldots, v_{p-1}$, then by assigning $i k$ to the vertex v_{i} for $i=0,1, \ldots, p-1$ we get a circular $(p k)-L(j, k)$-labeling of G, implying $\sigma_{j, k}(G)=p k$.

Now suppose G^{c} has no Hamiltonian cycle. Let $P_{1}, P_{2}, \ldots, P_{c}$ be c paths in G^{c} that form a minimum path covering of G^{c}. Denote by p_{i} the number of vertices of P_{i} for $1 \leq i \leq c$. For $1 \leq t \leq p_{i}$, let $v_{i, t}$ be the t th vertex along the path P_{i}. Define a function f from $V(G)$ to $[0, m-1]$ as

$$
f\left(v_{i, t}\right)=(i-1) j+\left[t-1+\sum_{s=1}^{i-1}\left(p_{s}-1\right)\right] k
$$

Note that $j \leq 2 k, f$ is obviously a circular $m-L(j, k)$-labeling of G. Thus $\sigma_{j, k}(G) \leq m$.
We next prove that $\sigma_{j, k}(G) \geq m$. Suppose $\sigma_{j, k}(G)=\sigma$ and let f be a circular $\sigma-L(j, k)$-labeling of G. Since the diameter of G is 2 , any two vertices of G receive labels on $S(\sigma)$ that are at circular distance at least k. With no loss of generality, we may assume the label 0 is always used. The sequence of labels used by f in the increasing order is denoted by $\mathcal{F}=\left(f_{0}, f_{1}, \ldots, f_{p-1}\right)$ (with $f_{0}=0$).

For any two numbers x and y in $[0, \sigma)$, denote by $\|y-x\|_{\sigma}$ the length of the arc from the point x to the point y along the clockwise direction on $S(\sigma)$.

A consecutive subsequence $\left(f_{s}, f_{s+1}, \ldots, f_{t}\right)$ (where additions in the subscripts are taken modulo p) of \mathcal{F} with at least two terms is said to be circularly-j-restricted if $\left\|f_{i+1}-f_{i}\right\|_{\sigma}<j$ for $i=s, s+1, \ldots, t-1$. We also call the one-term subsequence $\left(f_{s}\right)$ circularly j-restricted. A circularly j-restricted subsequence is called maximal if it is not properly contained in any other circularly j-restricted subsequence. It follows that \mathcal{F} is the disjoint union of maximal circularly j-restricted subsequences. Let b be the number of disjoint maximal circularly j-restricted subsequences of \mathcal{F}. It is obvious that $\sigma \geq b j+(p-b) k$. On the
other hand, it is easy to see that the sequence of vertices of G corresponding to a maximal circularly j-restricted subsequence forms a path in G^{c}. This implies that $b \geq p_{v}\left(G^{c}\right)$. Consequently, $\sigma \geq b j+(p-b) k \geq m$, giving the result.

Through an argument similar to the one presented above, we can prove that $\lambda_{j, k}(G)=\left(p_{v}\left(G^{c}\right)-1\right) j+(|V(G)|-$ $\left.p_{v}\left(G^{c}\right)\right) k$.

Let $h \geq 2$ be a positive integer. We define the graph G_{h} as follows. The vertex set of G_{h} is $\left\{u_{0}, u_{1}, \ldots, u_{h-1}\right\} \cup\left\{v_{0}, v_{1}\right.$, $\left.\ldots, v_{h-1}\right\}$. The subset $U=\left\{u_{0}, u_{1}, \ldots, u_{h-1}\right\}$ induces a clique of G_{h} while the subset $V=\left\{v_{0}, v_{1}, \ldots, v_{h-1}\right\}$ forms an independent set of G_{h}. And for each $i=0,1, \ldots, h-1$, the vertex u_{i} in U is adjacent to all vertices in V except the vertex v_{i}. A split graph is a graph whose vertices can be partitioned into a clique and an independent set. It is clear that G_{h} is a split graph. The problem of deciding whether $\lambda_{2,1}(G) \leq|V(G)|$ for split graphs G was proved to be NP-complete in [1]. The $L(2,1)$-labeling number of G_{h} was obtained in [18]. It is worth noting that G_{h} and the graph H defined at the beginning of this section are also matrogenic graphs defined in [22]. $L(2,1)$-labelings of such graphs were investigated in [4]. In the following, we determine $\sigma_{j, k}\left(G_{h}\right)$ and $\lambda_{j, k}\left(G_{h}\right)$.

