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a b s t r a c t

We initiate research on the multiple distance 2 labeling of graphs in this paper.
Let n, j, k be positive integers. An n-fold L( j, k)-labeling of a graph G is an assignment f

of sets of nonnegative integers of order n to the vertices of G such that, for any two vertices
u, v and any two integers a ∈ f (u), b ∈ f (v), |a − b| ≥ j if uv ∈ E(G), and |a − b| ≥ k if u
and v are distance 2 apart. The span of f is the absolute difference between the maximum
and minimum integers used by f . The n-fold L( j, k)-labeling number of G is the minimum
span over all n-fold L( j, k)-labelings of G.

Let n, j, k andm be positive integers. An n-fold circularm-L( j, k)-labeling of a graph G is
an assignment f of subsets of {0, 1, . . . ,m− 1} of order n to the vertices of G such that, for
any two vertices u, v and any two integers a ∈ f (u), b ∈ f (v), min{|a− b|,m−|a− b|} ≥ j
if uv ∈ E(G), andmin{|a−b|,m−|a−b|} ≥ k if u and v are distance 2 apart. Theminimum
m such that G has an n-fold circular m-L( j, k)-labeling is called the n-fold circular L( j, k)-
labeling number of G.

We investigate the basic properties of n-fold L( j, k)-labelings and circular L( j, k)-
labelings of graphs. The n-fold circular L( j, k)-labeling numbers of trees, and the hexagonal
and p-dimensional square lattices are determined. The upper and lower bounds for the
n-fold L( j, k)-labeling numbers of trees are obtained. In most cases, these bounds are
attainable. In particular, when k = 1 both the lower and the upper bounds are sharp. In
many cases, the n-fold L( j, k)-labeling numbers of the hexagonal and p-dimensional square
lattices are determined. In other cases, upper and lower bounds are provided. In particular,
we obtain the exact values of the n-fold L( j, 1)-labeling numbers of the hexagonal and
p-dimensional square lattices.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Motivated from the channel assignment problem introduced by Hale [13], Griggs and Yeh [12] were the first to propose
and study the L(2, 1)-labelings of graphs. Since then the L(2, 1)-labelings and the general case L( j, k)-labelings of graphs
have been studied extensively; refer to the surveys [2,25,10]. In Griggs and Yeh’s model, vertices of the graph represent
transmitters, and the label of a vertex represents the radio channel assigned to the corresponding transmitter. Each
transmitter is assigned exactly one radio channel. However, in practice, each transmitter may demand more than one
radio channel. From this case, the multiple L( j, k)-labeling of a graph arises. In this paper, we assume that each transmitter
demands the same number of channels. For a positive integer n, the n-fold L( j, k)-labeling of a graph G is defined as follows.

For two sets of nonnegative integers I and I ′, the distance between I and I ′, d(I, I ′), is defined asmin{|i−i′| : i ∈ I, i′ ∈ I ′}.
Let n, j, k be positive integers. An n-fold L( j, k)-labeling of a graph G is an assignment f of sets of nonnegative integers of
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order n to the vertices of G such that, for any two vertices u and v, d(f (u), f (v)) ≥ j if uv ∈ E(G) (this is called the distance 1
condition), and d(f (u), f (v)) ≥ k if u and v are distance 2 apart (this is called the distance 2 condition). Given a graph G, for
an n-fold L( j, k)-labeling f of G, the images of f are called label sets and the numbers used by f are called labels, andwe define
the span of f , span(f ), to be the absolute difference between themaximumandminimumnumbers used by f . Without loss of
generality we shall assume that the minimum number used in an n-fold L( j, k)-labeling f of G is always 0, implying that the
span of the labeling is the maximum number assigned to a vertex under f . The n-fold L( j, k)-labeling number of G, denoted
by λn

j,k(G), is the minimum span over all n-fold L( j, k)-labelings of G. The onefold L( j, k)-labeling number of G, λ1
j,k(G), is

equivalent to the L( j, k)-labeling number of G, λj,k(G), which has been studied extensively [2,7,8,16,15].
A useful approach in investigating the n-fold L( j, k)-labeling of a graph G is to consider the circular L( j, k)-labeling of G

which we define below. Supposem is a positive integer. Let S(m) denote a circle of circumferencem. We fix a point on S(m)
and label it with 0. We label each point on S(m) with a real number x ∈ [0,m) according to the length of the arc from 0
along the clockwise direction on S(m) to this point. For any r ∈ R, [r]m ∈ [0,m) denotes the remainder of r upon division
ofm.

In this paper, we are interested in the integer points 0, 1, . . . ,m−1 on the circle S(m). Let l be an integer and n a positive
integer. We use Snm(l) to denote the set of n consecutive integer points [l]m, [l+1]m, . . . , [l+n−1]m on S(m). Let a and b be
two integers with 0 ≤ a, b < m. We use [a, b]m to denote the set of integer points a, a+ 1, . . . , b on S(m), where additions
are taken modulo m. Let (a, b)m denote the set of integer points a + 1, a + 2, . . . , b − 1 on S(m). [a, b)m and (a, b]m are
defined similarly. We call [a, b]m ((a, b)m) a closed interval (an open interval) of S(m). A sequence (a0, a1, . . . , as) of different
points on S(m) is said to be in cyclic order if the sets (a0, a1)m, (a1, a2)m, . . . , (as−1, as)m, (as, a0)m are pairwise disjoint.

The circular distance of two numbers (or two points on S(m)) a and bwith 0 ≤ a, b < m on S(m), denoted by |a − b|m, is
defined as min{|a − b|,m − |a − b|}. Suppose S and Q are two sets of points on S(m). The circular distance between P and
Q , denoted by dm(P,Q ), is defined as min{|p − q|m : p ∈ P, q ∈ Q }.

