
Discrete Applied Mathematics 128 (2003) 541–554
www.elsevier.com/locate/dam

The construction of cubic and quartic planar
maps with prescribed face degrees

Gunnar Brinkmanna , Thomas Harmuthb , Oliver Heidemeierc
aFakult�at f�ur Mathematik, Universit�at Bielefeld, Postfach 10 01 31, D-33501 Bielefeld, Germany

bAm Buschkotten 9, D 33739 Bielefeld, Germany
cHuelshorstweg 30, D 33415 Verl, Germany

Received 15 February 1999; received in revised form 13 May 2002; accepted 8 July 2002

Abstract

In this paper, the existence and availability of computer programs to constructively enumerate
all simple connected cubic or quartic planar maps with prescribed number of vertices and face
degrees is announced and results of the programs are presented. The underlying algorithms of
the computer programs are described.
? 2003 Elsevier Science B.V. All rights reserved.

Keywords: Regular graph; Embedding; Face degree; Structure generation

1. Introduction

The degree deg(f) of a face f in a connected planar map G = (V; E) is given by
deg(f) := |{e∈E | e is in the boundary of fand e is not a bridge}|+2 · |{e∈E | e is
a bridge in the boundary of f}|-that is the degree of the corresponding vertex in the
dual graph.
A lot of problems in mathematics and chemistry (see e.g. [1,4,10,11,15,16] deal

with regular maps where only certain face degrees may occur, that is: there is a set
S = {f1; : : : ; fk}, f1; : : : ; fk ∈N and all face degrees are required to be in S. E.g. the
well-known fullerenes (see [14]) can be de>ned as cubic planar maps where all faces
are pentagons or hexagons (S = {5; 6}). Let us call planar maps with all face sizes

E-mail addresses: gunnar@mathematik.uni-bielefeld.de (G. Brinkmann), thomas@harmuths.de
(T. Harmuth), oliver.heidemeier@mediaways.net(O. Heidemeier).

0166-218X/03/$ - see front matter ? 2003 Elsevier Science B.V. All rights reserved.
PII: S0166 -218X(02)00549 -8

mailto:gunnar@mathematik.uni-bielefeld.de
mailto:thomas@harmuths.de
mailto:oliver.heidemeier@mediaways.net

542 G. Brinkmann et al. / Discrete Applied Mathematics 128 (2003) 541–554

in S ⊂ N and regular of degree d(d; S)-maps. In order to check conjectures for given
d and S up to maps of a certain size or determine the energetically best molecule
corresponding to a (d; S)-map with a given number of vertices (atoms), it is useful
to have complete lists of all non-isomorphic (d; S)-maps for the number of vertices in
question available.
The aim of this paper is to announce the availability of computer programs for this

purpose and present the main ideas of the underlying algorithms, that for given S ⊂
N, d∈{3; 4} and n∈N can list all non-isomorphic planar (d; S)-maps with n vertices.
The only algorithm previously applied for this task is the spiral algorithm originally
proposed for fullerenes in [16], but used also for other classes of cubic graphs (see
e.g. [1,8]). The problem of this algorithm is on one hand that it is fairly slow and—an
even more serious problem—on the other that it is known to miss some structures
(see e.g. [2,9]). Except for the algorithm presented in [5], which is specialized on
fullerenes, the algorithms presented in this paper are the only algorithms for this task
that can guarantee the generation of complete lists and—implemented as a computer
program—are fast enough to construct lists of interesting size. In this article we can
only present the main ideas of the algorithms. A detailed treatment can be found in
[12,13].
If F(G) denotes the set of faces of the map G, as a consequence of the Euler

formula in cubic planar maps we have
∑

f∈F(6− deg(f)) = 12 and in quartic planar
maps we have

∑
f∈F(4−deg(f))=8. So quartic maps always contain triangles while

cubic maps always contain triangles, squares and/or pentagons.
The algorithms presented here are based on the one described in [5]. The construction

method for fullerenes described in there could be directly applied for cubic maps with
maximum face degree 6. For larger faces and the quartic case some essential changes
were necessary.