Theorem 3.3.

$$
\sigma_{j, k}\left(G_{h}\right)= \begin{cases}\lceil h / 2\rceil j+(2 h-\lceil h / 2\rceil) k, & \text { if } j / k \leq 2 \\ h j+\lceil h / 2\rceil k, & \text { if } j / k \geq 2\end{cases}
$$

and

$$
\lambda_{j, k}\left(G_{h}\right)= \begin{cases}(\lceil h / 2\rceil-1) j+(2 h-\lceil h / 2\rceil) k, & \text { if } j / k \leq 2 \\ (h-1) j+\lceil h / 2\rceil k, & \text { if } j / k \geq 2 .\end{cases}
$$

Proof. Due to the structure of G_{h}^{c}, it is not difficult to see that $p_{v}\left(G_{h}^{c}\right)=\lceil h / 2\rceil$. Then the case $j / k \leq 2$ follows from Lemma 3.2. Now suppose $j / k \geq 2$. Let $m=h j+\lceil h / 2\rceil k$. The function f from $V\left(G_{h}\right)$ to $[0, m-1]$ defined by

$$
\begin{array}{ll}
f\left(u_{i}\right)=i j+\lceil i / 2\rceil k, & \text { for } i \in[0, h-1], \\
f\left(v_{i}\right)=i j+(i / 2+1) k, & \text { if } i \in[0, h-1] \text { and } i \text { is even, } \\
f\left(v_{i}\right)=i j+\lfloor i / 2\rfloor k, & \text { if } i \in[0, h-1] \text { and } i \text { is odd, }
\end{array}
$$

is a circular $m-L(j, k)$-labeling of G_{h}. Thus, we have $\sigma_{j, k}\left(G_{h}\right) \leq m$.
We next prove $\sigma_{j, k}\left(G_{h}\right) \geq m$. Suppose $\sigma_{j, k}\left(G_{h}\right)=\sigma$ and let f be a circular $\sigma-L(j, k)$-labeling of G_{h}. Since the diameter of G_{h} is 2 , any two vertices of G receive labels on $S(\sigma)$ that are at circular distance at least k. With no loss of generality, we may assume that the label sequence $\left(f\left(u_{0}\right), f\left(u_{1}\right), \ldots, f\left(u_{h-1}\right)\right)$ with $f\left(u_{0}\right)=0$ is in cyclic order on $S(\sigma)$. For $i=0,1, \ldots, h-1$, let l_{i} denote the number of vertices in V with their labels in the open interval $\left(f\left(u_{i}\right), f\left(u_{i+1}\right)\right)_{\sigma}$, where additions in the subscript are taken modulo h. Clearly, $\sum_{i=0}^{h-1} l_{i}=h$ and $0 \leq l_{i} \leq h$ for $i=0,1, \ldots, h-1$. For $l_{i}>0$, let $v_{i, 1}, v_{i, 2}, \ldots, v_{i, l_{i}}$ be the l_{i} vertices in V with their labels in the open interval $\left(f\left(u_{i}\right), \bar{f}\left(u_{i+1}\right)\right)_{\sigma}$. Suppose $\left(f\left(u_{i}\right), f\left(v_{i, 1}\right), f\left(v_{i, 2}\right), \ldots, f\left(v_{i, l_{i}}\right), f\left(u_{i+1}\right)\right)$ is in cyclic order on $S(\sigma)$.

As in the proof of Lemma 3.2, for any two numbers x and y in $[0, \sigma)$, denote by $\|y-x\|_{\sigma}$ the length of the arc from the point x to the point y along the clockwise direction on $S(\sigma)$.

If $l_{i}=0$, then $\left\|f\left(u_{i+1}\right)-f\left(u_{i}\right)\right\|_{\sigma} \geq j$. If $l_{i}=1$, then since $u_{i} v_{i, 1}$ or $u_{i+1} v_{i, 1}$ is an edge of $G_{h},\left\|f\left(u_{i+1}\right)-f\left(u_{i}\right)\right\|_{\sigma} \geq j+k$. If $l_{i} \geq 2$, then since u_{i} is adjacent to $v_{i, 1}$ or $v_{i, 2}$, it follows that $\left\|f\left(u_{i+1}\right)-f\left(u_{i}\right)\right\|_{\sigma} \geq j+\left(l_{i}-1\right) k$. Thus for each $i=0$, $1, \ldots, h-1,\left\|f\left(u_{i+1}\right)-f\left(u_{i}\right)\right\|_{\sigma} \geq j+\left\lceil l_{i} / 2\right\rceil k$, implying $\sigma \geq \sum_{i=0}^{h-1}\left\|f\left(u_{i+1}\right)-f\left(u_{i}\right)\right\|_{\sigma} \geq h j+\lceil h / 2\rceil k$.

Similarly, we can prove that if $\bar{j} / k \geq 2$ then $\lambda_{j, k}\left(G_{h}\right)=(h-1) j+\lceil h / 2\rceil k$.
The next result follows from Theorem 3.3 and Lemma 2.1.

Corollary 3.4.

$$
\bar{\sigma}_{j, 1}^{n}\left(G_{h}\right)=\bar{\lambda}_{j, 1}^{n}\left(G_{h}\right)+j= \begin{cases}2 h n+\lceil h / 2\rceil(j-1), & \text { if } j \leq n+1 \\ h(j+n-1)+\lceil h / 2\rceil n, & \text { if } j \geq n+1\end{cases}
$$

Theorem 3.5. If $n \geq 2$ and $j \leq\lfloor n / 2\rfloor+1$, then $\sigma_{j, 1}^{n}\left(G_{h}\right)=\lambda_{j, 1}^{n}\left(G_{h}\right)+1=2 h n$.
Proof. Since the diameter of G_{h} is 2 , it is obvious that $\sigma_{j, 1}^{n}\left(G_{h}\right) \geq 2 h n$ and $\lambda_{j, 1}^{n}\left(G_{h}\right) \geq 2 h n-1$.
To prove the result, it suffices to demonstrate a certain n-fold $L(j, 1)$-labeling of G_{h}. For $i=0,1, \ldots, h-1$, define

$$
\left\{\begin{array}{l}
f\left(u_{i}\right)=[2 i n+\lfloor n / 2\rfloor,(2 i+1) n+\lfloor n / 2\rfloor-1] \\
f\left(v_{i}\right)=[2 i n, 2 i n+\lfloor n / 2\rfloor-1] \cup[(2 i+1) n+\lfloor n / 2\rfloor,(2 i+2) n-1] .
\end{array}\right.
$$