Let n, j, k and m be positive integers. An n-fold circular m-L( j, k)-labeling of a graph G is an assignment f of subsets of
{0, 1, . . . ,m − 1} of order n to the vertices of G such that, for any two vertices u and v, dm(f (u), f (v)) ≥ j if uv ∈ E(G), and
dm(f (u), f (v)) ≥ k if u and v are distance 2 apart. The minimum m such that G has an n-fold circular m-L( j, k)-labeling is
called the n-fold circular L( j, k)-labeling number of G and is denoted by σ n

j,k(G). The onefold circular L( j, k)-labeling number
of G, σ 1

j,k(G), is equivalent to the circular L( j, k)-labeling number of G, which has been investigated in many papers; see
[23,19,24,20,17,16,21].

In an n-fold L( j, k)-labeling f of a graph G, if each vertex of G receives n consecutive integers (that is for each vertex u of
G there is some integer t ≥ 0 such that f (u) = {t, t + 1, . . . , t + n − 1}), then we get an n-fold consecutive L( j, k)-labeling
of G. The n-fold consecutive L( j, k)-labeling number of G, denoted by λ̄n

j,k(G), is the minimum span over all n-fold consecutive
L( j, k)-labelings of G. We have λn

j,k(G) ≤ λ̄n
j,k(G) for any graph G.

In an n-fold circular m-L( j, k)-labeling f of a graph G, if each vertex of G receives n consecutive integer points on S(m)
(that is for each vertex u of G there is some integer t ∈ [0,m− 1] such that f (u) = Snm(t)), then we get an n-fold consecutive
circular m-L( j, k)-labeling of G. The minimum m such that G has an n-fold consecutive circular m-L( j, k)-labeling is called
the n-fold consecutive circular L( j, k)-labeling number of G and is denoted by σ̄ n

j,k(G). It follows that σ n
j,k(G) ≤ σ̄ n

j,k(G) for any
graph G.

Throughout this paper j, k and n are positive integers with j ≥ k. Let a and b be two integers with a ≤ b. We denote by
[a, b] the set of integers a, a + 1, . . . , b.

In the next section, we investigate basic properties of n-fold L( j, k)-labelings and circular L( j, k)-labelings of graphs.
In particular, we establish the relationship between λn

j,k(G) and λj+n−1,k+n−1(G), and the relationship between σ n
j,k(G) and

σj+n−1,k+n−1(G). In Section 3, we present a class of graphs with σ n
j,1(G) < σ̄ n

j,1(G) and λn
j,1(G) < λ̄n

j,1(G). In Section 4, we
determine σ n

j,k(T ) for any tree T and provide upper and lower bounds for λn
j,k(T ). The upper bound is attainable in many

cases and is sharp in the case k = 1. The n-fold circular L( j, k)-labeling numbers and n-fold L( j, 1)-labeling numbers of the
hexagonal and p-dimensional square lattices are determined in Sections 5 and 6, respectively. We mention that the n-fold
L( j, 1)-labeling number and n-fold circular L( j, 1)-labeling number of a triangular lattice were investigated in [26].

2. Some basic properties and notation

Let f be an n-fold consecutive L( j, k)-labeling of a graph Gwith span λ. Wemay obtain an L( j+n−1, k+n−1)-labeling
f ′ of Gwith span λ − n + 1 by letting f ′(u) = t if f (u) = [t, t + n − 1] for each vertex u of G. Conversely, we may obtain an
n-fold consecutive L( j, k)-labeling of a graph Gwith span λ from an L( j+n−1, k+n−1)-labeling of Gwith span λ−n+1.
In a similar way, one can find a one-to-one correspondence between an n-fold consecutive circularm-L( j, k)-labeling and a
circularm-L( j + n − 1, k + n − 1)-labeling of a graph G. Therefore we have the following lemma.

Lemma 2.1. For any graph G,

λn
j,k(G) ≤ λ̄n

j,k(G) = λj+n−1,k+n−1(G) + n − 1,

and

σ n
j,k(G) ≤ σ̄ n

j,k(G) = σj+n−1,k+n−1(G).
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In [23] van den Heuvel, Leese, and Shepherd noted that, for any graph G, if j ≥ k then

λj,k(G) + 1 ≤ σj,k(G) ≤ λj,k(G) + j. (1)

We point out that an n-fold circular m-L( j, k)-labeling of a graph is an n-fold L( j, k)-labeling with span m − 1, and an
n-fold L( j, k)-labeling with span λ is an n-fold circular (λ + j)-L( j, k)-labeling. Thus we have

λn
j,k(G) + 1 ≤ σ n

j,k(G) ≤ λn
j,k(G) + j (2)

By Lemma 2.1 and formula (2),

λn
j,k(G) ≤ min { λj+n−1,k+n−1(G) + n − 1, σj+n−1,k+n−1(G) − 1}. (3)

Let G and H be two graphs. The lexicographic product of G and H is the graph G[H] with vertex set V (G) × V (H) and two
vertices (u, x) and (v, y) are adjacent in G[H] if and only if uv ∈ E(G) or u = v with xy ∈ E(H). Let K n denote the empty
graph on n vertices. If G is nontrivial and nonempty, then it is clear that an n-fold L( j, 1)-labeling of a graph G corresponds
to an L( j, 1)-labeling of G[K n], and so λn

j,1(G) = λj,1(G[K n]). Similarly, an n-fold circular m-L( j, 1)-labeling of a graph G
corresponds to a circularm-L( j, 1)-labeling of G[K n], and so σ n

j,1(G) = σj,1(G[K n]).
Let G be a graph and u a vertex of G. We call a vertex v a d-neighbor of u in G if dG(u, v) = d.
Let f be an n-fold L( j, k)-labeling of G with span λ. For any vertex u of G and a positive integer t ≥ 2, we define the

t-closure of f (u), denoted by [f (u)]t , as

[f (u)]t = {h ± i : for each h ∈ f (u) and i = 0, 1, . . . , t − 1} ∩ [0, λ].

