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This article argues that phenomenological description and neurophysiological correlation complement
each other in perception research. Whilst phenomena constitute the material, neuronal mechanisms
are indispensable for their explanation. Numerous examples of neurophysiological correlates show that
the correlation of phenomenology and neurophysiology is fruitful. Phenomena for which neuronal mech-
anism have been found include: (in area V1) filling-in of real and artificial scotomata, contour integration,
figure-ground segregation by orientation contrast, amodal completion, and motion transparency; (in V2)
modal completion, border ownership, surface transparency, and cyclopean perception; (in V3) alignment
in dotted contours, and filling-in with dynamic texture; (in V4) colour constancy; (in MT) shape by accre-
tion/deletion, grouping by coherent motion, apparent motion in motion quartets, motion in apertures,
and biological motion. Results suggest that in monkey visual cortex, occlusion cues, including stereo
depth, are predominantly processed in lower areas, whereas mechanisms for grouping and motion are
primarily represented in higher areas. More correlations are likely to emerge as neuroscientists strive
for a better understanding of visual perception. The paper concludes with a review of major achieve-
ments in visual neuroscience pertinent to the study of the phenomena under consideration.

� 2009 Published by Elsevier Ltd.
1. Introduction

Why do things look as they do? Kurt Koffka, 1935

There are two major approaches to the study of visual percep-
tion. One emphasises phenomenology as a method for describing
phenomena and collecting data. It maintains that phenomena
should be explained only by observable facts, i.e., in relation to
other phenomena (Bozzi, 1989; Bozzi, 1999; Da Pos, 2002, 2008).
This approach derives historically from the work of Brentano,
Stumpf, and Bühler and has been the method of choice, for exam-
ple, in Padova and Trieste (for review see Albertazzi, 1992/1993).

The other approach advocates that phenomenology must be
supported by neurophysiology to explain a given phenomenon
(Jung, 1973); it thereby transcends the boundaries of phenomenol-
ogy. This approach has its roots in the psychophysical parallelism
of Purkinje, Mach, and Hering and was most clearly enunciated,
for example, by the Freiburg School of Neurophysiology and similar
pursuits in Cambridge, Pisa, and Zurich.

The scientific aim of the first approach is to discover and describe
structural laws of visual experience by the systematic and controlled
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variation of a phenomenon by an independent variable (Sinico,
2003). For example, the induction of illusory contours in the Kanizsa
triangle could be studied as a function of the inducers’ separation,
alignment or curvature. In this way the boundary conditions for
the occurrence of a given phenomenon can be defined. This disci-
pline is primarily European (Gilchrist, 1996; Zanforlin, 2004).

The thrust of the second approach is expressed in the title of the
Freiburg conference on the Psychophysics and Neurophysiology of
the Visual System (Jung & Kornhuber, 1961); and the follow-up con-
ference on The Neurophysiological Foundations of Visual Perception
in Badenweiler (Spillmann & Werner, 1990). This approach also
started out as a European endeavour, e.g., the discovery of the
brightness and darkness systems in the cat visual cortex (Jung,
Baumgarten, & von Baumgartner, 1952; Baumgartner, 1961; Jung,
1961b), before it was embraced by researchers in other parts of
the world (e.g., Cambridge/MA, Boston, Berkeley, Canberra).

Is there a way to reconcile these two approaches? A useful dis-
tinction between the phenomenological and neurophysiological
approaches holds that one of them aims at what vision is like,
i.e., description, whereas the other focuses at what vision is for
and how it comes about, i.e., explanation.1
1 Tse (personal communication): an analogous distinction exists in the field of
biology between Linnaean taxonomy and modern genetics. The former is descriptive
and looks for structure and relationships among species, the latter analyses
similarities and dissimilarities in terms of their causal origins.
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Terminological and philosophical questions have arisen from
this dichotomy, specifically what phenomenology means in this
context, what one should accept as an explanation of a phenome-
non, and whether reductionism is the only possible scientific tenet
(Sinico, 2003).

Here, I present arguments for the fruitfulness of pursuing com-
plementary strategies by correlating phenomenological observa-
tions with psychophysical measurements and neurophysiological
recordings. This is done in the hope that a deeper understanding
of visual perception may be obtained by using a combined ap-
proach. Let us look at the two different strategies in perspective.

2. Phenomenology

Phenomenology encompasses the careful, unbiased description
of our perceptual experience as well as its formal conceptualisation
in terms of rules or ‘‘laws,” sometimes encoded in mathematical
models.

Good phenomenology suggests the underlying processes and
their interrelations. For example, in the Hornbostel effect (1922),
a rotating wire-outline cube, subject to perceptual ambiguity, is
perceived to undergo depth reversal and size distortion (Nelson,
1975). Accordingly, the ‘‘near” face of the cube whose position is
erroneously seen as ‘‘up front”, has a retinal image that is small,
and as a consequence the cube is perceived to have a trapezoidal
shape, overruling higher-order cognitive knowledge. We can infer
that the output of one cue system (depth) is the input to another
(e.g., reversed direction of rotation, size–distance scaling, plastic
deformation). In other words, a false perceptual organisation in
one system produces nonveridical percepts in others. Thus, phe-
nomenology reveals the flow of information and the underlying
‘‘wiring” between the various cue systems.

Other well-known examples within the phenomenological
realm include studies of the stereokinetic effect, surface transpar-
ency, and brightness enhancement. In this role, phenomenology
is of key importance not only to the understanding of perception,
but also to art and design (cf. Arnheim, 1954/1974). Furthermore,
many applied sciences and technologies, such as architecture, com-
munication, graphics, colorimetry, and virtual reality will benefit
from careful and systematic observation.

Although the descriptive role of phenomenology is well ac-
cepted, the explanatory side of it is controversial. Do demonstra-
tions qualify as explanations? The answer depends on which
camp one is in. For some, a demonstration is just a visualisation
of an effect; for others, it is scientific proof, as one cannot decide
whether a given event is the cause of, or simply the condition
for, another event. Importantly, explanations must be logically
consistent and have predictive power by virtue of induction and
deduction. In other words, hypotheses must be testable and should
lead to new experimental results.