Note that $j \leq\lfloor n / 2\rfloor+1$, it is straightforward to check that f is an n-fold circular ($2 h n$)-L($j, k)$-labeling of G_{h} as well as an n-fold $L(j, k)$-labeling of G_{h} with span $2 h n-1$. Thus the theorem holds.

Therefore, if $n \geq 2$ and $j \leq\lfloor n / 2\rfloor+1$, then $\bar{\sigma}_{j, 1}^{n}\left(G_{h}\right)-\sigma_{j, 1}^{n}\left(G_{h}\right)=\lceil h / 2\rceil(j-1)$ and $\bar{\lambda}_{j, 1}^{n}\left(G_{h}\right)-\lambda_{j, 1}^{n}\left(G_{h}\right)=(\lceil h / 2\rceil-1)(j-1)$. Thus we conclude that the differences $\bar{\sigma}_{j, 1}^{n}(G)-\sigma_{j, 1}^{n}(G)$ and $\bar{\lambda}_{j, 1}^{n}(G)-\lambda_{j, 1}^{n}(G)$ could be arbitrarily large for certain graphs G.

4. Trees

Liu and Zhu in [20], and Leese and Noble in [17] proved the following theorem.
Theorem 4.1. $\sigma_{j, k}(T)=2 j+(\Delta-1) k$ for any tree T with maximum degree Δ.
We establish the n-fold version of this result.
Theorem 4.2. For any tree T with maximum degree Δ,

$$
\sigma_{j, k}^{n}(T)=2 j+(\Delta-1) k+(\Delta+1)(n-1)
$$

Proof. By Lemma 2.1 and Theorem 4.1, $\sigma_{j, k}^{n}(T) \leq \sigma_{j+n-1, k+n-1}(T)=2(j+n-1)+(\Delta-1)(k+n-1)=2 j+(\Delta-1) k+$ $(\Delta+1)(n-1)$.

Let m be a positive integer, and suppose there is an n-fold circular $m-L(j, k)$-labeling f of T. Let u be a vertex of T with Δ neighbors $v_{1}, v_{2}, \ldots, v_{\Delta}$. Let $[\widehat{f(u)}]_{m}^{j}=\bigcup_{i=0}^{p_{0}-1}\left[a_{i, 0}, b_{i, 0}\right]_{m}$ and $\left[\widehat{f\left(v_{s}\right)}\right]_{m}^{k}=\bigcup_{i=0}^{p_{s}-1}\left[a_{i, s}, b_{i, s}\right]_{m}$ for $s=1,2, \ldots, \Delta$. Then all sets $\left[a_{i, s}, b_{i, s}\right]_{m}\left(s=0,1, \ldots, \Delta, i=0,1, \ldots, p_{s}-1\right)$ are pairwise disjoint and are pairwise at circular distance at least k on $S(m)$. Furthermore, each $\left[a_{i, 0}, b_{i, 0}\right]_{m}\left(i \in\left[0, p_{0}-1\right]\right)$ is at circular distance at least j on $S(m)$ from any other sets $\left[a_{i, s}, b_{i, s}\right]_{m}$. It follows that $m \geq(\Delta+1) n+2(j-1)+(\Delta-1)(k-1)=2 j+(\Delta-1) k+(\Delta+1)(n-1)$. Hence the theorem holds.

Since $K_{1, \Delta}$ is a subgraph of any graph with maximum degree Δ, the following corollary follows from Theorem 4.2 and formula (2).

Corollary 4.3. For any graph G with maximum degree Δ,

$$
\begin{aligned}
& \sigma_{j, k}^{n}(G) \geq 2 j+(\Delta-1) k+(\Delta+1)(n-1) \\
& \lambda_{j, k}^{n}(G) \geq j+(\Delta-1) k+(\Delta+1)(n-1)
\end{aligned}
$$

The lower bounds in Corollary 4.3 are attained by the graph $K_{1, \Delta}$ since, by Theorem 4.2, $\sigma_{j, k}^{n}\left(K_{1, \Delta}\right)=2 j+(\Delta-1) k+$ $(\Delta+1)(n-1)$, and it is not difficult to prove that $\lambda_{j, k}^{n}\left(K_{1, \Delta}\right)=j+(\Delta-1) k+(\Delta+1)(n-1)$.

Theorem 4.4 ([7]). Let G be a graph with maximum degree Δ. Suppose there is a vertex with Δ neighbors, each of which has degree Δ. Then,

$$
\lambda_{j, k}(G) \geq \begin{cases}2 j+(\Delta-2) k, & \text { if } j / k \leq \Delta \\ j+2(\Delta-1) k, & \text { if } j / k \geq \Delta .\end{cases}
$$

We extend this theorem to n-fold $L(j, k)$-labelings of graphs. For a vertex u of a graph G, by $N(u)$ we denote the set of all neighbors of u and by $N[u]$ the set $N(u) \cup\{u\}$.