2. Part 1: The algorithm

The maps will be constructed by gluing together smaller parts. The construction can
best be described by the inverse process, that is: cutting the map into the parts it was
assembled of.
The main strategy is to cut the map into parts along some well-de>ned cut paths. In

the cubic case we use Petrie paths (see [7]), that is: paths that whenever approaching a
new vertex take the next edge in clockwise (left) and counterclockwise (right) direction
around this vertex interchangingly. In the quartic case we use straight paths, that is
paths that when approaching a new vertex continue at the second edge in clockwise
(or equivalently counterclockwise) orientation around the vertex.
For a given directed edge e0 and >rst direction r (left or right in the cubic case,

straight in the quartic case), this way it is uniquely de>ned what will be the next edge
e1, adjacent to e0 in the cut path. Since the graph is >nite, enlarging the path this way
step by step there is some n such that the endpoint of en is already contained in the
path. If this vertex is the starting vertex of e0 and the next edge and direction to be
chosen are e0; r, we have a closed Jordan curve path (see Fig. 1) —otherwise we stop

G. Brinkmann et al. / Discrete Applied Mathematics 128 (2003) 541–554 543

e0

e1

e0

e1

e0

e1

e1

e0

Fig. 1. A Jordan curve path, a dumb-bell path, a sandwich path and a >gure 8 path.

and reverse the direction, that is: take the inverse of e0 and direction r and proceed
to construct the path, using edges e−1; e−2; : : : ; until the end vertex of e−m is already
contained in the path en; en−1; : : : ; e0; : : : ; e−(m−1). In this case we stop. The two points
(which may coincide in the quartic case) where the path meets previously visited points
have a minimum valency of 3 in the subgraph formed by the edges visited, while the
others have valency 2. Thus, in the cubic case there are two fundamentally diHerent
possibilities for such paths: once there may be 3 disjoint paths between these two
vertices (this is called a sandwich path) and on the other hand there may be one path
between the vertices and one loop path at every vertex (this is called a dumb-bell
path). In addition to these cases in the quartic case, the two vertices of a dumb-bell
path may coincide, giving one vertex of degree 4. In this case we get a 6gure 8 path.
See Fig. 1 for examples of these path types.

De�nition 1. A 3-patch (resp. 4-patch) is a planar map with all the boundary vertices
of valency 2 or 3 (resp. 2,3 or 4) and all the interior vertices of valency 3 (resp. 4).
A 4-patch is called pseudo-convex if all boundary vertices are of degree 2 or 3, while

a 3-patch is called pseudo-convex if there are no two vertices sharing a boundary edge
that both have degree 3.

544 G. Brinkmann et al. / Discrete Applied Mathematics 128 (2003) 541–554

2

1

3 0

1

Fig. 2. A patch with a canonically marked 0-edge.

It can be easily seen that the two or three parts cut out of cubic or quartic maps by
the corresponding cut paths are all pseudo-convex 3- resp. 4-patches.
If a patch has a certain symmetry of the boundary that is not a symmetry of the

interior part—like it is in general the case especially for the patches cut out by a
Jordan curve path—the various possibilities to insert the patch into the path will
mostly result in diHerent maps. So in order to describe a map uniquely, it is not
only necessary to give a cut path and the patches cut out by the cut path, but it
is also necessary to describe uniquely how the patches have to be glued into the
path.
To this end we put marks on the patches and each path segment bounding a region

and require that the patches are glued to the path in a way that the marks match. In
the cubic case we mark edges, while in the quartic case we mark vertices.
Since we can choose where to put the mark—we just have to mark the path and the

patches correspondingly—we can require the following (described from the viewpoint
of the patches): If a vertex of valency 2 exists in a 4-patch, then the mark must
be carried by such a vertex (we call it markable vertex) and if an edge with both
endpoints of valency 2 exists in the cubic case, then the mark must be carried by such
a markable edge. Otherwise, all vertices (edges) are markable.
In case we have markable vertices in the quartic case, we can compute the number