It follows that [f (u)]t is the disjoint union of the sets [a1, b1], [a2, b2], . . . , [ap, bp] for some positive integer p, where
a1 < b1 < a2 < b2 < · · · < ap < bp and |[bi, ai+1]| ≥ 3 for i = 1, 2, . . . , p − 1. It is clear that, for each i ∈ [2, p − 1], there
are at least 2(t − 1) labels in [ai, bi] \ f (u). All labels in the j-closure of f (u) are forbidden for any neighbor of u and all labels
in the k-closure of f (u) are forbidden for any 2-neighbor of u.

Let u be a vertex and [f (u)]t be the disjoint union of the sets [a1, b1], [a2, b2], . . . , [ap, bp] with a1 < b1 < a2 < b2 <

· · · < ap < bp and |[bi, ai+1]| ≥ 3 for i = 1, 2, . . . , p − 1. The net t-closure of f (u), denoted by [f (u)]t , is defined as the
union of the sets [min f (u), b1 − t + 1], [a2 + t − 1, b2 − t + 1], . . . , [ap + t − 1,max f (u)]. Clearly f (u) ⊆ [f (u)]t .

Let f be an n-fold circularm-L( j, k)-labeling of G. For any vertex u of G and a positive integer t ≥ 2, we define the circular
t-closure of f (u), denoted by [f (u)]tm, as

[f (u)]tm = {[h ± i]m : for each h ∈ f (u) and i = 0, 1, . . . , t − 1}.

It follows that [f (u)]tm is the disjoint union of the sets [a0, b0]m, [a1, b1]m, . . . , [ap−1, bp−1]m for some positive integer pwith
(a0, a1, . . . , ap−1) in cyclic order on S(m) and |[bi, ai+1]m| ≥ 3 for i = 0, 1, . . . , p − 1 (where ‘‘+’’ in the subscript is taken
modulo p). For each i, there are at least 2(t−1) labels in [ai, bi]m\f (u). All labels in the circular j-closure of f (u) are forbidden
for any neighbor of u and all labels in the circular k-closure of f (u) are forbidden for any 2-neighbor of u.

Let u be a vertex and [f (u)]tm be the disjoint union of the sets [a0, b0]m, [a1, b1]m, . . . , [ap−1, bp−1]m (where
(a0, a1, . . . , ap−1) is in cyclic order) on S(m). The net circular t-closure of f (u), denoted by [f (u)]tm, is defined as the union of
the sets [a0 + t − 1, b0 − t + 1]m, [a1 + t − 1, b1 − t + 1]m, . . . , [ap−1 + t − 1, bp−1 − t + 1]m. Clearly f (u) ⊆ [f (u)]tm.
3. Graphs G with σ̄n

j,k(G) > σn
j,k(G) and λ̄n

j,k(G) > λn
j,k(G)

In general λn
j,k(G) (respectively, σ n

j,k(G)) is not equal to λ̄n
j,k(G) (respectively, σ̄ n

j,k(G)), though in many cases as we shall
see later they are equal to each other.

To illustrate, consider Kp, the complete graph on p vertices. Since any two vertices of Kp are adjacent, in an n-fold
L( j, k)-labeling (respectively, n-fold circular L( j, k)-labeling) of G, any two vertices of Kp have label sets that are at distance
(respectively, at circular distance) at least j. It follows that σ n

j,k(Kp) = λn
j,k(Kp) + j = (n + j − 1)p.

Let H be the graph formed by adding a pendant vertex to each of the vertices of K5. Since K5 is a subgraph of H, σ 3
5,2(H) ≥

σ 3
5,2(K5) = 35 and λ3

5,2(H) ≥ λ3
5,2(K5) = 30. On the other hand, Fig. 1 gives a threefold L(5, 2)-labeling of H with span 30,

which is also a threefold circular 35-L(5, 2)-labeling of H . Therefore σ 3
5,2(H) = 35 and λ3

5,2(H) = 30.
Since in an optimal threefold L(5, 2)-labeling (respectively, circular L(5, 2)-labeling) of K5 the labeling scheme is unique

up to the permutation of vertices, it follows that σ̄ 3
5,2(H) > 35 and λ̄3

5,2(H) > 30. In fact, one can prove that σ̄ 3
5,2(H) = 37 and

λ̄3
5,2(H) = 32. Fig. 2 indicates a threefold consecutive L(5, 2)-labeling ofH with span 32,which is also a threefold consecutive

circular 37-L(5, 2)-labeling of H .
Later,we shall present a class of graphsGh and show that the difference σ̄ n

j,1(Gh)−σ n
j,1(Gh) (respectively, λ̄n

j,1(Gh)−λn
j,1(Gh))

can be arbitrarily large. To obtain σ̄ n
j,1(Gh) and λ̄n

j,1(Gh), by Lemma 2.1 it suffices to determine σj,k(Gh) and λj,k(Gh). In order
to do so, we proceed by proving a lemma that is quite useful in determining λj,k(G) and σj,k(G) of graphs G of diameter 2.

Given a graphG, the path covering number ofG, denoted by pv(G), is the smallest number of vertex-disjoint paths covering
V (G). By Gc we denote the complement graph of G. The following result was proved by Georges et al. [9].
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Fig. 1. A threefold L(5, 2)-labeling of H .

Fig. 2. A threefold consecutive L(5, 2)-labeling of H .

Theorem 3.1. For any graph G,

λ2,1(G)


≤ |V (G)| − 1, if pv(Gc) = 1,
= |V (G)| + pv(Gc) − 2, if pv(Gc) ≥ 2.

We prove a similar result about λj,k(G) and σj,k(G) for graphs G of diameter 2.