Students of perception have long known that there is no unique
relationship between a stimulus and its percept. The same stimu-
lus can elicit different perceptions (changes in surround properties
may affect brightness, hue, and saturation); conversely, the same
percept can emerge from different stimuli (identical motion per-
cepts may arise from real motion and induced motion; cf. Duncker,
1929). Here, appearance tells us something about context-depen-
dency and structural organisation of a stimulus embedded within
a surround, or a scene, that must be built into the underlying
mechanisms to account for such phenomena.

The aim of phenomenology and its unifying achievement thus is
to derive organisational principles of visual perception from obser-
vable facts, without recourse to physics, neurophysiology, or high-
er cognitive processes (Da Pos, 2002). This concept found its
clearest expression in Gestalt psychology, which proposed laws
of perception based entirely on phenomena (e.g., Wertheimer,
1923; Metzger, 1936/2006). By looking at the figures illustrating
a given phenomenon, observers can see for themselves what is
being described, and there is no need for further proof. This is
one of the reasons why phenomenologists consider physiological
explanations as reductionistic, inadequate, and unnecessary. Yet,
the early Gestaltists did not exclude a physiological base of percep-
tion as is evident from Wertheimer’s (1912) interpretation of the
phi-phenomenon (apparent motion) in terms of a cerebral short-
circuit (Querfunktion). Köhler (1920) and Köhler and Held (1949)
seeking the cortical correlate of pattern vision even went further
by associating perceptual Gestalten with physische Gestalten (phys-
ical Gestalten) and isomorphic electro-chemical fields in the brain.

In 1946, Köhler attempted to alter the perceived position of
contours in the figural after-effect by applying voltage to elec-
trodes attached to the head (J.I. Nelson, personal communication).
Hans Wallach and Michael Wertheimer were among his subjects. It
did not work; the perceived position of the contours was unaf-
fected. Whilst today we know that transcranial magnetic stimula-
tion would be a more effective probe than Köhler’s crude surface
electrodes, such attempts reveal that the early phenomenologists
were in search of the neural underpinnings of the perceptions un-
der consideration.

3. The primacy of perception

A great gift of phenomenology to visual science is the insight
that what comes first in perception research is careful observation.
To come up with a perceptual effect, one first has to see it. Phenom-
enologists discover new relationships and frequently entirely new
perceptual effects because they are keen observers. Not all percep-
tual phenomena, of course, are as conspicuous as the masterful
illustrations by Kanizsa (1979), an artist himself, for whom demon-
strations sufficed.

Clearly, observing is a skill that requires not just an open eye,
but also an unbiased mind, ready to notice what had not been no-
ticed before. Artists are adept in this kind of skill; so are experi-
mental phenomenologists. For example, over many years, Cesare
Musatti, Fabio Metelli, Gaetano Kanizsa, Paolo Bozzi, and Giovanni
Vicario met with their followers in Medana, Slovenia, for informal
discussions of interesting and puzzling phenomena. In this way the
smallest facet took on an importance as it may have revealed an
unexpected insight into the nature of a given phenomenon.

These scientists and others around the world (e.g., in Germany,
Belgium, Sweden, and Japan) had been trained to open their eyes
and wait for visual stimuli to ‘‘speak” to them. By specifying the
figural, chromatic, and dynamic conditions for a given phenome-
non, they provided the framework for later research and theory.
Metzger’s (1934) description of the Ganzfeld, Kanizsa’s (1955,
1979) demonstrations of illusory contours, Metelli’s (1974) laws
of transparency as well as Musatti’s (1924) constraints of the ste-
reokinetic effect, Michotte’s 1946/1963) modes of apparent causal-
ity, and Johansson’s (1973) demonstration of biological motion –
they all arose from such an attempt. With few exceptions, the
question of a neuronal origin of these phenomena was not asked
by these researchers and, at the time, was not required; yet the la-
ter impact on cortical neurophysiology proved powerful and
productive.

4. The role of illusions in perception

Among puzzling phenomena visual illusions stand out as prime
examples. Why are illusions of interest to perception researchers?
The answer is that illusions are percepts that belie our knowledge
of the stimulus, but at the same time enable us to study the mech-



Fig. 1. Border contrast and inner contrast as reflected by neuronal firing rates. The
impulse rate recorded from the optic nerve of the cat is plotted as a function of
stimulus position (abscissa) relative to the receptive field. The stimulus was a white
bar that was moved across the receptive field in discrete steps. The continuous
curve refers to a B-neurone (for brighter), the dashed curve to a D-neurone (for
darker). Response maxima signal brightness and darkness enhancement, respec-
tively, corresponding to border contrast. The trough in the middle corresponds to
inner contrast (from Baumgartner, quoted by Baumgartner & Hakas, 1962; Jung,
1961a).
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anisms and processes underlying our daily perceptions. Epistemo-
logically, illusions are nonveridical percepts that reveal the pro-
cesses by which veridical perception mediates our representation
of the visual world. In this sense illusions are exceptions to the
expectation that perception faithfully reflects the stimulus at the
level of the retina (i.e., naïve realism). Or, as one might put it, they
show the brain’s signature superimposed upon the stimulus.

Aside from representing the world around us, perception also
strives to maintain stability of our visual environment. As we turn
our head, move our eyes, and navigate, it takes neuronal mecha-
nisms powerful enough to give us veridical vision in real time
based on inputs that are seldom complete or stable. Without these
compensations, we would be seeing images that are out of register
and incoherent, preventing us from getting around and ever reach-
ing a target. The flash-lag effect (Nijhawan, 1994), demonstrating
the delay between the physical and perceptual timing of an event,
is an excellent example of what can go wrong if the individual
glimpses during an eye movement are not properly updated and
put together.

Academic enterprises aimed at promoting the scientific study
of illusions started in 1993, when a Study Group on Visual Illu-
sions and Effects (VIAE), working inside the International Colour
Association (AIC), presented their results at the Göteborg AIC In-
terim Meeting; and, even more visibly, at the 15th AIC Congress
in Kyoto, when a special session was dedicated to the analysis
of colour illusions (Da Pos, 1997). More recently, other scientific
enterprises have emerged, for example, a session chaired by Rich-
ard Gregory on illusory effects at the Science Museum in Glasgow
(ECVP, 2004); and starting a year later, ‘‘The Best Visual Illusion of
the Year Contest” http://www.illusioncontest.neuralcorrelate.com,
organised by Susana Martinez-Conde, Steve Macknik, and Peter
Tse.