Theorem 4.5. Let G be a graph with maximum degree Δ. Suppose there is a vertex with Δ neighbors, each of which has degree Δ. Then,

$$
\lambda_{j, k}^{n}(G) \geq \begin{cases}2 j+(\Delta-2) k+(\Delta+1)(n-1), & \text { if }(j+n-1) /(k+n-1) \leq \Delta, \\ j+2(\Delta-1) k+2 \Delta(n-1), & \text { if }(j+n-1) /(k+n-1) \geq \Delta .\end{cases}
$$

Proof. Let u be a vertex of G with Δ neighbors $v_{1}, v_{2}, \ldots, v_{\Delta}$, each of which has degree Δ. Let f be any n-fold $L(j, k)$ labeling of G with span λ. Let $[\widehat{f(u)}]^{j}=\bigcup_{i=1}^{p_{0}}\left[a_{i, 0}, b_{i, 0}\right]$ and $\left[\widehat{f\left(v_{s}\right)}\right]^{k}=\bigcup_{i=1}^{p_{s}}\left[a_{i, s}, b_{i, s}\right]$ for $s=1,2, \ldots, \Delta$. Then all sets $\left[a_{i, s}, b_{i, s}\right]\left(s=0,1, \ldots, \Delta, i=1,2, \ldots, p_{s}\right)$ are pairwise at distance at least k. Furthermore, each $\left[a_{i, 0}, b_{i, 0}\right]\left(i \in\left[1, p_{0}\right]\right)$ is at distance at least j from all other sets $\left[a_{i, s}, b_{i, s}\right]\left(s=1,2, \ldots, \Delta, i=1,2, \ldots, p_{s}\right)$.

Notice that if $(j+n-1) /(k+n-1) \geq \Delta$ then $2 j+(\Delta-2) k+(\Delta+1)(n-1) \geq j+2(\Delta-1) k+2 \Delta(n-1)$, and if $(j+n-1) /(k+n-1) \leq \Delta$ then $2 j+(\Delta-2) k+(\Delta+1)(n-1) \leq j+2(\Delta-1) k+2 \Delta(n-1)$. To prove the theorem, it suffices to prove that $\lambda \geq 2 j+(\Delta-2) k+(\Delta+1)(n-1)$ or $\lambda \geq j+2(\Delta-1) k+2 \Delta(n-1)$.

If $[\widehat{f(u)}]^{j}$ contains more than one interval, then at least $2 j-2$ labels not in $f(u)$ are forbidden for any neighbor of u. By considering the label sets of the vertices in $N[u]$ and the distance conditions, we know that $\lambda \geq(\Delta+1) n+2 j-3+(\Delta-$ $2)(k-1)=2 j+(\Delta-2) k+(\Delta+1)(n-1)$. Therefore we may assume $[\widehat{f(u)}]^{j}=[a, b] \subseteq[0, \lambda]$. Note that we actually have proved that for any vertex v of maximum degree, $[\widehat{f(v)}]^{j}$ must consist of consecutive numbers (otherwise we are done by the above argument). Thus we may assume $\left[\widehat{f\left(v_{s}\right)}\right]^{j}=\left[a_{s}, b_{s}\right]$ for $s \in[1, \Delta]$.

If $[a, b] \subseteq[j-1, \lambda-j+1]$, then the $2 j-2$ labels in $[a-j+1, a-1] \cup[b+1, b+j-1]$ are forbidden for any neighbor of u. By considering the label sets of the vertices in $N[u]$ and the distance conditions, we know that $\lambda \geq(\Delta+1) n+2 j-3+(\Delta-2)(k-1)=2 j+(\Delta-2) k+(\Delta+1)(n-1)$. Thus $[a, b]$ is not contained in $[j-1, \lambda-j+1]$. Note that we have actually proved that for any vertex v of maximum degree, $[\widehat{f(v)}]^{j}$ is not contained in $[j-1, \lambda-j+1]$.

Now, without loss of generality, we may assume $a \leq j-2$. As $|[a, b]| \geq n, a_{s} \geq j+n-1$ for $s \in[1, \Delta]$. Since $v_{1}, v_{2}, \ldots, v_{\Delta}$ are pairwise at distance at most $2, a_{h}=\min \left\{a_{1}, a_{2}, \ldots, a_{\Delta}\right\} \leq \lambda-[\Delta n+(\Delta-1)(k-1)]+1$, that is $\lambda \geq a_{h}+\Delta n+(\Delta-1)(k-1)-1$. From the above discussion, $\left[\widehat{f\left(v_{h}\right)}\right]^{j}=\left[a_{h}, b_{h}\right]$ is not contained in $[j-1, \lambda-j+1]$. Since $a_{h} \geq j+n-1$, we must have $b_{h}>\lambda-j+1$. It follows that all label sets of the Δ neighbors of v_{h} are contained in $\left[0, a_{h}-j\right]$, implying $a_{h} \geq j-1+\Delta n+(\Delta-1)(k-1)$. Therefore $\lambda \geq a_{h}+\Delta n+(\Delta-1)(k-1)-1 \geq j-2+2 \Delta n+2(\Delta-1)(k-1)=$ $j+2(\Delta-1) k+2 \Delta(n-1)$. This completes the proof.