Lemma 3.2. Let G be a graph of diameter 2. If j ≤ 2k, then

σj,k(G) =


|V (G)|k, if Gc has a Hamiltonian cycle,
pv(Gc)j + (|V (G)| − pv(Gc))k, otherwise;

and

λj,k(G) = (pv(Gc) − 1)j + (|V (G)| − pv(Gc))k.

Proof. Let c = pv(Gc), p = |V (G)| and m = cj + (p − c)k. Since G is of diameter 2, it is obvious that σj,k(G) ≥ pk. If Gc

has a Hamiltonian cycle v0, v1, . . . , vp−1, then by assigning ik to the vertex vi for i = 0, 1, . . . , p − 1 we get a circular
(pk)-L( j, k)-labeling of G, implying σj,k(G) = pk.

Now suppose Gc has no Hamiltonian cycle. Let P1, P2, . . . , Pc be c paths in Gc that form a minimum path covering of Gc .
Denote by pi the number of vertices of Pi for 1 ≤ i ≤ c. For 1 ≤ t ≤ pi, let vi,t be the tth vertex along the path Pi. Define a
function f from V (G) to [0,m − 1] as

f (vi,t) = (i − 1)j +


t − 1 +

i−1
s=1

(ps − 1)


k.

Note that j ≤ 2k, f is obviously a circularm-L( j, k)-labeling of G. Thus σj,k(G) ≤ m.
We next prove that σj,k(G) ≥ m. Suppose σj,k(G) = σ and let f be a circular σ -L( j, k)-labeling of G. Since the diameter of

G is 2, any two vertices of G receive labels on S(σ ) that are at circular distance at least k. With no loss of generality, we may
assume the label 0 is always used. The sequence of labels usedby f in the increasing order is denotedbyF = (f0, f1, . . . , fp−1)
(with f0 = 0).

For any two numbers x and y in [0, σ ), denote by ∥y − x∥σ the length of the arc from the point x to the point y along the
clockwise direction on S(σ ).

A consecutive subsequence (fs, fs+1, . . . , ft) (where additions in the subscripts are takenmodulo p) ofF with at least two
terms is said to be circularly-j-restricted if ∥fi+1 − fi∥σ < j for i = s, s+ 1, . . . , t − 1. We also call the one-term subsequence
(fs) circularly j-restricted. A circularly j-restricted subsequence is called maximal if it is not properly contained in any other
circularly j-restricted subsequence. It follows that F is the disjoint union of maximal circularly j-restricted subsequences.
Let b be the number of disjointmaximal circularly j-restricted subsequences ofF . It is obvious that σ ≥ bj+(p−b)k. On the
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other hand, it is easy to see that the sequence of vertices of G corresponding to amaximal circularly j-restricted subsequence
forms a path in Gc . This implies that b ≥ pv(Gc). Consequently, σ ≥ bj + (p − b)k ≥ m, giving the result.

Through an argument similar to the one presented above, we can prove that λj,k(G) = (pv(Gc) − 1)j + (|V (G)| −

pv(Gc))k. �

Let h ≥ 2 be a positive integer. We define the graph Gh as follows. The vertex set of Gh is {u0, u1, . . . , uh−1} ∪ {v0, v1,
. . . , vh−1}. The subset U = {u0, u1, . . . , uh−1} induces a clique of Gh while the subset V = {v0, v1, . . . , vh−1} forms an inde-
pendent set ofGh. And for each i = 0, 1, . . . , h−1, the vertex ui inU is adjacent to all vertices in V except the vertex vi. A split
graph is a graphwhose vertices can be partitioned into a clique and an independent set. It is clear that Gh is a split graph. The
problem of deciding whether λ2,1(G) ≤ |V (G)| for split graphs G was proved to be NP-complete in [1]. The L(2, 1)-labeling
number of Gh was obtained in [18]. It is worth noting that Gh and the graphH defined at the beginning of this section are also
matrogenic graphs defined in [22]. L(2, 1)-labelings of such graphs were investigated in [4]. In the following, we determine
σj,k(Gh) and λj,k(Gh).

Theorem 3.3.

σj,k(Gh) =


⌈h/2⌉j + (2h − ⌈h/2⌉)k, if j/k ≤ 2,
hj + ⌈h/2⌉k, if j/k ≥ 2,

and

λj,k(Gh) =


(⌈h/2⌉ − 1)j + (2h − ⌈h/2⌉)k, if j/k ≤ 2,
(h − 1)j + ⌈h/2⌉k, if j/k ≥ 2.

Proof. Due to the structure ofGc
h, it is not difficult to see that pv(Gc

h) = ⌈h/2⌉. Then the case j/k ≤ 2 follows from Lemma3.2.
Now suppose j/k ≥ 2. Letm = hj + ⌈h/2⌉k. The function f from V (Gh) to [0,m − 1] defined by

f (ui) = ij + ⌈i/2⌉k, for i ∈ [0, h − 1],
f (vi) = ij + (i/2 + 1)k, if i ∈ [0, h − 1] and i is even,
f (vi) = ij + ⌊i/2⌋k, if i ∈ [0, h − 1] and i is odd,

is a circular m-L( j, k)-labeling of Gh. Thus, we have σj,k(Gh) ≤ m.
We next prove σj,k(Gh) ≥ m. Suppose σj,k(Gh) = σ and let f be a circular σ -L( j, k)-labeling of Gh. Since the diameter of

Gh is 2, any two vertices of G receive labels on S(σ ) that are at circular distance at least k. With no loss of generality, we may
assume that the label sequence (f (u0), f (u1), . . . , f (uh−1))with f (u0) = 0 is in cyclic order on S(σ ). For i = 0, 1, . . . , h−1,
let li denote the number of vertices in V with their labels in the open interval (f (ui), f (ui+1))σ , where additions in the
subscript are taken modulo h. Clearly,

h−1
i=0 li = h and 0 ≤ li ≤ h for i = 0, 1, . . . , h− 1. For li > 0, let vi,1, vi,2, . . . , vi,li be

the li vertices in V with their labels in the open interval (f (ui), f (ui+1))σ . Suppose (f (ui), f (vi,1), f (vi,2), . . . , f (vi,li), f (ui+1))
is in cyclic order on S(σ ).