This highly popular and most enjoyable contest began at the
European Conference on Visual Perception in A Coruña (2005) and
is now hosted by the annual convention of the Vision Science Soci-
ety. The contest has instilled tremendous enthusiasm in the vision
community, not the least because it awards prizes for the best illu-
sions. Entries are preselected according to their significance for the
understanding of the visual system. Some of the more striking phe-
nomena presented at the contest have been described and pub-
lished in the premier journals in our field; a number have even
made it into research papers (e.g., Gori & Stubbs, 2006). Thus, the
contest fills a double purpose by fostering fresh research and
bringing visual science to public awareness.

A new permanent exhibit on visual illusions has recently been
opened at the Fleischmann Planetarium and Science Museum at the
University of Nevada, Reno. The exhibit was funded by a grant from
the Optical Society of America and was formally opened with a lec-
ture by Stuart Anstis entitled ‘‘Illusions are not what they seem.”
Earlier well-known exhibits – some temporary, some permanent
– include those at the Exploratorium in San Francisco, Phenomena
in Zurich, the British Museum, the Hands-on-Museum in Bristol,
Technorama in Winterthur, and Turm der Sinne in Nuremberg,
among others. Bernd Lingelbach features a remarkable collection
of life-sized visual displays in a barn near his home in Aalen.

Although such centres do not instantly make every visitor into a
trained phenomenologist, they alert people – predominantly
young audiences – to the wonders of perception and show them
how science can be fun. In this way, visitors leave with an awak-
ened curiosity and a confirmed pleasure in searching for informa-
tion for themselves. All of these activities attest to the important
role phenomenology is enjoying in vision research. The proceed-
ings of a recent conference on Experimental Phenomenology in Mi-
lan will be published in Teorie and Modelli (2008). Useful
websites displaying a host of visual illusions, some of them inter-
active, can be found on the internet.
5. Neurophysiological correlates of visual perception

How about the other approach to perception, the study of the
neuronal underpinnings? The need for an integrated approach to
perceptual research based on the phenomenology, psychophysics,
and neurophysiology of vision may sound like a truism today,
but when this approach was first started some 50 years ago, it
was revolutionary (see Spillmann, 1999).

Peter Schiller once remarked that, following the pioneering
studies by Hartline, Kuffler, and Mountcastle, the Freiburg confer-
ence on the Psychophysics and Neurophysiology of the Visual System
(Jung & Kornhuber, 1961) marked the beginning of a new line of
studies on vision and perception, as did the MIT conference on Sen-
sory Communication (Rosenblith, 1961). Within one decade, numer-
ous phenomena and effects described within the course of a
hundred years’ of subjective sensory physiology became correlated
with their possible neuronal counterparts (see Table 2 in Jung,
1973, pp. 28/29). These advances were largely based on spike-
count responses obtained from microelectrode recordings of indi-
vidual neurones.

An example is the correlation between the phenomena of bor-
der and inner contrast (Binnenkontrast) and their respective neuro-
nal response patterns. Fig. 1 illustrates the impulse profile for a
white bar on a black background. The peaks and trough of the re-
sponse pattern closely reflect the distribution of brightness and
darkness across the bar. It is highly implausible that the correlation
comes about by coincidence.

The neurophysiological strategy that evolved from this ap-
proach assumed that all conscious visual experience has a neural
basis, although not every neural process has a phenomenological
counterpart (for examples see Spillmann & Werner, 1990). The
aim of this kind of research then is to correlate a phenomenon with
its putative neural mechanism.

http://www.illusioncontest.neuralcorrelate.com
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This research is consistent with functional isomorphism (Sche-
erer, 1994), where the neural correlate of a perceptual phenome-
non, which we are able so far to document, is part of the
neurophysiological explanation of the subjective percept. Illumi-
nating examples of this approach include studies of the Hermann
grid illusion (for review see Spillmann, 1994; for alternative inter-
pretations Schiller & Carvey, 2005; Geier, Bernáth, Hudák, & Séra,
2008; Levine & McAnany, 2008), the Ehrenstein illusion (Von der
Heydt & Peterhans, 1989a), the neon colour effect (for review see
Bressan, Mingolla, Spillmann, & Watanabe, 1997), and the postu-
late of a perceptive field as the psychophysical analogue of the
receptive field (Spillmann, Ransom-Hogg, & Oehler, 1987; Yu & Es-
sock, 1996; Yazdanbakhsh & Gori, 2008). Reverse correlation has
confirmed and extended the validity of the perceptive field concept
by demonstrating that there are striking analogies between psy-
chophysical measurements in human observers and single neurone
responses in a number of tasks (Yu & Levi, 1997; Neri & Levi, 2006).

There is a caveat. According to Marr (1982) one cannot explain
vision only at the level of neuronal correlates (the implementation
level or hardware of vision). One also needs to explain it at the le-
vel of processes (the algorithmic level or software of vision) and at
the level of adaptive function (the computational theory). In Marr’s
proposal, the three levels are complementary, in the sense that a
real understanding of vision can emerge only when all three levels
including their interrelations are understood.2

Phenomenology is not, in this way of thinking, a level of expla-
nation. Rather, it provides the data for testing and thereby con-
strains the explanations because it defines what the end product
of vision should be, what properties it should have, and how it
should vary in certain contexts.

6. The correlative approach: how has it fared?

In retrospect it appears that the correlative approach has gained
wide acceptance, benefiting enormously from questions raised by
visual phenomenology (for review see Albright & Stoner, 2002).
Who would have thought 50 years ago that there would be visual
neurones responding as though they could mediate percepts,
including Gestalt phenomena (Ehrenstein, Spillmann, & Sarris,
2003; Spillmann & Ehrenstein, 1996, 2004).

The finding that single-cell activity discriminates between sim-
ple disks and bars of different contrast, phase, wavelength, size,
orientation, motion direction, and lateral disparity was a first
important step (for review see Hubel, 1988). However, the break-
through occurred when neurophysiologists advanced to higher
perceptual processes, using novel and more complex stimuli such
as had previously been described by phenomenologists.

For example, the finding by Baumgartner, von der Heydt, and
Peterhans (1984) that neurones in area V2 of the rhesus monkey
behave as though they could mediate the perception of illusory
contours, firmly grounded visual perception in neurophysiology
and prompted vision researchers to ask the question of ‘‘Where
do visual signals become a perception?” (Baumgartner, 1990).