The following theorem can be found in [8] and is essential in establishing the upper bounds for n-fold $L(j, k)$-labeling numbers of trees.

Theorem 4.6 ([8]). Let T be any tree with maximum degree Δ. Then

$$
\lambda_{j, k}(T) \leq \begin{cases}2 j+(\Delta-2) k, & \text { if } j / k \leq \Delta \text { and } j \text { is a multiple of } k, \\ j+2(\Delta-1) k, & \text { if } j / k \geq \Delta .\end{cases}
$$

Theorem 4.7. Let T be a tree with maximum degree Δ. Then

$$
\lambda_{j, k}^{n}(T) \leq 2 j+(\Delta-1) k+(\Delta+1)(n-1)-1
$$

Furthermore,

$$
\lambda_{j, k}^{n}(T) \leq \begin{cases}2 j+(\Delta-2) k+(\Delta+1)(n-1), & \text { if }(j+n-1) /(k+n-1) \leq \Delta \text { and }(k+n-1) \mid(j+n-1), \\ j+2(\Delta-1) k+2 \Delta(n-1), & \text { if }(j+n-1) /(k+n-1) \geq \Delta\end{cases}
$$

and the inequality is an equality if T has a vertex with Δ neighbors of degree Δ.
Proof. By Theorem 4.2 and formula (3), for any tree T with maximum degree $\Delta, \lambda_{j, k}^{n}(T) \leq 2 j+(\Delta-1) k+(\Delta+1)(n-1)-1$. By Theorem 4.6 and Lemma 2.1, if $(j+n-1) /(k+n-1) \leq \Delta$ and $j+n-1$ is a multiple of $k+n-1$ then $\lambda_{j, k}^{n}(T) \leq 2 j+(\Delta-2) k+(\Delta+1)(n-1)$, and if $(j+n-1) /(k+n-1) \geq \Delta$ then $\lambda_{j, k}^{n}(T) \leq j+2(\Delta-1) k+2 \Delta(n-1)$. The last statement follows from Theorem 4.5.

When $k=1$, both the lower and upper bounds for n-fold $L(j, k)$-labeling numbers of trees that we obtained so far are sharp. This is summarized as the following corollary.

Corollary 4.8. For any tree T with maximum degree Δ,

$$
(\Delta+1) n+j-2 \leq \lambda_{j, 1}^{n}(T) \leq \min \{(\Delta+1) n+2 j-3,2 \Delta n+j-2\}
$$

The lower and the upper bounds for $\lambda_{j, 1}^{n}(T)$ are both attainable.
Corollary 4.8 generalizes the following theorem proved by Chang et al. in [5].
Theorem 4.9 ([5]). For any tree T with maximum degree Δ,

$$
\Delta+j-1 \leq \lambda_{j, 1}(T) \leq \min \{\Delta+2 j-2,2 \Delta+j-2\}
$$

Moreover, the lower and the upper bounds for $\lambda_{j, 1}(T)$ are both attainable.
By Corollary 4.8, $\lambda_{1,1}^{n}(T)=(\Delta+1) n-1$ for any tree T with maximum degree Δ.
Corollary 4.10. For any tree T with maximum degree Δ,

$$
(\Delta+1) n \leq \lambda_{2,1}^{n}(T) \leq(\Delta+1) n+1 .
$$

Corollary 4.10 is a generalization of the result $\Delta+1 \leq \lambda_{2,1}(T) \leq \Delta+2$ for any tree with maximum degree Δ, which was proved by Griggs and Yeh in [12]. In [6], Chang and Kuo gave a polynomial time algorithm for determining whether $\lambda_{2,1}(T)=\Delta+1$ for any tree T with maximum degree Δ. It was indicated in [5] that this algorithm can be modified to determine $\lambda_{j, 1}(T)$ and the modified algorithm also runs in a polynomial time. A linear time algorithm for $L(2,1)$-labeling of trees was given in [14]. The authors also showed that it can be extended to a linear time algorithm for $L(j, 1)$-labeling of trees with a constant j.

We conclude this section by asking the following two questions.
Question 1. For a fixed positive integer $n \geq 2$, is there a polynomial time algorithm for computing $\lambda_{j, 1}^{n}(T)$ for any tree T ?
Question 2. For positive integers $n \geq 2$, how do we characterize all trees T with maximum degree Δ and $\lambda_{2,1}^{n}(T)=$ $(\Delta+1) n$?

Fig. 3. The hexagonal lattice Γ_{6}.

Fig. 4. Another drawing of Γ_{6}.

5. The hexagonal lattice

Let $\mathbf{e}_{1}=(1,0)^{T}, \mathbf{e}_{2}=(0,1)^{T}$ and $\mathbf{f}=(1 / 2, \sqrt{3} / 2)^{T}$ be three vectors in the Euclidean plane. The triangular lattice Γ_{3} is an infinite graph with vertex set $\left\{x \mathbf{e}_{\mathbf{1}}+y \mathbf{f}: x, y \in \mathbb{Z}\right\}$ with two different vertices $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ adjacent if the Euclidean distance between them is 1 . The square lattice Γ_{4} is an infinite graph with vertex set $\left\{x \mathbf{e}_{\mathbf{1}}+y \mathbf{e}_{2}: x, y \in \mathbb{Z}\right\}$ with two different vertices $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ adjacent if the Euclidean distance between them is 1 .