As in the proof of Lemma 3.2, for any two numbers x and y in [0, σ ), denote by ∥y − x∥σ the length of the arc from the
point x to the point y along the clockwise direction on S(σ ).

If li = 0, then ∥f (ui+1) − f (ui)∥σ ≥ j. If li = 1, then since uivi,1 or ui+1vi,1 is an edge of Gh, ∥f (ui+1) − f (ui)∥σ ≥ j + k.
If li ≥ 2, then since ui is adjacent to vi,1 or vi,2, it follows that ∥f (ui+1) − f (ui)∥σ ≥ j + (li − 1)k. Thus for each i = 0,
1, . . . , h − 1, ∥f (ui+1) − f (ui)∥σ ≥ j + ⌈li/2⌉k, implying σ ≥

h−1
i=0 ∥f (ui+1) − f (ui)∥σ ≥ hj + ⌈h/2⌉k.

Similarly, we can prove that if j/k ≥ 2 then λj,k(Gh) = (h − 1)j + ⌈h/2⌉k. �

The next result follows from Theorem 3.3 and Lemma 2.1.

Corollary 3.4.

σ̄ n
j,1(Gh) = λ̄n

j,1(Gh) + j =


2hn + ⌈h/2⌉( j − 1), if j ≤ n + 1,
h( j + n − 1) + ⌈h/2⌉n, if j ≥ n + 1.

Theorem 3.5. If n ≥ 2 and j ≤ ⌊n/2⌋ + 1, then σ n
j,1(Gh) = λn

j,1(Gh) + 1 = 2hn.

Proof. Since the diameter of Gh is 2, it is obvious that σ n
j,1(Gh) ≥ 2hn and λn

j,1(Gh) ≥ 2hn − 1.
To prove the result, it suffices to demonstrate a certain n-fold L( j, 1)-labeling of Gh. For i = 0, 1, . . . , h − 1, define

f (ui) = [2in + ⌊n/2⌋, (2i + 1)n + ⌊n/2⌋ − 1],
f (vi) = [2in, 2in + ⌊n/2⌋ − 1] ∪ [(2i + 1)n + ⌊n/2⌋, (2i + 2)n − 1].

Note that j ≤ ⌊n/2⌋ + 1, it is straightforward to check that f is an n-fold circular (2hn)-L( j, k)-labeling of Gh as well as an
n-fold L( j, k)-labeling of Gh with span 2hn − 1. Thus the theorem holds. �

Therefore, if n ≥ 2 and j ≤ ⌊n/2⌋+1, then σ̄ n
j,1(Gh)−σ n

j,1(Gh) = ⌈h/2⌉( j−1) and λ̄n
j,1(Gh)−λn

j,1(Gh) = (⌈h/2⌉−1)( j−1).
Thus we conclude that the differences σ̄ n

j,1(G) − σ n
j,1(G) and λ̄n

j,1(G) − λn
j,1(G) could be arbitrarily large for certain graphs G.
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4. Trees

Liu and Zhu in [20], and Leese and Noble in [17] proved the following theorem.

Theorem 4.1. σj,k(T ) = 2j + (∆ − 1)k for any tree T with maximum degree ∆.

We establish the n-fold version of this result.

Theorem 4.2. For any tree T with maximum degree ∆,

σ n
j,k(T ) = 2j + (∆ − 1)k + (∆ + 1)(n − 1).

Proof. By Lemma 2.1 and Theorem 4.1, σ n
j,k(T ) ≤ σj+n−1,k+n−1(T ) = 2( j+ n− 1) + (∆ − 1)(k+ n− 1) = 2j+ (∆ − 1)k+

(∆ + 1)(n − 1).
Let m be a positive integer, and suppose there is an n-fold circular m-L( j, k)-labeling f of T . Let u be a vertex of T with

∆ neighbors v1, v2, . . . , v∆. Let [f (u)]jm =
p0−1

i=0 [ai,0, bi,0]m and [f (vs)]
k
m =

ps−1
i=0 [ai,s, bi,s]m for s = 1, 2, . . . , ∆. Then all

sets [ai,s, bi,s]m (s = 0, 1, . . . , ∆, i = 0, 1, . . . , ps −1) are pairwise disjoint and are pairwise at circular distance at least k on
S(m). Furthermore, each [ai,0, bi,0]m (i ∈ [0, p0 − 1]) is at circular distance at least j on S(m) from any other sets [ai,s, bi,s]m.
It follows thatm ≥ (∆+ 1)n+ 2( j− 1)+ (∆− 1)(k− 1) = 2j+ (∆− 1)k+ (∆+ 1)(n− 1). Hence the theorem holds. �

Since K1,∆ is a subgraph of any graph with maximum degree ∆, the following corollary follows from Theorem 4.2 and
formula (2).

Corollary 4.3. For any graph G with maximum degree ∆,

σ n
j,k(G) ≥ 2j + (∆ − 1)k + (∆ + 1)(n − 1),

λn
j,k(G) ≥ j + (∆ − 1)k + (∆ + 1)(n − 1).

The lower bounds in Corollary 4.3 are attained by the graph K1,∆ since, by Theorem 4.2, σ n
j,k(K1,∆) = 2j + (∆ − 1)k +

(∆ + 1)(n − 1), and it is not difficult to prove that λn
j,k(K1,∆) = j + (∆ − 1)k + (∆ + 1)(n − 1).