The concept of the nonclassical receptive field, i.e., surround
modulation from beyond the classical receptive field (Baumgartner
et al., 1984; Nelson & Frost, 1978; for review see Allman, Miezin, &
McGuiness, 1985) pushed the door wide open for the study of con-
textual influences. Take a grey rectangle embedded in different
surroundings: depending on the context it may be perceived as
opaque, transparent, or in a different depth plane. What are the
brain processes and their interactions that underlie such percepts?
2 Tse (2004): the brain is adaptable and ‘‘rewires” itself in response to stimulus
requirement. Unlike computers, cerebral algorithms are implemented in the neural
circuitry and are not run as programs on hardware.
To find the neuronal mechanisms that disambiguate such stim-
uli, researchers today employ contextual patterns, or even natural
scenes. Some of these are similar to the patterns used by Gestalt
psychologists, suggesting that Gestalt psychology within the con-
text of today’s neurophysiology is experiencing a renaissance
(see the translation into English of Wolfgang Metzger’s (1936)
book Gesetze des Sehens [Laws of Seeing, 2006] seventy years after
its first appearance). There is a difference: Computer-controlled
displays and animations enable today’s psychophysicists to study
these phenomena not just qualitatively, but also quantitatively.

The list that follows gives an overview over a number of percep-
tual phenomena for which neurophysiological correlates have been
described over the last 25 years, predominantly in the rhesus mon-
key (for review see Albright & Stoner, 2002). These findings suggest
that those phenomena originate to a large extent, but not exclu-
sively, from bottom-up mechanisms in early vision. Examples are
ordered according to their presumed level of origin in visual areas
V1–MT.

6.1. Area V1

6.1.1. Filling-in of the blind spot
The physiological blind spot is hardly ever seen, although it is

represented in the brain (Tschermak, 1925). The optic disk, being
devoid of photoreceptors, is fixed on the retina; the blind spot
therefore represents a permanently stabilised image not unlike
an afterimage. Such images are subject to local adaptation, i.e., they
rapidly fade from view (Troxler effect) and become filled-in with
the perceptual attributes of the surround. A plausible neuronal
explanation for the filling-in of the blind spot is based on the find-
ing that area V1-neurones in the contralateral representation of the
optic disc respond to oriented bars presented across the blind spot,
as if they were completed (Fiorani, Rosa, Gattass, & Rocha-Miranda,
1992). Most of these neurons have large binocular receptive fields
that extend beyond the blind spot representation. Similar results
were obtained with large homogenous surfaces, suggesting that vi-
sual information from the surround is entered into the blind spot
area, filling-in the surface and rendering the blind spot invisible
(Murakami, Komatsu, & Kinoshita, 1997; Komatsu, Kinoshita, &
Murakami, 2000).

6.1.2. Filling-in of a lesion scotoma
As with the blind spot, a scotoma due to a retinal lesion is nor-

mally not noticed, even when projected against a white wall. For
example, laser coagulation in diabetic patients produces numerous
retinal scars, but rarely results in dark spots in perception. Spill-
mann and Werner (1996) proposed that a possible explanation
for filling-in of a focal scotoma might arise from the fact that deaf-
ferented neurones in area V1 of the macaque become reactivated
shortly after the lesion, suggesting input from outside the lesioned
area. This stimulation is thought to occur by recruitment of collat-
eral afferents and long-range horizontal interaction (Gilbert & Wie-
sel, 1992). The rearrangement increases the receptive field size
(and location) of the silenced neurones, thereby enabling cells to
fill in the lesioned area with featural information from the
surround.

6.1.3. Filling-in of an artificial scotoma
Reorganization of receptive fields as just discussed for focal le-

sions may also account for the perceived filling-in of an artificial
scotoma, i.e., an occluded or ‘‘empty” patch on a uniformly col-
oured surface (Pettet & Gilbert, 1992). Contrary to a lesion sco-
toma, strict fixation is required in order for an artificial scotoma
to fade and become filled-in. This is because eye movements will
counteract fading and keep brightness and colour of the enclosed
surface area alive. Although a uniform surface supports no isomor-
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phic cortical representation of its own (Friedman, Zhou, & von der
Heydt, 2003), it is perceptually sustained by horizontal interactions
from the edge signal, which is less prone to local adaptation. Once
the edge signal is levelled due to fixation, the stimulus fills-in and
rapidly fades from view (for review see Komatsu, 2006; Neumann,
Yazdanbakhsh, & Mingolla, 2007; Paradiso et al., 2006).

6.1.4. Spatial integration of collinear contour segments
If we look around, we find that most objects in our world are given

incompletely; to recognise them, the visual system must put to-
gether the pieces. A powerful mechanism that has evolved to per-
form this task is perceptual grouping across a gap. For example,
collinear segments of a branch occluded by other branches, are spa-
tially integrated in the interest of restoring the whole. Perceived
grouping is likely achieved by neuronal connections that link up
cells, which respond to iso-oriented, collinear contours (Schmidt,
Goebel, Löwel, & Singer, 1997). This finding in the cat agrees with
the behaviour of neurones in area V1 (V2) of the monkey that re-
spond more strongly when a coaxial line is presented in the larger
surround (e.g., Kapadia, Westheimer, Ito, & Gilbert, 1995; Nelson &
Frost, 1985; Sillito, Grieve, Jones, Cudeiro, & Davis, 1995). The result-
ing facilitation appears to be related to the decrease in psychophys-
ical threshold found with collinear flankers (e.g., Dresp & Bonnet,
1991), a finding that has been interpreted as a neuronal correlate
of the Gestalt factor of good continuation (Polat & Sagi, 1994).

The same, or similar, neuronal mechanism may also underlie
the perceptual grouping of coaxial Gabor patches embedded in a
field of randomly oriented Gabor patches (Field, Hayes, & Hess,
1993; Kovacs & Julesz, 1993; Persike, 2008). When macaques were
trained to detect a ‘‘hidden” Gabor figure, the spatio-temporal con-
straints required for contour integration were similar to those
found in human vision (Mandon & Kreiter, 2005). A reasonable
assumption is that in both species contour integration may be
mediated via horizontal interactions in area V1 (Bauer & Heinze,
2002) or by feedback from extrastriate areas (Zipser, Lamme, &
Schiller, 1996). On the other hand, the finding that objects embed-
ded in fragmented stimulus patterns are recognised within less
than 50 milliseconds makes an explanation by re-entrant signals
unlikely and rather suggests a feed-forward mechanism (Kirchner
& Thorpe, 2006).