The hexagonal lattice Γ_{6} is the subgraph of Γ_{3} induced by the vertex set $V\left(\Gamma_{3}\right) \backslash\{(x, x+3 y+1): x, y \in \mathbb{Z}\}$. If two vertices $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ in Γ_{3} (or Γ_{4}, Γ_{6}) are adjacent, then we write the edge joining them by $\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right)$. One can also view the hexagonal lattice Γ_{6} as a spanning subgraph of Γ_{4} with edge set $E\left(\Gamma_{4}\right) \backslash E^{*}$, where $E^{*}=\{(x, y)(x+1, y): x, y \in$ \mathbb{Z} and $x+y$ is odd\}. Please see Figs. 3 and 4 for illustrations. We shall use the latter in the proof of the following theorem.

Theorem 5.1. $\sigma_{j, k}\left(\Gamma_{6}\right)=2 j+2 k$.
Proof. Since the maximum degree of Γ_{6} is 3 , by applying Corollary 4.3 for $n=1$, we obtain $\sigma_{j, k}\left(\Gamma_{6}\right) \geq 2 j+2 k$. Let $m=2 j+2 k$. Define a function f from $V\left(\Gamma_{6}\right)$ to $[0, m-1]$ as

$$
f((x, y))= \begin{cases}(y k) \bmod m, & \text { if } x+y \text { is even }, \\ (j+k+y k) \bmod m, & \text { if } x+y \text { is odd } .\end{cases}
$$

We now show that f is a circular $m-L(j, k)$-labeling of Γ_{6}. Let (x, y) be any vertex of Γ_{6}. If $x+y$ is even, then the three neighbors of (x, y) are $(x+1, y),(x, y+1),(x, y-1)$. It follows that $f((x, y))=(y k) \bmod m, f((x+1, y))=$ $(j+k+y k) \bmod m, f((x, y+1))=(j+k+(y+1) k) \bmod m$, and $f((x, y-1))=(j+k+(y-1) k) \bmod m$. It is obvious that the circular distance between the label of (x, y) and the labels of its three neighbors is at least j. The case where $x+y$ is odd can be shown similarly. Thus the distance 1 condition is satisfied.

All vertices at distance 2 from (x, y) are $(x, y+2),(x, y-2),(x+1, y+1),(x+1, y-1),(x-1, y+1)$ and $(x-1, y-1)$. Notice that the sum of the two coordinates of each 2-neighbor of (x, y) has the same parity. It is not difficult to check that the distance 2 condition is also satisfied. Thus f is a circular $m-L(j, k)$-labeling of Γ_{6}, proving the theorem.

Theorem 5.2. $\sigma_{j, k}^{n}\left(\Gamma_{6}\right)=2 j+2 k+4 n-4$.
Proof. Since the maximum degree of Γ_{6} is 3 , by Corollary 4.3, $\sigma_{j, k}^{n}\left(\Gamma_{6}\right) \geq 4 n+2(j-1)+2(k-1)$. On the other hand, by Theorem 5.1 and Lemma 2.1, $\sigma_{j, k}^{n}\left(\Gamma_{6}\right) \leq 4 n+2(j-1)+2(k-1)$. Thus the theorem holds.

The following corollary follows from Theorem 5.2 and formula (3).

Corollary 5.3. $\lambda_{j, k}^{n}\left(\Gamma_{6}\right) \leq 2 j+2 k+4 n-5$.
Theorem 5.4 ([3,11]).

$$
\lambda_{j, k}\left(\Gamma_{6}\right)= \begin{cases}3 j, & \text { if } 1 \leq j / k \leq 5 / 3 \\ 5 k, & \text { if } 5 / 3 \leq j / k \leq 2 \\ 2 j+k, & \text { if } 2 \leq j / k \leq 3 \\ j+4 k, & \text { if } 3 \leq j / k\end{cases}
$$

Theorem 5.5.

$$
\lambda_{j, k}^{n}\left(\Gamma_{6}\right) \begin{cases}\in[2 j+k+4 n-4,3 j+4 n-4], & \text { if } 1 \leq(j+n-1) /(k+n-1) \leq 5 / 3 \\ \in[2 j+k+4 n-4,5 k+6 n-6], & \text { if } 5 / 3 \leq(j+n-1) /(k+n-1) \leq 2 \\ =2 j+k+4 n-4, & \text { if } 2 \leq(j+n-1) /(k+n-1) \leq 3 \\ =j+4 k+6 n-6, & \text { if } 3 \leq(j+n-1) /(k+n-1)\end{cases}
$$

Proof. The upper bounds follow from Theorem 5.4 and Lemma 2.1, and the lower bounds follow from Theorem 4.5.