Theorem 4.4 ([7]). Let G be a graph with maximum degree ∆. Suppose there is a vertex with ∆ neighbors, each of which has
degree ∆. Then,

λj,k(G) ≥


2j + (∆ − 2)k, if j/k ≤ ∆,
j + 2(∆ − 1)k, if j/k ≥ ∆.

We extend this theorem to n-fold L( j, k)-labelings of graphs. For a vertex u of a graph G, by N(u) we denote the set of all
neighbors of u and by N[u] the set N(u) ∪ {u}.

Theorem 4.5. Let G be a graph with maximum degree ∆. Suppose there is a vertex with ∆ neighbors, each of which has degree
∆. Then,

λn
j,k(G) ≥


2j + (∆ − 2)k + (∆ + 1)(n − 1), if ( j + n − 1)/(k + n − 1) ≤ ∆,
j + 2(∆ − 1)k + 2∆(n − 1), if ( j + n − 1)/(k + n − 1) ≥ ∆.

Proof. Let u be a vertex of G with ∆ neighbors v1, v2, . . . , v∆, each of which has degree ∆. Let f be any n-fold L( j, k)-
labeling of G with span λ. Let [f (u)]j =

p0
i=1[ai,0, bi,0] and [f (vs)]

k
=
ps

i=1[ai,s, bi,s] for s = 1, 2, . . . , ∆. Then all sets
[ai,s, bi,s] (s = 0, 1, . . . , ∆, i = 1, 2, . . . , ps) are pairwise at distance at least k. Furthermore, each [ai,0, bi,0] (i ∈ [1, p0]) is
at distance at least j from all other sets [ai,s, bi,s] (s = 1, 2, . . . , ∆, i = 1, 2, . . . , ps).

Notice that if ( j + n − 1)/(k + n − 1) ≥ ∆ then 2j + (∆ − 2)k + (∆ + 1)(n − 1) ≥ j + 2(∆ − 1)k + 2∆(n − 1), and if
( j+ n− 1)/(k+ n− 1) ≤ ∆ then 2j+ (∆ − 2)k+ (∆ + 1)(n− 1) ≤ j+ 2(∆ − 1)k+ 2∆(n− 1). To prove the theorem, it
suffices to prove that λ ≥ 2j + (∆ − 2)k + (∆ + 1)(n − 1) or λ ≥ j + 2(∆ − 1)k + 2∆(n − 1).

If [f (u)]j contains more than one interval, then at least 2j − 2 labels not in f (u) are forbidden for any neighbor of u. By
considering the label sets of the vertices in N[u] and the distance conditions, we know that λ ≥ (∆ + 1)n + 2j − 3 + (∆ −

2)(k − 1) = 2j + (∆ − 2)k + (∆ + 1)(n − 1). Therefore we may assume [f (u)]j = [a, b] ⊆ [0, λ]. Note that we actually
have proved that for any vertex v of maximum degree, [f (v)]j must consist of consecutive numbers (otherwise we are done
by the above argument). Thus we may assume [f (vs)]

j
= [as, bs] for s ∈ [1, ∆].

If [a, b] ⊆ [j − 1, λ − j + 1], then the 2j − 2 labels in [a − j + 1, a − 1] ∪ [b + 1, b + j − 1] are forbidden
for any neighbor of u. By considering the label sets of the vertices in N[u] and the distance conditions, we know that
λ ≥ (∆+ 1)n+ 2j− 3+ (∆− 2)(k− 1) = 2j+ (∆− 2)k+ (∆+ 1)(n− 1). Thus [a, b] is not contained in [j− 1, λ− j+ 1].
Note that we have actually proved that for any vertex v of maximum degree, [f (v)]j is not contained in [j − 1, λ − j + 1].
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Now, without loss of generality, we may assume a ≤ j − 2. As |[a, b]| ≥ n, as ≥ j + n − 1 for s ∈ [1, ∆]. Since
v1, v2, . . . , v∆ are pairwise at distance at most 2, ah = min{a1, a2, . . . , a∆} ≤ λ − [∆n + (∆ − 1)(k − 1)] + 1, that is
λ ≥ ah +∆n+ (∆− 1)(k− 1)− 1. From the above discussion, [ f (vh)]

j
= [ah, bh] is not contained in [j− 1, λ− j+ 1]. Since

ah ≥ j+n−1, wemust have bh > λ− j+1. It follows that all label sets of the ∆ neighbors of vh are contained in [0, ah − j],
implying ah ≥ j−1+∆n+ (∆−1)(k−1). Therefore λ ≥ ah +∆n+ (∆−1)(k−1)−1 ≥ j−2+2∆n+2(∆−1)(k−1) =

j + 2(∆ − 1)k + 2∆(n − 1). This completes the proof. �

The following theorem can be found in [8] and is essential in establishing the upper bounds for n-fold L( j, k)-labeling
numbers of trees.

Theorem 4.6 ([8]). Let T be any tree with maximum degree ∆. Then

λj,k(T ) ≤


2j + (∆ − 2)k, if j/k ≤ ∆ and j is a multiple of k,
j + 2(∆ − 1)k, if j/k ≥ ∆.

Theorem 4.7. Let T be a tree with maximum degree ∆. Then

λn
j,k(T ) ≤ 2j + (∆ − 1)k + (∆ + 1)(n − 1) − 1.

Furthermore,

λn
j,k(T ) ≤


2j + (∆ − 2)k + (∆ + 1)(n − 1), if ( j + n − 1)/(k + n − 1) ≤ ∆ and (k + n − 1)|( j + n − 1),
j + 2(∆ − 1)k + 2∆(n − 1), if ( j + n − 1)/(k + n − 1) ≥ ∆,

and the inequality is an equality if T has a vertex with ∆ neighbors of degree ∆.

Proof. By Theorem4.2 and formula (3), for any tree T withmaximumdegree∆, λn
j,k(T ) ≤ 2j+(∆−1)k+(∆+1)(n−1)−1.