of edges between any two markable vertices and obtain a cyclic sequence by listing the
numbers in clockwise orientation around the boundary. We choose the mark to be put
on a markable vertex, so that the sequence started at this vertex is lexicographically
maximal. This sequence is called the boundary sequence of the patch. Of course in the
cubic case we can work analogously by counting the number of vertices of valency 3
between two markable edges.
Patches that are marked this way are called canonically marked patches. See Fig. 2

for an example of a canonically marked patch.
So, if we want to generate all patches that can be glued to a canonically marked cut

path, we have to construct all canonically marked patches. We regard marked patches
as isomorphic if and only if there is an orientation preserving isomorphism of the
patches mapping the marks onto each other.
If we had all the canonically marked pseudo-convex patches that might occur in the

maps which we want to generate (described by the number of vertices and the face

G. Brinkmann et al. / Discrete Applied Mathematics 128 (2003) 541–554 545

Fig. 3. Two canonically marked patches and the way they are cut.

degrees that may occur), then by enumerating all possible cut paths, putting a mark
to the corresponding places and inserting all combinations of patches, always gluing
mark to mark, it would be possible to construct all maps.

3. Part 2: generating the list of marked patches

In order to describe how we construct the set of all canonically marked pseudo-convex
patches, we will again describe the inverse process, that is how larger marked patches
can be reduced to smaller ones. We use the same strategy already used to cut the
complete map into parts: we use a cut path to split the pseudo-convex patch into two
smaller ones.
We apply a similar strategy already applied for cutting the map: starting at the >rst

vertex of degree 3 in clockwise direction of the mark, we cut the patch along a cut
path until we reach the boundary of the patch or the cut path approaches itself. See
Fig. 3 for examples of these two possibilities. In the cubic case the cut path chosen
always starts by going to the right at the >rst inner vertex.
It can be easily seen that the two resulting patches are again pseudo convex. By

de>ning that the mark on the two smaller pseudo-convex patches must be put on the
>rst canonical position in counterclockwise direction from the vertex where the cut path
started, we have uniquely de>ned two ancestors for the marked path, so the reverse of
the cutting operations give a recursive construction of the set of canonically marked
pseudo-convex patches:
As patches with only one face we take one face of every degree that is allowed

to occur in the map, marked at an arbitrary edge resp. vertex. Then we proceed by
constructing and storing the patches with increasing number of faces by always com-
bining smaller patches in every possible way: we take every smaller patch once as the
>rst and once as the second patch in the pair and glue them together along boundary
segments in every way that gives a pseudo-convex patch. The mark is put on the >rst
vertex (edge) of the patch coming from the >rst patch in counterclockwise direction
of the cut path.

546 G. Brinkmann et al. / Discrete Applied Mathematics 128 (2003) 541–554

During the construction we must check whether the patch obtained would be re-
duced in the same way we just constructed it—that is: whether the new mark is a
canonical mark, whether the old canonical marks are the >rst ones in counterclock-
wise direction from the cut and whether we did not obtain any double edges. Due to
the fact that vertices are identi>ed, in the cubic as well as in the quartic case, we
sometimes do get double edges. If one of these conditions does not hold, the patch is
rejected.

4. Part 3: storing the patches

Of course it is essential that the patches are stored in a way that they are easily
accessible on one hand and do not use too much memory on the other. We have
chosen to store the patches in a tree-like structure. Branching according to the number
of faces at the root and according to the entries in the boundary sequence later on, a
patch that might >t into a cut path can easily be found or be detected not to exist.
For every patch P we store the following information: if P has no ancestors, then P

consists of only one face. We store the degree of this face. If P has ancestors A and
B, then we store two pointers to these ancestors and information on how they have
to be assembled with respect to the marks of A and B (e.g. the distances between the
beginning of the cut path and the marks of the smaller patches which already determine
the length of the cut path). This information is suJcient to reconstruct P from A and
B and needs only a constant small amount of memory—independent of the size of the
patch.