6.1.5. Figure-ground segregation by orientation contrast
From texture experiments it is known that an area (e.g., a

square) composed of iso-oriented slashes will pop out on a back-
ground texture that is oriented at right angles. In agreement with
this percept, an individual line of given orientation elicits a stron-
ger neuronal response in area V1 when surrounded by cross-ori-
ented lines than by iso-oriented lines (Kastner, Nothdurft, &
Pigarev, 1999; Knierim & van Essen, 1992; Sillito & Jones, 1996).
Lamme (1995) has shown that the neuronal response to a figure
defined by orientation contrast is similarly enhanced, even when
the receptive field of the neurone is fully enclosed within the fig-
ural area, i.e., with no direct access to the stimulus surround (see
also Zipser et al., 1996). This finding suggests that figure-ground
segregation arises from long-range lateral interaction in early vi-
sion, possibly with feedback from higher cortical areas.

6.1.6. Amodal completion underneath an occluding surface
Most of our perception is stimulus-bound, yet there are excep-

tions. A stimulus is said to complete amodally when it appears to
continue behind a gap, although the missing section is not actually
seen. There are cells in area V1 of the monkey that respond to stim-
uli eliciting amodal completion in human observers, but fail to do
so, when completion is absent. For example, responses suggestive
of amodal completion across a stereoscopically presented gap were
demonstrated in the monkey, when collinear line segments were
positioned on opposite sides of the classical receptive field (Sugita,
1999). Characteristically, neurones responded only when the gap
was presented in front of the line segments (i.e., consistent with
occlusion), not behind.

6.1.7. Motion transparency
Motion transparency refers to the perception of a transparent

surface elicited by motion, such as in plaids. Typically, each plane
has a different motion direction and/or motion vector by which
individual surfaces in a complex visual scene are perceptually seg-
regated. Cells in area V1 were found to respond to their preferred
direction of movement under conditions, when human observers
reported motion transparency. This suggests that different subpop-
ulations of neurones tuned to different motion directions represent
the early stage for surface segmentation by motion transparency
(Snowden, Treue, Erickson, & Andersen, 1991). In contrast, area
MT cells appeared to be suppressed under similar conditions.

6.2. Area V2

6.2.1. Modal completion by illusory contours
Modal perception includes the perception of illusory contours

that are perceptually present, although there is no correlate for
them in the physical stimulus. A prime example of modal comple-
tion is the Kanizsa triangle, which is characterised by illusory bor-
ders bridging the gap between the corners (or pacmen). There is an
equivalent in the realm of neurophysiology: Neurones in area V2
(and even V1) have been found to respond to the cues that induce
illusory contours in human observers much in the same way as to
real contours (Peterhans & von der Heydt, 1989, 1991; Redies,
Crook, & Creutzfeldt, 1986; Von der Heydt, Peterhans, & Baumgart-
ner, 1984). This is unexpected as the receptive field fell in-between
the inducers with no access to the surround, and thus provides evi-
dence for input from beyond the classical receptive field. The same
neuronal mechanism has also been invoked to account for the crisp
illusory line seen in Kanizsa’s abutting gratings (Peterhans, von der
Heydt, & Baumgartner, 1986; von der Heydt & Peterhans, 1989b).
We have demonstrated that the psychophysical boundary condi-
tions for the abutting grating illusion are consistent with the
neurophysiological boundary conditions for this same illusion
(Soriano, Spillmann, & Bach, 1996).

6.2.2. Border ownership (i.e., boundary assignment)
Rubin (1915/1921) was the first to state that the border belongs

to the figure, not the ground. Consistent with this notion, neurones
have been described in area V2 (and V1) of the monkey that re-
spond more vigorously to a contrast edge attributable to the figure,
rather than the ground (Baumann, van der Zwan, & Peterhans,
1997; Heider, Meskenaite, & Peterhans, 2000; Zhou, Friedman, &
von der Heydt, 2000). This is illustrated by the parsing response
of a single neurone in Fig. 2. Rubin also observed that a figure
stands out relative to the ground, i.e., it looks closer to the obser-
ver. There is now evidence in area V2 neurones that depth informa-
tion is encoded together with information for border ownership
and surface representation (Bakin, Nakayama, & Gilbert, 2000;
Qiu & von der Heydt, 2005). Furthermore, the same neurones that
encode border ownership also respond more vigorously when
attention is assigned to the figure (Qiu, Sugihara, & von der Heydt,
2007). It thus appears as though the very neurones that are respon-
sible for figure-ground organisation are also involved in the selec-
tive enhancement of an object by attention, possibly by feedback
from higher cortical levels.

6.2.3. Surface transparency and decomposition into multiple surfaces
Multiple surfaces stacked upon each other do not always

result in perceptual occlusion. Given the right luminance hier-



Fig. 2. Response of a neurone in area V2 tested with single squares, C-shaped stimuli and overlapping rectangles. The small ellipse represents the receptive field of a colour-
selective cell with a preference for violet. The border between the two stimuli in columns A and B has the same contrast polarity (violet –> grey), but because stimuli have
opposite figure-ground status, the border perceptually belongs to the violet square in the top and bottom panels (left) and to the violet C in the middle panel (right). As a rule,
the neuronal response to the violet edge was far greater when it was owned by the figure than when it was part of the background (black columns on right). This asymmetry
is interpreted in terms of border ownership (modified from Zhou, Friedman, & von der Heydt, 2000). (For interpretation of color mentioned in this figure the reader is referred
to the web version of the article.)
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archy, physically opaque surfaces are seen as transparent or
semitransparent, allowing the bottom layers to be seen
through the top (Da Pos, 1999; Metelli, 1974; for review
see Gilchrist, 1994). Such stimuli are likely decomposed by
neurones in Area V2 that assign border ownership consistent
with the perception of a transparent overlay (Qiu & von der
Heydt, 2007). The perceptual separation of a stimulus into
an underlying surface and an overlaying layer is called
scission.