By Theorem 4.6 and Lemma 2.1, if ( j + n − 1)/(k + n − 1) ≤ ∆ and j + n − 1 is a multiple of k + n − 1 then
λn
j,k(T ) ≤ 2j + (∆ − 2)k + (∆ + 1)(n − 1), and if ( j + n − 1)/(k + n − 1) ≥ ∆ then λn

j,k(T ) ≤ j + 2(∆ − 1)k + 2∆(n − 1).
The last statement follows from Theorem 4.5. �

When k = 1, both the lower and upper bounds for n-fold L( j, k)-labeling numbers of trees that we obtained so far are
sharp. This is summarized as the following corollary.

Corollary 4.8. For any tree T with maximum degree ∆,

(∆ + 1)n + j − 2 ≤ λn
j,1(T ) ≤ min{(∆ + 1)n + 2j − 3, 2∆n + j − 2}.

The lower and the upper bounds for λn
j,1(T ) are both attainable.

Corollary 4.8 generalizes the following theorem proved by Chang et al. in [5].

Theorem 4.9 ([5]). For any tree T with maximum degree ∆,

∆ + j − 1 ≤ λj,1(T ) ≤ min{∆ + 2j − 2, 2∆ + j − 2}.

Moreover, the lower and the upper bounds for λj,1(T ) are both attainable.

By Corollary 4.8, λn
1,1(T ) = (∆ + 1)n − 1 for any tree T with maximum degree ∆.

Corollary 4.10. For any tree T with maximum degree ∆,

(∆ + 1)n ≤ λn
2,1(T ) ≤ (∆ + 1)n + 1.

Corollary 4.10 is a generalization of the result ∆ + 1 ≤ λ2,1(T ) ≤ ∆ + 2 for any tree with maximum degree ∆, which
was proved by Griggs and Yeh in [12]. In [6], Chang and Kuo gave a polynomial time algorithm for determining whether
λ2,1(T ) = ∆ + 1 for any tree T with maximum degree ∆. It was indicated in [5] that this algorithm can be modified to
determine λj,1(T ) and the modified algorithm also runs in a polynomial time. A linear time algorithm for L(2, 1)-labeling
of trees was given in [14]. The authors also showed that it can be extended to a linear time algorithm for L( j, 1)-labeling of
trees with a constant j.

We conclude this section by asking the following two questions.

Question 1. For a fixed positive integer n ≥ 2, is there a polynomial time algorithm for computing λn
j,1(T ) for any tree T?

Question 2. For positive integers n ≥ 2, how do we characterize all trees T with maximum degree ∆ and λn
2,1(T ) =

(∆ + 1)n?
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Fig. 3. The hexagonal lattice Γ6 .

Fig. 4. Another drawing of Γ6 .

5. The hexagonal lattice

Let e1 = (1, 0)T , e2 = (0, 1)T and f = (1/2,
√
3/2)T be three vectors in the Euclidean plane. The triangular lattice Γ3 is

an infinite graph with vertex set {xe1 + yf : x, y ∈ Z} with two different vertices (x1, y1), (x2, y2) adjacent if the Euclidean
distance between them is 1. The square latticeΓ4 is an infinite graphwith vertex set {xe1+ye2 : x, y ∈ Z}with two different
vertices (x1, y1), (x2, y2) adjacent if the Euclidean distance between them is 1.

The hexagonal lattice Γ6 is the subgraph of Γ3 induced by the vertex set V (Γ3)\{(x, x+3y+1) : x, y ∈ Z}. If two vertices
(x1, y1) and (x2, y2) in Γ3 (or Γ4, Γ6) are adjacent, then wewrite the edge joining them by (x1, y1)(x2, y2). One can also view
the hexagonal lattice Γ6 as a spanning subgraph of Γ4 with edge set E(Γ4) \ E∗, where E∗

= {(x, y)(x + 1, y) : x, y ∈

Z and x + y is odd}. Please see Figs. 3 and 4 for illustrations. We shall use the latter in the proof of the following theorem.

Theorem 5.1. σj,k(Γ6) = 2j + 2k.

Proof. Since themaximumdegree ofΓ6 is 3, by applying Corollary 4.3 forn = 1,weobtainσj,k(Γ6) ≥ 2j+2k. Letm = 2j+2k.
Define a function f from V (Γ6) to [0,m − 1] as

f ((x, y)) =


(yk) mod m, if x + y is even,
( j + k + yk) mod m, if x + y is odd.

We now show that f is a circular m-L( j, k)-labeling of Γ6. Let (x, y) be any vertex of Γ6. If x + y is even, then the three
neighbors of (x, y) are (x + 1, y), (x, y + 1), (x, y − 1). It follows that f ((x, y)) = (yk) mod m, f ((x + 1, y)) =

( j + k + yk) mod m, f ((x, y + 1)) = ( j + k + (y + 1)k) mod m, and f ((x, y − 1)) = ( j + k + (y − 1)k) mod m. It
is obvious that the circular distance between the label of (x, y) and the labels of its three neighbors is at least j. The case
where x + y is odd can be shown similarly. Thus the distance 1 condition is satisfied.

All vertices at distance 2 from (x, y) are (x, y+2), (x, y−2), (x+1, y+1), (x+1, y−1), (x−1, y+1) and (x−1, y−1).
Notice that the sum of the two coordinates of each 2-neighbor of (x, y) has the same parity. It is not difficult to check that
the distance 2 condition is also satisfied. Thus f is a circular m-L( j, k)-labeling of Γ6, proving the theorem. �

Theorem 5.2. σ n
j,k(Γ6) = 2j + 2k + 4n − 4.