5. Part 4: constructing the maps

We construct every possible cut path that might be contained in the maps we are
looking for and put marks on it in a well de>ned way, so that the hypothetical >llins
would be canonically marked.
If we e.g. have a Jordan curve path in the quartic case, it is well de>ned by its

length. We can put the mark on the >rst vertex of the closed path and say that the
>rst patch is on the right and the second on the left. If we have e.g. a dumb-bell path
in the cubic case, we can call the inverse of the edge with smallest index (e−(m−1))
the >rst edge. In this case the path is well de>ned by the lengths of the 3 segments
between the points of valency 3 and the requirement to turn right at e−(m−1). This
additional requirement is justi>ed, since for every cubic map with a dumb-bell path in
at least one of the map and its mirror image there is a dumb-bell path that turns right
at the >rst edge and we just want to generate one of them. The marks are put on the
>rst canonical positions seen along the path, the >rst patch to be >lled is the patch
bounded by the loop containing the starting edge, the second is the non-loop and the
third is the other loop. Though the details are a bit diHerent in the remaining cases
(e.g. sandwich path cubic, dumb-bell path quartic, etc.), the general strategy should be
clear.

G. Brinkmann et al. / Discrete Applied Mathematics 128 (2003) 541–554 547

Then we check our list of patches, whether for the boundary sequence given by the
path there are patches that can be glued in (gluing the mark of the patch to the mark
in the path). If this is possible, the various patches are combined in every possible
way. In fact, by going through the various boundary sequences in the list and only
constructing those paths where at least the boundary sequence just considered matches
one of the parts, it can be avoided to construct paths where none of the parts can be
>lled.

6. Part 5: testing for isomorphisms

The method for isomorphism rejection is called generating structures in canonical
form (see [3] for a survey).
The general principle is to establish a one to one correspondence between the way

a structure is generated and a string. Among all possible strings encoding a possible
construction of the map (that is: all possible ways how it can be generated) one string
is chosen as the canonical string, in our case the lexicographically minimal one.
For each newly constructed map, all strings corresponding to possible constructions
are computed and the map is accepted if and only if the original string is canoni-
cal. Since every possible construction (up to automorphisms) of a structure is per-
formed exactly once, this way it is made sure that every structure is accepted exactly
once.
In the following, we will sketch how we applied this method.
It is easy to see that the construction can be uniquely described by a map plus a

single directed edge in the map: Given the map and the >rst edge of the cut path used
to construct it—directed from the >rst vertex of the path to the second—it is easy to
construct the whole Petrie, resp. straight path used to construct the map. Following the
rules in Part 4 to put the marks and number the regions, we can easily determine the
marked patches to be glued in and the order in which they have to be glued into the
regions—that is: we can reconstruct the whole generation process from this information.
Now let us describe a string that encodes the structure of the planar map with respect

to some directed edge in the map and an orientation � (clockwise or counterclockwise):
We label the starting vertex of e as 1 and the endvertex 2.
Then we label the other neighbours of 1 in the prescribed orientation starting at e

with 3; 4, etc. The reference edge for a vertex is the inverse of the edge along which
it was >rst seen. Having labelled all neighbours of the vertices labelled 1 to x¡n, we
label the neighbours of the vertex v labelled x + 1 that are not yet labelled with the
smallest number not used so far, starting at the reference edge of v and proceeding
around v in the direction given by �.
To this labelling we associate the following code: for every vertex we compute a

linear list of the labels of the neighbours, starting with the endpoint of the reference
edge and proceeding in the orientation �. Each list is ended with a 0. By concatenating
these lists in the order given by the labels of the vertices we get the code.
Having constructed a map, we compute the associated string given by this

code starting at the >rst edge of the cut path and taking � as counterclockwise

548 G. Brinkmann et al. / Discrete Applied Mathematics 128 (2003) 541–554

orientation. So the directed edge is always (1; 2) and the map is completely encoded
in this string.
Then we have to check whether the same patch can be obtained by a construction

corresponding to a lexicographically smaller string (in this case we reject the map,
otherwise we accept it). To this end we check for every edge of the map in turn
whether it is the starting edge of a cut path and if yes (that is: it encodes a construction)
we compute its string. Since we do not distinguish between mirror images, we also
have to check whether the mirror images can be constructed in a way corresponding
to a smaller string—that is: we have to run the same checks for all edges with the role
of left and right interchanged and taking � as clockwise orientation when computing
the string.
Since for a given edge and orientation the string can obviously be computed in linear

time, we get:

Lemma 2. The canonicity test just described has time consumption quadratic in the
number of vertices.