Corollary 5.6.

$$
\lambda_{j, 1}^{n}\left(\Gamma_{6}\right)= \begin{cases}2 j+4 n-3, & \text { if } j \leq 2 n+1 \\ j+6 n-2, & \text { if } j \geq 2 n+1\end{cases}
$$

6. The p-dimensional square lattice

Let $p \geq 2$ be an integer. The p-dimensional square lattice Γ_{4}^{p} is an infinite graph with vertex set $\left\{\left(x_{1}, x_{2}, \ldots, x_{p}\right): x_{1}, x_{2}\right.$, $\left.\ldots, x_{p} \in \mathbb{Z}\right\}$, and with two different vertices adjacent if and only if the Euclidean distance between them is 1 . Clearly, if $p=2$, then Γ_{4}^{2} is the so called square lattice Γ_{4}. The p-dimensional square lattice is ($2 p$)-regular.

Let $u=\left(x_{1}, x_{2}, \ldots, x_{p}\right)$ and $v=\left(y_{1}, y_{2}, \ldots, y_{p}\right)$ be two vertices of Γ_{4}^{p}. Then u is adjacent to v if and only if there is some $q \in[1, p]$ such that $\left|x_{q}-y_{q}\right|=1$ and $x_{i}=y_{i}$ for $i \in[1, p] \backslash\{q\}$. And u is distance 2 away from v if and only if there are two integers $q, s \in[1, p]$ such that $\left|x_{q}-y_{q}\right|+\left|x_{s}-y_{s}\right|=2$ and $x_{i}=y_{i}$ for $i \in[1, p] \backslash\{q, s\}$.

Theorem 6.1. $\sigma_{j, k}\left(\Gamma_{4}^{p}\right)=2 j+(2 p-1) k$.
Proof. Since $K_{1,2 p}$ is a subgraph of Γ_{4}^{p}, it follows from Theorem 4.2 that $\sigma_{j, k}\left(\Gamma_{4}^{p}\right) \geq 2 j+(2 p-1) k$. Let $m=2 j+(2 p-1) k$. Define a function f from $V\left(\Gamma_{4}^{p}\right)$ to $[0, m-1]$ as follows: for any vertex $u=\left(x_{1}, x_{2}, \ldots, x_{p}\right)$ of Γ_{4}^{p},

$$
f(u)=\left(\sum_{i=1}^{p}[j+(i-1) k] x_{i}\right) \bmod m
$$

Let $u=\left(x_{1}, x_{2}, \ldots, x_{p}\right)$ and $v=\left(y_{1}, y_{2}, \ldots, y_{p}\right)$ be any two vertices of Γ_{4}^{p}. If u is adjacent to v, then there is some $q \in[1, p]$ such that $\left|x_{q}-y_{q}\right|=1$ and $x_{i}=y_{i}$ for $i \in[1, p] \backslash\{q\}$. It follows from the definition of f that $|f(u)-f(v)|_{m}=j+(q-1) k \geq j$. Thus the distance 1 condition is satisfied. If u and v are at distance 2 , then there are two integers $q, s \in[1, p]$ such that $\left|x_{q}-y_{q}\right|+\left|x_{s}-y_{s}\right|=2$ and $x_{i}=y_{i}$ for $i \in[1, p] \backslash\{q, s\}$. Suppose $q>s$. Then

$$
k \leq(q-s) k \leq\left|\sum_{i=1}^{p}[j+(i-1) k] x_{i}-\sum_{i=1}^{p}[j+(i-1) k] y_{i}\right| \leq 2 j+2(q-1) k \leq 2 j+(2 p-2) k
$$

Therefore $|f(u)-f(v)|_{m} \geq k$. The distance 2 condition is also satisfied. Thus f is a circular $m-L(j, k)$-labeling of Γ_{4}^{p}, and so $\sigma_{j, k}\left(\Gamma_{4}^{p}\right) \leq 2 j+(2 p-1) k$. This proves the theorem.

The following theorem follows from Theorem 6.1 and Corollary 4.3.
Theorem 6.2. $\sigma_{j, k}^{n}\left(\Gamma_{4}^{p}\right)=2 j+(2 p-1) k+(2 p+1)(n-1)$.
Theorem 6.3 ([7]).

$$
\lambda_{j, k}\left(\Gamma_{4}^{p}\right) \begin{cases}\in[2 j+(2 p-2) k, 2 j+(2 p-1) k-1], & \text { if } 1 \leq j / k \leq 2 p \\ =2 j+(2 p-2) k, & \text { if } 1 \leq j / k \leq 2 p \text { and } k \mid j, \text { or } 2 p-1<j / k<2 p \\ =j+(4 p-2) k, & \text { if } j / k \geq 2 p .\end{cases}
$$

Theorem 6.3, Lemma 2.1 and Theorem 4.5 imply the following theorem.

Theorem 6.4.

$$
\lambda_{j, k}^{n}\left(\Gamma_{4}^{p}\right)\left\{\begin{array}{l}
\in[2 j+(2 p-2) k+(2 p+1)(n-1), 2 j+(2 p-2) k+(2 p+1)(n-1)+k-1], \\
\\
=2 f(j+n-1) /(k+n-1) \leq 2 p, \\
\\
\text { or } 1 \leq(2 p-2) k+(2 p+1)(n-1), \quad \text { if } 2 p-1<(j+n-1) /(k+n-1) \leq 2 p \text { and }(k+n-1) \mid(j+n-1), \\
= \\
=j+(4 p-2) k+4 p(n-1), \quad \text { if }(j+n-1) /(k+n-1) \geq 2 p .
\end{array}\right.
$$

Corollary 6.5.

$$
\lambda_{j, 1}^{n}\left(\Gamma_{4}^{p}\right)= \begin{cases}2 j+(2 p+1) n-3, & \text { if } j \leq(2 p-1) n+1, \\ j+4 p n-2, & \text { if } j \geq(2 p-1) n+1 .\end{cases}
$$

Acknowledgments

The authors would like to express their gratitude to the referees for their many valuable suggestions for the revision of this paper.