6.2.4. Cyclopean perception
Depth from stereo cues (i.e., disparity) has been shown to

arise from the correlation of pairs of random dot patterns none
of which contains the image when viewed monocularly. Such
patterns were originally developed by Julesz (1971) and termed
cyclopean. Neuronal responses to stereoscopically fused half-
images, such as those producing the percept of a diamond float-
ing in depth, were demonstrated in area V2 of the behaving
monkey (Von der Heydt, Zhou, & Friedman, 2000). Here, cells re-
sponded to stereoscopic edges by signalling their location, orien-
tation, and depth polarity (near vs. far). This result supports the
notion that figure-ground segregation by occlusion is primarily
processed in area V2. It remains unknown how linear extrapola-
tion can render the edges of a random dot stereogram perfectly
straight, although straightness is not supported by the individual
dots.
6.3. Area V3

6.3.1. Alignment in dotted contours
Whereas straight continuous lines are encoded in area V1, dot-

ted lines are processed higher up. Neurones in area V3 (weaker in
V2 and V1) respond to a group of collinearly arranged dots moving
coherently on a uniform background much in the same way as to a
continuous bar. Yet, they are extremely sensitive to misalignment
as are we. The response breaks down, if only one dot is not in reg-
ister. Results suggest that primate visual cortex detects and pro-
cesses straight lines made up from sparse stimuli, and that this
function evolves at a relatively early stage of visual processing
(Peterhans, Heider, & Baumann, 2005).

6.3.2. Filling-in with dynamic texture
Surface completion by filling-in of a textural surface, as opposed

to a uniformly bright or coloured surface, also occurs in area V3.
This has been demonstrated in the monkey, by using a grey square
(‘‘hole”) on a background of dynamic, vertical slashes. The recep-
tive field of the neurone was placed entirely within the grey
square, thus preventing any direct input from the surround. After
an initial ON-response, the firing rate dropped to the baseline, then
slowly increased again until the response matched that to a control
stimulus (i.e., no hole). At this point the neurone was assumed to
be unable to distinguish between the two conditions. This finding
suggests that the missing information (dynamic texture) within
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the hole had been fully recovered from the surround. The time
course of the recovery (climbing response) was comparable to
the time required for perceptual filling-in in human observers, sug-
gesting that one is the correlate of the other (DeWeerd, Gattas,
Desimone, & Ungerleider, 1995; for review see Spillmann & DeW-
eerd, 2003).

6.4. Area V4

6.4.1. Colour constancy
Among perceptual constancies, invariance of perceived colour

under conditions of changing illumination is of great biological
importance. It enables us to recognise objects irrespective of the
wavelength spectra of the reflected light. However, colour con-
stancy obtains only for broadband illumination of the entire scene;
illumination of the object with narrowband light or in isolation
dramatically changes its chromatic appearance. ‘‘Perceptual” neu-
rones in area V4 of the monkey have been reported to respond to
a coloured patch in a Mondrian pattern independently of the spec-
tral illumination, so as to suggest colour constancy (Zeki, 1983). At
lower levels (V1 and V2), no invariance was found between percept
and neuronal response, when a disc of given colour (say red) sur-
rounded by an annulus of different colour (say green) changed its
appearance due to filling-in. Here, the neuronal response remained
tied to the spectral properties of the stimulus (‘‘red”) despite the
perceived hue shift (Von der Heydt, Friedman, & Zhou, 2003).

6.5. Area MT/MST

6.5.1. Shape by accretion/deletion
Motion links stimuli together as long as they move together.

This also applies to form-from-motion defined by dynamic occlu-
sion such as achieved by accretion and deletion (Shipley & Kell-
man, 1997). By progressively covering and uncovering the edges
of an area, a global surface arises that is based on sequential
changes of local motions integrated across space. Whereas an early
study (Sary, Vogels, Kovacs, & Orban, 1995) reported cells in infero-
temporal cortex that responded to kinetic boundaries, a later study
described neurones that can account for dynamic shape perception
in area MT (Stoner, Duncan, & Albright, 1998).

6.5.2. Grouping by coherent motion
Figure-ground segregation does not depend on surfaces. It also

occurs with discrete stimuli in the absence of a cohesive surface.
For example, when a group of individual dots moves coherently
on a background of randomly moving dots, it assumes the status
of a figure (Stürzel & Spillmann, 2004; Uttal, Spillmann, Stürzel,
& Sekuler, 2000). This grouping may be mediated by neurones in
area MT that respond to coherent motion and thereby account
for the enormous power of the Gestalt factor of common fate as a
segmentation factor. A dynamic visual acuity test based on form-
from-motion (Wist, Ehrenstein, & Schrauf, 1998) is based on the
same principle. The perceived figural segmentation in such pat-
terns has been attributed to temporal coupling of spike chains
via response synchronisation (Eckhorn, 1991; Gray, König, Engel,
& Singer, 1989; Singer, 1989); and it has been interpreted in terms
of Gestalt-like feature binding (Singer, 1989). In a remarkable
experiment (Britten, Shadlen, Newsome, & Movshon, 1992) using
trained rhesus monkeys, the sensitivity of individual MT cells to
coherent motion was shown to be very similar to the monkeys’
psychophysical sensitivity. This is evidence that the detection of
motion is tied to the strength of the neuronal motion signal. Fur-
thermore, in behavioural experiments monkeys were found to dis-
criminate motion-defined shapes just as well as human observers,
suggesting that both species rely on common neural mechanisms
for this task (Unno, Kuno, Inoue, Nagasaka, & Mikami, 2003).
6.5.3. Apparent motion in motion quartets
Coherence of a different kind may be demonstrated in the bista-

ble motion quartet (Ramachandran & Anstis, 1986). Here, either
horizontal (zig-zag) or vertical (see-saw) apparent motion is seen
between pairs of equispaced dots presented in successive frames.
Using 16 such quartets arranged in an array, Schiller and Carvey
(2006) demonstrated that contrary to the Gestalt factor of similar-
ity the perceived direction of apparent motion is uniform regard-
less of differences in contrast, polarity, colour, or shape among
pair members. This is consistent with the strong hysteresis effect
found by Maloney, DalMartello, Sahm, and Spillmann (2005) in
motion quartets. Significantly, Schiller and Carvey (2006) showed
that uniformity of motion direction is disrupted by differences in
size, proximity, or stereoscopic depth, provided these differences
are large. These observations suggest that the midget (or parvocel-
lular) system does not participate in generating the motion percept
and suggests instead that the parasol (or magnocellular) system
mediates the direction of apparent motion. The fact that all 16
quartets tend to move in unison points towards cells with large
receptive fields, presumably in areas MT and MST. The apparent
rotation of spoked wagon wheels under stroboscopic illumination,
e.g., in old movies (Metzger, 1953), follows the same parametric
rules. The motion quartet and the wagon wheel effect are beautiful
examples of how brain mechanisms can be analysed by studying
the perceptual effects arising from different stimulus parameters
pitted against each other.