Obviously the correctness of the method is not aHected by adding redundant infor-
mation to the string, that is: information that is encoded in the string anyway. So one
can e.g. give the size of the face on the right-hand side (left-hand side when working
in the mirror image) of the starting edge as the >rst entry and only after that the string
described above. This way edges with a larger face on the right-hand side need not
be checked in the non-mirror image run (the string corresponding to the construction
would be larger anyway). This reduces the number of edges that have to be looked
at and in case an edge with a smaller face on the right-hand side than coded in the
string corresponding to the construction is found to be a starting edge of a cut path
(in general this can be done in sublinear time), there is no need to compute the whole
string—it will be lexicographically smaller anyway.
Analogously we can number the possible cut paths, say 1 for a Jordan curve path,

2 for a dumb-bell path, 3 for a sandwich path and 4 for a >gure 8 path and add the
type of the path as a >rst entry to the string. Again in a lot of cases it can be avoided
to compute the complete string, since when we have determined whether an edge is a
starting edge of a cut path at all, we also know the type of the path. Some of these
heuristics are used in the programs—always depending on the case. Though they do
not change the worst case analysis of the running time, they have a large eHect on the
practical performance of the programs. For details see [12,13].

7. Part 6: reducing the number of patches to store

The main problem to be solved is to avoid the generation and listing of patches that
will never be glued into a path to form a map (we call this direct use) or be composed
with other patches to form a patch that is directly used (we call this indirect use). We
could not >nd a fast computable necessary and suJcient condition for patches to be of
direct or indirect use—and judging from the literature we doubt that such a criterion

G. Brinkmann et al. / Discrete Applied Mathematics 128 (2003) 541–554 549

does exist. We used some easily and fast computable only necessary conditions that
sort out quite a number of useless patches. For a detailed treatment of the eHect of
these criterions on the number of patches, see [12,13]. We will only describe the two
most successful conditions used.
Due to the Euler formula, the number g of faces in a map with n vertices is g =

(n=2) + 2 in the cubic and g= n+ 2 in the quartic case. The basic idea is to compute
a lower bound for the number of faces in a map containing the patch and reject
the patch in case this number is larger than g. For a patch P let f(P) denote the
number of faces contained in P and k(P) the number of vertices of valency 2 in its
boundary.
The most powerful criterion in the quartic case is the following

Lemma 3. All maps except the Octahedron can be constructed by just using patches
P with the property that f(P) + k(P) + 56 g.

Proof. This can be shown by observing that though k(P) might decrease when gluing
together patches, the value of f(P) + k(P) is monotonically increasing. The three
patches used in a sandwich, >gure 8 or dumb bell path have k(P)∈{1; 2}, so f(P) +
k(P) + 5¿g would require the remaining 2 patches to have at most 5 (k(P) = 1),
respectively, 6 (k(P)=2) faces altogether, which can easily be shown to be impossible
by looking at small patches.
In case of a Jordan curve path, the remaining patch would have to have only 4 faces.

This is indeed possible, but the Octahedron is the only quartic planar map with only
Jordan curve paths and all the Jordan curve paths split oH a patch with 4 faces. So
all other maps can also be built without such patches. Of course in the isomorphism
rejection routine it must be made sure that no paths based on a Jordan curve path that
splits oH a patch with 4 faces is used to reject the structure.

The most powerful tool in the cubic case is:

Lemma 4. Let s be the degree of the smallest face in a map G (so s∈{3; 4; 5}), P
a patch contained in G and d= 12 +

∑
f∈P(deg(f)− 6).

Then P ful6lls the condition f(P) + �d=6− s	6 g.

Proof. The Euler formula implies that in a cubic planar map with F the set of faces we
have

∑
f∈F(6−deg(f))=12. So

∑
f∈F\P(6−deg(f))=12+

∑
f∈P(deg(f)−6)=d.

This implies (g− f(P)) · (6− s)¿d and >nally g¿f(P) + d=6− s.