References

[1] H.L. Bodlaender, T. Kloks, R.B. Tan, J. van Leeuwen, Approximations for λ-colorings of graphs, Comput. J. 47 (2) (2004) 193-204.
[2] T. Calamoneri, The $L(h, k)$-labelling problem: an updated survey and annotated bibliography, Comput. J. 54 (8) (2011) $1344-1371$.
[3] T. Calamoneri, S. Caminiti, G. Fertin, $L(h, k)$-labelling of regular grids, Int. J. Mobile Netw. Design Innovat. 1 (2) (2006) 92-101.
4] T. Calamoneri, R. Petreschi, λ-coloring matrogenic graphs, Discrete Appl. Math. 154 (2006) 2445-2457.
[5] G.J. Chang, W.T. Ke, D. Kuo, D.D.-F. Liu, R.K. Yeh, On $L(d, 1)$-labelings of graphs, Discrete Math. 220 (2000) 57-66.
[6] G.J. Chang, D. Kuo, The $L(2,1)$-labeling problem on graphs, SIAM J. Discrete Math. 9 (1996) 309-316.
[7] J.P. Georges, D.W. Mauro, Generalized vertex labelings with a condition at distance two, Congr. Numer. 109 (1995) 141-159.
[8] J.P. Georges, D.W. Mauro, Labeling trees with a condition at distance two, Discrete Math. 269 (2003) 127-148.
[9] J.P. Georges, D.W. Mauro, M.A. Whittlesey, Relating path coverings to vertex labellings with a condition at distance two, Discrete Math. 135 (1994) 103-111.
[10] J.R. Griggs, X.T. Jin, Recent progress in mathematics and engineering on optimal graph labellings with distance conditions, J. Comb. Optim. 14 (2-3) (2007) 249-257.
[11] J.R. Griggs, X.H. Jin, Real number channel assignments for lattices, SIAM J. Discrete Math. 22 (3) (2008) 996-1021.
[12] J.R. Griggs, R.K. Yeh, Labeling graphs with a condition at distance 2, SIAM J. Discrete Math. 5 (1992) 586-595.
[13] W.K. Hale, Frequency assignment: theory and applications, Proc. IEEE 68 (1980) 1497-1514.
[14] T. Hasunuma, T. Ishii, H. Ono, Y. Uno, A linear time algorithm for $L(2,1)$-labeling of trees, in: 17 th Annual European Symposium on Algorithms, ESA 2009, September 7-9, Copenhagen, Denmark, in: Lecture Notes in Computer Science, vol. 5757, Springer-Verlag, 2009, pp. 35-46.
[15] L.-H. Huang, G.J. Chang, $L(h, k)$-labelings of hamming graphs, Discrete Math. 309 (2009) 2197-2201.
[16] P.C.B. Lam, W. Lin, J. Wu, $L(j, k)$-labellings and circular $L(j, k)$-labellings of products of complete graphs, J. Comb. Optim. 14 (2-3) (2007) $219-227$.
[17] R.A. Leese, S.D. Noble, Cyclic labellings with constraints at two distance, Electron. J. Combin. 11 (2004) \#R16.
[18] W. Lin, P.C.B. Lam, Star matching and distance two labelling, Taiwanese J. Math. 13 (1) (2009) 211-224.
[19] D.D.-F. Liu, Hamiltonicity and circular distance two labellings, Discrete Math. 232 (2001) 163-169.
[20] D.D.-F. Liu, X. Zhu, Circulant distant two labeling and circular chromatic number, Ars Combin. 69 (2003) 177-183.
[21] D. Lü, W. Lin, Z. Song, $L(2,1)$-circular labelings of Cartesian products of complete graphs, J. Math. Res. Exposition 29 (1) (2009) 91-98.
[22] P. Marchioro, A. Morgana, R. Petreschi, B. Simeone, Degree sequences of matrogenic graphs, Discrete Math. 51 (1984) 47-61.
[23] J. van den Heuvel, R.A. Leese, M.A. Shepherd, Graph labeling and radio channel assignment, J. Graph Theory 29 (1998) 263-283.
[24] K.-F. Wu, R.K. Yeh, Labelling graphs with the circular difference, Taiwanese J. Math. 4 (2000) 397-405.
[25] R.K. Yeh, A survey on labeling graphs with a condition at distance two, Discrete Math. 306 (2006) 1217-1231.
[26] P. Zhang, W. Lin, Multiple $L(j, 1)$-labeling of the triangular lattice, Manuscript.

[^0]: * Project 10971025 supported by NSFC.
 * Corresponding author.

 E-mail address: wslin@seu.edu.cn (W. Lin).