6.5.4. Motion in apertures
The direction of perceived motion normally is orthogonal to the

orientation of a line stimulus. For example, a telegraph wire seen
from a train window appears to move up and down, not along its
own extent. Apertures can change this by forcing the motion direc-
tion to conform to the edges of the aperture (Wallach, 1935/1996).
For example, in an L-shaped aperture, a diagonally oriented grating
moving obliquely behind the aperture is seen to first move down-
ward, then to the right. When neurones in MT were tested with
such stimuli, they responded consistent with the perceived direc-
tion of motion. This suggests an influence of aperture orientation
on neuronal direction selectivity (Duncan, Albright, & Stoner,
2000). These results are relevant for perceptually disambiguating
extrinsic vs. intrinsic motion cues, i.e., ends of lines moving along
the edge of the aperture vs. the lines themselves (Movshon, Adel-
son, Gizzi, & Newsome, 1985; Rust, Mante, Simoncelli, & Movshon,
2006; for review see Neumann et al., 2007).

6.5.5. Biological motion of point walkers
A fascinating experiment shows that a few small lights attached

to the principal joints of a person will reveal that person’s move-
ments in an otherwise dark room. In fact, even an outline of the
person can clearly be seen despite the sparse stimuli (Johansson,
1973). This is remarkable as the individual lights move in different
directions and at different velocities and yet, they are integrated
into a coherent motion (and shape) percept. Neurones have been
reported in the anterior superior temporal polysensory area (STPa)
of the monkey (Oram & Perrett, 1994) that discriminate a person
from a jumble; they also signal, which way the sparsely repre-
sented persons, say two dancers, are facing and walking.

6.6. Functional brain architecture

The aforementioned results are summarized in Table 1 and sug-
gest that in monkey visual cortex, occlusion cues for filling-in and
completion, including the perception of cyclopean depth, are pre-
dominantly processed in areas V1 and V2, whereas mechanisms
for grouping and motion are found mostly in areas V3 and MT. Col-
oured stimuli are processed in area V4. This list is destined to grow



Fig. 3. Cortical representation of simple geometric patterns in area V1 of the human
brain. In the left column are shown the hemi-retinal projections of a circle, square
and triangle of size 12� (from top to bottom). The full visual field size is 120�, and
only the right hemi-retina is shown. The oval-shaped figures next to it (on the right)
show the corresponding cortical ‘‘images”, using parameters estimated from human
visuotopic mapping experiments (Hinds et al., 2008; Polimeni, Balasubramanian, &
Schwartz, 2006). Both cortical hemispheres are shown: left hemisphere (right visual
hemifield) is on the left and right hemisphere (left visual hemifield) on the right.
The far periphery is oriented to the outside of the figures, and the foveal
representation is oriented towards the centre. The light grey areas represent the
interior of each pattern, the dark lines depict the edges (courtesy of Prof. Eric
Schwartz).

Table 1
Visual percepts and their presumed level of neuronal origin.

Area V1
Filling-in of the blind spot
Filling-in of a lesion scotoma
Filling-in of an artificial scotoma
Spatial integration of collinear contour segments
Figure-ground segmentation by orientation contrast
Amodal completion underneath an occluding surface
Motion transparency

Area V2
Modal completion by illusory contours
Border ownership (boundary assignment)
Surface transparency/decomposition into multiple surfaces
Cyclopean perception

Area V3
Detection of alignment in dotted lines
Filling-in with dynamic texture

Area V4
Colour constancy

Area MT/MST
Shape by accretion/deletion
Grouping by coherent motion
Motion quartet: coherence disrupted
Motion direction in apertures
Biological motion in point walkers
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as the boundaries of what is presently known keep advancing. Also,
each of these effects probably is based on the interaction of many
neurones, possibly connected across more than one cortical area
and open to modulatory effects from higher levels. For these func-
tions, feed-forward, feedback (re-entrant), and lateral (horizontal)
connections are assumed in contextual (or second-order) receptive
fields (Neumann et al., 2007).

The role played by reciprocal interactions between multiple
cortical areas was revealed by (reversible) inactivation of area
MT (Hupé et al., 1998). For example, cooling of area MT instanta-
neously affected the responses of V1, V2 and V3 neurones to pat-
terns moving on a stationary background. This suggests that the
segregation of such patterns into figure and ground may be influ-
enced by signals fed back from MT to lower visual areas.

So far we have dealt with the phenomenological, psychophysi-
cal and neurophysiological aspects of visual perception. What
about the topological aspects of vision in the cortex? Extending
earlier work (Fischer, 1972; Tootell, Silverman, Switkes, & DeVa-
lois, 1982), Schwartz has arrived at accurate predictions of retinal
projection onto the visual cortex. Fig. 3 illustrates the topographic
representation of a circle, square, and triangle in area V1, demon-
strating that retinal patterns projected onto the cerebral surface
are visuotopic (or retinotopic), not isomorphic, with the visual
stimulus. That is, geometric shape is not preserved. On the other
hand, what is spatially contiguous on the retina is also next to each
other on the cerebral cortex. The cortical representations shown in
Fig. 3 are estimates of what one would observe from presenting a
(centrally fixated) circle, square or triangle to a human subject, and
then reconstructing a flattened picture of cortical fMRI activation.
Note, however, that good retinotopic representation exists only
in early visual cortex (e.g., areas V1–V3); at higher levels receptive
fields are too large for detailed retinotopy.

We now know that there are numerous areas in the brain ded-
icated, exclusively or predominantly, to vision. To date more than
thirty such areas with more than 300 interconnections have been
identified in the primate (Felleman & Van Essen, 1991; Van Essen,
Anderson, & Felleman, 1992). The majority of these are reciprocal.
The question arises, why do we have all those areas in the brain?