A method that reduces the storage consumption is not to store patches that are
so large that they can only be combined with smaller ones (that is: f(P)¿g=2).
All the other patches needed to form larger patches or even maps are already in
the list, so we can just glue them together or form maps and delete the patch af-
terwards. Though this reduces neither the number of patches that are generated nor
the running time, it does reduce the number of patches that are kept in the

550 G. Brinkmann et al. / Discrete Applied Mathematics 128 (2003) 541–554

memory and for some cases the size of the machine memory turned out to be the
bottleneck.

8. Part 7: checking the programs

The algorithms described above were implemented as computer programs in C and
are called CPF (cubic maps) and ENU (quartic maps). The source codes can be
obtained from the authors.
The results of ENU were checked with the help of the program GENREG by

Markus Meringer (see [17]). GENREG generates regular graphs with a given number
of vertices. The graphs generated by this program were >ltered for planar ones by
a program using the Hopcroft–Tarjan algorithm implemented in the program package
LEDA. 1 For planar graphs this algorithm also provides planar embeddings. For many
diHerent combinations of allowed face sizes and vertex numbers up to v = 18 the
numbers of maps obtained by this procedure were compared with those generated by
ENU. In cases where maps occurred that were not 3-connected, they were sometimes
missing in the embedded output of GENREG, because the graph was embedded in a
combinatorially diHerent way. These cases were checked by hand.
The program CPF was checked against the program fullgen [5] for Fullerenes and

against the program plantri [6]. In order to check CPF against fullgen, all fullerenes
with up to 120 vertices were generated. Plantri was used to generate all 3-connected
cubic planar maps with up to 32 vertices. For every map the set of face degrees has
been determined. The resulting statistics has been used to check CPF on about 200
parameter sets.
In all cases we checked, we had complete agreement.

9. Part 8: results

This section contains some results obtained by these programs. Let Cn;D (Qn;D)
denote the set of all cubic (quartic) planar maps which have n vertices and the set of
face degrees is exactly D (and not just a subset of D). Gaps between two consecutive
vertex numbers in the tables and dashes denote that the Euler formula or a result by
GrMunbaum [11] implies that no maps exist.
The number of structures generated per second as well as the memory consumption

depends strongly on the set of parameters. If the allowed face sizes are small (e.g.
at most 7-gons in the cubic case or at most 5-gons in the quartic case) the programs
are much faster and need much less memory than in cases where large faces are
allowed.
Sample running times, memory consumption for the patches and rounded gene-

ration rate on a 350 MHZ Pentium II with Linux operating system are: 12 min=96 kbytes

1 Library of eJcient data structures and algorithms, http://www.mpi-sb.mpg.de/LEDA/leda.html.

http://www.mpi-sb.mpg.de/LEDA/leda.html

G. Brinkmann et al. / Discrete Applied Mathematics 128 (2003) 541–554 551

for Q95;{3;4} (64 structures=s), 9:5 min=26 Mbytes for Q23;{3;4;5} (327 structures per
second), 43 s=14 Mbytes for Q30;{3;9} (1 structure=s), 5 min=136 Mbytes for Q30;{3;7}
(15 structures=min), 6:5 s=131 kbytes for C200;{3;6} (2:6 structures=s), 13 min=5 Mbytes
for C80;{3;4;5;6} (98 structures=s), 5:7 h=1:3 Mbytes for C68;{5;9} (8:8 structures=h), 47:7
s=200 kbytes for C70;{5;6} (170 structures=s).