Proof. Since the maximum degree of Γ6 is 3, by Corollary 4.3, σ n
j,k(Γ6) ≥ 4n + 2( j − 1) + 2(k − 1). On the other hand, by

Theorem 5.1 and Lemma 2.1, σ n
j,k(Γ6) ≤ 4n + 2( j − 1) + 2(k − 1). Thus the theorem holds. �

The following corollary follows from Theorem 5.2 and formula (3).
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Corollary 5.3. λn
j,k(Γ6) ≤ 2j + 2k + 4n − 5.

Theorem 5.4 ([3,11]).

λj,k(Γ6) =


3j, if 1 ≤ j/k ≤ 5/3,
5k, if 5/3 ≤ j/k ≤ 2,
2j + k, if 2 ≤ j/k ≤ 3,
j + 4k, if 3 ≤ j/k.

Theorem 5.5.

λn
j,k(Γ6)


∈ [2j + k + 4n − 4, 3j + 4n − 4], if 1 ≤ ( j + n − 1)/(k + n − 1) ≤ 5/3,
∈ [2j + k + 4n − 4, 5k + 6n − 6], if 5/3 ≤ ( j + n − 1)/(k + n − 1) ≤ 2,
= 2j + k + 4n − 4, if 2 ≤ ( j + n − 1)/(k + n − 1) ≤ 3,
= j + 4k + 6n − 6, if 3 ≤ ( j + n − 1)/(k + n − 1).

Proof. The upper bounds follow from Theorem 5.4 and Lemma 2.1, and the lower bounds follow from Theorem 4.5. �

Corollary 5.6.

λn
j,1(Γ6) =


2j + 4n − 3, if j ≤ 2n + 1,
j + 6n − 2, if j ≥ 2n + 1.

6. The p-dimensional square lattice

Let p ≥ 2 be an integer. The p-dimensional square lattice Γ
p
4 is an infinite graph with vertex set {(x1, x2, . . . , xp) : x1, x2,

. . . , xp ∈ Z}, and with two different vertices adjacent if and only if the Euclidean distance between them is 1. Clearly, if
p = 2, then Γ 2

4 is the so called square lattice Γ4. The p-dimensional square lattice is (2p)-regular.
Let u = (x1, x2, . . . , xp) and v = (y1, y2, . . . , yp) be two vertices of Γ p

4 . Then u is adjacent to v if and only if there is some
q ∈ [1, p] such that |xq − yq| = 1 and xi = yi for i ∈ [1, p] \ {q}. And u is distance 2 away from v if and only if there are two
integers q, s ∈ [1, p] such that |xq − yq| + |xs − ys| = 2 and xi = yi for i ∈ [1, p] \ {q, s}.

Theorem 6.1. σj,k(Γ
p
4 ) = 2j + (2p − 1)k.

Proof. Since K1,2p is a subgraph of Γ p
4 , it follows from Theorem 4.2 that σj,k(Γ

p
4 ) ≥ 2j + (2p − 1)k. Letm = 2j + (2p − 1)k.

Define a function f from V (Γ
p
4 ) to [0,m − 1] as follows: for any vertex u = (x1, x2, . . . , xp) of Γ

p
4 ,

f (u) =


p

i=1

[j + (i − 1)k]xi


mod m.

Let u = (x1, x2, . . . , xp) and v = (y1, y2, . . . , yp) be any two vertices of Γ p
4 . If u is adjacent to v, then there is some q ∈ [1, p]

such that |xq −yq| = 1 and xi = yi for i ∈ [1, p]\{q}. It follows from the definition of f that |f (u)− f (v)|m = j+(q−1)k ≥ j.
Thus the distance 1 condition is satisfied. If u and v are at distance 2, then there are two integers q, s ∈ [1, p] such that
|xq − yq| + |xs − ys| = 2 and xi = yi for i ∈ [1, p] \ {q, s}. Suppose q > s. Then

k ≤ (q − s)k ≤

 p
i=1

[j + (i − 1)k]xi −
p

i=1

[j + (i − 1)k]yi

 ≤ 2j + 2(q − 1)k ≤ 2j + (2p − 2)k.

Therefore |f (u) − f (v)|m ≥ k. The distance 2 condition is also satisfied. Thus f is a circular m-L( j, k)-labeling of Γ
p
4 , and so

σj,k(Γ
p
4 ) ≤ 2j + (2p − 1)k. This proves the theorem. �

The following theorem follows from Theorem 6.1 and Corollary 4.3.

Theorem 6.2. σ n
j,k(Γ

p
4 ) = 2j + (2p − 1)k + (2p + 1)(n − 1).

Theorem 6.3 ([7]).

λj,k(Γ
p
4 )


∈ [2j + (2p − 2)k, 2j + (2p − 1)k − 1], if 1 ≤ j/k ≤ 2p,
= 2j + (2p − 2)k, if 1 ≤ j/k ≤ 2p and k|j, or 2p − 1 < j/k < 2p,
= j + (4p − 2)k, if j/k ≥ 2p.
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Theorem 6.3, Lemma 2.1 and Theorem 4.5 imply the following theorem.

Theorem 6.4.

λn
j,k(Γ

p
4 )


∈ [2j + (2p − 2)k + (2p + 1)(n − 1), 2j + (2p − 2)k + (2p + 1)(n − 1) + k − 1],
if ( j + n − 1)/(k + n − 1) ≤ 2p,

= 2j + (2p − 2)k + (2p + 1)(n − 1), if 2p − 1 < ( j + n − 1)/(k + n − 1) < 2p,
or 1 ≤ ( j + n − 1)/(k + n − 1) ≤ 2p and (k + n − 1)|( j + n − 1),

= j + (4p − 2)k + 4p(n − 1), if ( j + n − 1)/(k + n − 1) ≥ 2p.

Corollary 6.5.

λn
j,1(Γ

p
4 ) =


2j + (2p + 1)n − 3, if j ≤ (2p − 1)n + 1,
j + 4pn − 2, if j ≥ (2p − 1)n + 1.
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