n |Qn;{3;4}| n |Qn;{3;4}| n |Qn;{3;4}| n |Qn;{3;4}|
10 2 23 33 36 499 49 1554
11 1 24 76 37 366 50 2505
12 5 25 51 38 650 55 2829
13 2 26 109 39 493 60 6234
14 8 27 78 40 815 65 6631
15 5 28 144 41 623 70 13428
16 12 29 106 42 1083 75 14021
17 8 30 218 43 800 80 26257
18 25 31 150 44 1305 85 26228
19 13 32 274 45 1020 90 47928
20 30 33 212 46 1653 95 46518
21 23 34 382 47 1261 100 81084
22 51 35 279 48 2045 105 77795

n |Qn;{3;4;5}| |Qn;{3;5}| |Qn;{3;4;6}| |Qn;{3;6}| |Qn;{3;5;6}|
10 0 1 0 — 0
11 2 — 0 — 0
12 5 0 0 3 0
13 11 — 2 — 0
14 36 2 9 — 0
15 74 — 20 0 3
16 232 0 60 — 8
17 539 — 106 — 2
18 1576 10 304 16 0
19 4014 — 669 — 19
20 11489 2 1836 — 114
21 30622 — 4446 0 153
22 87043 52 11804 — 300
23 238007 — 30050 — 492
24 673547 31 80896 224 1616

552 G. Brinkmann et al. / Discrete Applied Mathematics 128 (2003) 541–554

n |Cn;{3;6}| n |Cn;{3;6}| n |Cn;{3;6}| n |Cn;{3;6}|
8 1 60 6 112 13 164 8
12 2 64 9 116 6 168 18
16 3 68 4 120 14 172 9
20 2 72 8 124 7 176 17
24 3 76 5 128 15 180 16
28 3 80 10 132 10 184 13
32 5 84 8 136 10 188 9
36 4 88 7 140 10 192 28
40 4 92 5 144 20 196 12
44 3 96 15 148 8 200 17
48 8 100 7 152 11 204 14
52 4 104 8 156 12 208 20
56 5 108 9 160 20 212 10

n |Cn;{4;6}| n |Cn;{4;6}| n |Cn;{4;6}| n |Cn;{4;6}|
12 1 60 19 108 79 156 202
14 1 62 21 110 89 158 237
16 1 64 22 112 97 160 262
18 1 66 16 114 68 162 175
20 3 68 36 116 133 164 330
22 1 70 21 118 90 166 239
24 3 72 29 120 99 168 249
26 3 74 31 122 115 170 288
28 3 76 34 124 127 172 319
30 2 78 24 126 86 174 209
32 8 80 53 128 171 176 397
34 3 82 32 130 118 178 291
36 7 84 42 132 133 180 298
38 7 86 47 134 152 182 356
40 7 88 50 136 165 184 388
42 5 90 35 138 110 186 259
44 14 92 75 140 220 188 479
46 6 94 46 142 150 190 352
48 12 96 59 144 164 192 352
50 12 98 65 146 189 194 418
52 13 100 70 148 207 196 463
54 10 102 48 150 142 198 303
56 23 104 99 152 265 200 559
58 12 106 65 154 190 202 419

G. Brinkmann et al. / Discrete Applied Mathematics 128 (2003) 541–554 553

n |Cn;{3;4;7}| |Cn;{3;5;7}| |Cn;{3;4;5;7}| |Cn;{3;4;8}| |Cn;{3;5;8}| |Cn;{3;4;5;8}|
8 0 0 — 0 — —
10 1 — 0 0 1 0
12 3 2 1 2 0 0
14 0 — 8 2 0 4
16 7 1 15 0 6 17
18 7 — 34 1 1 36
20 0 20 83 13 15 66
22 24 — 203 16 21 238
24 32 15 551 3 5 878
26 14 — 1328 38 136 2127
28 158 284 2979 180 151 5913
30 101 — 8547 180 180 19323
32 179 389 22026 156 1932 64072
34 841 — 55975 1408 839 193044
36 570 5309 141162 3363 6326 579388
38 1500 — 379349 3897 19589 1873193
40 6163 11428 986917 8882 11548 ?

n 12 20 28 36 44 52
|Cn;{3;7}| 0 4 0 29 1 638

n 14 24 34 44
|Cn;{3;8}| 1 6 19 298

n 8 12 16 20 24 28 32 36 40 44 48
|Cn;{3;9}| 0 1 1 3 2 9 14 59 145 559 1845

n 14 20 26 32 38 44 50 56
|Cn;{4;7}| 1 2 4 12 26 127 431 2189

n 16 24 32 40 48 56
|Cn;{4;8}| 2 5 32 174 1710 18897

n 18 28 38 48
|Cn;{4;9}| 1 3 11 109

n 28 32 36 40 44 48 52 56 60 64 68 72
|Cn;{5;7}| 1 0 2 0 13 0 73 5 620 81 6556 1675

n 32 38 44 50 56 62 68
|Cn;{5;8}| 1 1 3 5 27 58 314

n 36 44 52 60 68
|Cn;{5;9}| 1 0 4 0 50

554 G. Brinkmann et al. / Discrete Applied Mathematics 128 (2003) 541–554

References

[1] D. Babic, N. Trinajstic, Resonance energies of fullerenes with 4-membered rings, Internat. J. Quantum
Chem. 55 (1995) 309–314.

[2] G. Brinkmann, Problems and scope of the spiral algorithm and spiral codes for polyhedral cages, Chem.
Phys. Lett. 272 (3–4) (1997) 193–198.

[3] G. Brinkmann, Isomorphism rejection in structure generation programs, in: P. Hansen, P.W. Fowler,
M. Zheng (Eds.), Discrete Mathematical Chemistry, Vol. 51, DIMACS Series on Discrete Mathematics
and Theoretical Computer Science, American Mathematical Society, 2000, pp. 25–38.

[4] G. Brinkmann, M. Deza, Lists of face-regular polyhedra, J. Chem. Inform. Comput. Sci. 40 (2000)
530–541.

[5] G. Brinkmann, A.W.M. Dress, A constructive enumeration of fullerenes, J. Algorithms 23 (1997)
345–358.

[6] G. Brinkmann, B.D. McKay, Fast generation of non-isomorphic planar cubic graphs, see http://cs.anu.
edu.au/∼bdm/index.html, in preparation.

[7] H.S.M. Coxeter, Regular Polytopes, Dover, New York, 1973.
[8] P.W. Fowler, T. Heine, D.E. Manolopoulos, D. Mitchell, G. Orlandi, G. Seifert, R. Schmidt, F. Zerbetto,

Energetics of fullerenes with four-membered rings, J. Phys. Chem. 100 (1996) 6984–6991.
[9] P.W. Fowler, D.E. Manolopoulos, An Atlas of Fullerenes, Oxford University Press, Oxford, 1995.
[10] O.D. Friedrichs, A.W.M. Dress, A. MMuller, M.T. Pope, Polyoxometalates: a class of compounds with

remarkable topology, Mol. Eng. 3 (1993) 9–28.
[11] B. GrMunbaum, Convex Polytopes, Wiley, London, New York, Sydney, 1967.
[12] T. Harmuth, Die Generierung simpler, 3-regulMarer planarer, zusammenhMangender Graphen mit

vorgegebenen FlMachengrMoTen, Diplomarbeit, UniversitMat Bielefeld, 1997.
[13] O. Heidemeier, Die Erzeugung von 4-regulMaren, planaren, simplen, zusammenhMangenden Graphen mit

vorgegebenen FlMachentypen, Diplomarbeit, UniversitMat Bielefeld, 1998.
[14] H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley, C60: buckminsterfullerene, Nature 318

(1985) 162–163.
[15] J. Malkevitch, Polytopal graphs, in: L.W. Beineke, R.J. Wilson, (Eds.), Selected Topics in Graph Theory,

Vol. 3, 1998, pp. 169–188.
[16] D.E. Manolopoulos, J.C. May, S.E. Down, Theoretical studies of the fullerenes: C34–C70, Chem. Phys.

Lett. 181 (2,3) (1991) 105–111.
[17] M. Meringer, Fast generation of regular graphs and construction of cages, J. Graph Theory 30 (2)

(1999) 137–146.

http://cs.anu.edu.au/~bdm/index.html
mailto:edu.au/$sim $bdm/index.html

	The construction of cubic and quartic planar maps with prescribed face degrees
	Introduction
	Part 1: The algorithm
	Part 2: generating the list of marked patches
	Part 3: storing the patches
	Part 4: constructing the maps
	Part 5: testing for isomorphisms
	Part 6: reducing the number of patches to store
	Part 7: checking the programs
	Part 8: results
	References