One possibility is that the rich and complex world around us re-
quires that a complex problem be subdivided into a number of
smaller and simpler individual problems. These problems are then
allocated to a distributed hierarchy of specialised areas for visual
processing. Multiple maps have the advantage that cells subserv-
ing the same or similar functions (i.e., stimulus attributes) are clus-
tered together in the interest of close connectivity and minimised
wiring in intracortical circuits. This proximity then implies that
segregation of features becomes more specific at successively high-
er stages of the visual system, whilst information on retinal posi-
tion becomes less specific (Barlow, 1986; Chklovskii & Koulakov,
2004; Van Essen et al., 1992).

7. The need for neurophysiological correlations

The above examples (subchapters 6.1–6.6) bring physiological
knowledge to phenomenological experience. When Liebmann,
(1927/1996) made her observations on equiluminance, nothing
was known about the neural pathway (or stream) carrying infor-



Fig. 4. Neurone response in area V2 of the monkey to a stimulus, eliciting an
illusory step in depth. (A) Stimulus, if presented stereoscopically with a slight
disparity, elicits the percept of an illusory contour and a step in depth between the
two rectangles. (B) Neuronal response to a stimulus as shown in A. The ellipse
denotes the response field of the neurone as measured with a light bar; note that
both stereo cues at the left and right edge are located outside the response field. In
the stimulus labelled ‘‘binocular,” the upper rectangle is presented with an
uncrossed disparity of 300 and the lower rectangle with zero disparity. In the
control stimulus both rectangles have zero disparity. Dot displays represent action
potentials; responses recorded during the forward sweep of stimulus movement
are shown in the left half, those recorded during the backward sweep in the right
half. Note that the binocular presentation of the stimulus elicited a much stronger
response than either of the two monocular presentations (‘‘left and right eye”,
respectively), suggesting that the neurone processes disparity cues that give rise to
depth stratification and illusory contour formation in perception (from Heider et al.,
2002).
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mation on colour to the brain (Livingstone & Hubel, 1987, 1988).
Similarly, when Metzger published his Gesetze des Sehens (1936/
2006), feature detectors in the visual system had not been discov-
ered. Yet, these and other observations enable neuroscientists to-
day to assign perceptual significance and meaning to the
documented neuronal processes.

To be sure, phenomena can stand on their own, regardless of
whether or not they are understood at the neuronal level. They
do not become invalid, no matter how old they are and how often
one looks at them. But in order to become research tools they need
to be explained (Spillmann, 1994; Eysel, 2003; Troncoso, Macknik,
& Martinez-Conde, 2005). Koffka’s (1935) question ’Why do things
look as they do?’ (see also Epstein, 1994) cannot be answered with-
out the help of neuronal mechanisms.

The different theoretical concepts may best be demonstrated by
the long and passionate discussion surrounding the Kanizsa trian-
gle (Spillmann & Dresp, 1995). Kanizsa (1955) argued that what
the mind did was to complete the gaps between the inducers.
The tendency to perceptually close the gaps between the inducers
(according to the Gestalt factor of closure) was assumed to generate
an apparent occluding surface. Others (e.g., Gregory, 1972) attrib-
uted the subjective contours to the visual system positing – on
the basis of global pattern cues – the existence of a triangle that
partially occludes the stimulus pattern (top-down).

In contrast to these cognitive accounts, neurophysiologists
(Baumgartner et al., 1984; Redies et al., 1986; Peterhans & von
der Heydt, 1989), seeking a neuronal correlate for the illusory com-
pletion of discontinuous lines, attributed the same contours to the
activity of neurones in area V2 (and V1) (bottom-up).

The results by Baumgartner and colleagues on the Kanizsa tri-
angle triggered an unparalleled research into the neurobiology of
visual perception and helped to bridge the gap between psycho-
physics and neurophysiology. Meanwhile the evidence for a neuro-
nal mechanism that elicits perception of the illusory contours in
the Kanizsa triangle has been generally accepted, not the least be-
cause behavioural responses to Kanizsa type figures have been
demonstrated even in birds, fishes, and insects (Nieder & Wagner,
1999; Wyzisk & Neumeyer, 2007), for which a cognitive account
would not be appropriate.

What is the neurocomputational view of this? In terms of
Marr’s theory (1982), the neural correlate of the illusory contours
constitutes the implementation level. This is an important part of
the explanation, but not the only one. At the level of adaptive func-
tion, one wants to understand why it is useful for an organism to
have perceptual mechanisms that make up illusory shapes. The
reason is that visual information under natural conditions often
is incomplete due to partial occlusion of the stimulus pattern, or
even to the physiological blind spot. Thus, a mechanism that pro-
vides contour completion from retinal cues such as the ‘pacmen’
of the Kanizsa figures (modal completion) may just reflect the vi-
sual system’s adaptation to incompleteness occurring in the envi-
ronment. In evolutionary terms, it may even be thought of as a
mechanism that evolved to counteract biological camouflage, e.g.,
arbitrary disruption of contours (Spillmann & Dresp, 1995). At
the level of processes, finally, one would want to explain what ex-
actly the brain is doing to generate the illusory triangle.

What is the role of phenomenology in all of this? It depends on
what one counts as an explanation. But clearly, there are many as-
pects of the ‘‘why” and ‘‘how” of illusory figures that would never
be captured by a strictly phenomenological description. On the
other hand, a phenomenological description will constrain expla-
nations at the different levels in important ways. For instance, it
is well known that the phenomenology of the Kanizsa triangle
not only includes the appearance of illusory contours, but also im-
plies that the illusory shape defined by these contours takes on a
certain surface quality (i.e., brightness enhancement), and depth
stratification.

The current neurophysiological explanation does not account
for all three of these aspects, although the responses of a V2 neu-
rone to a stimulus, eliciting the perception of an illusory stereo-
step in depth, suggest that illusory contours and depth stratifica-
tion arise at the same level of visual processing (Heider, Spillmann,
& Peterhans, 2002). This is shown in Fig. 4 and demonstrates that
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the neuronal response to the binocular (3D) stimulus is stronger
than to each of the two monocular stimuli.

8. Phenomenology and neurophysiology are complementary

Despite the separation into two camps, the phenomenological
and the neurophysiological approaches to visual perception are
not mutually exclusive in the sense of a dichotomy; rather, they
complement each other. They may actually represent the two end-
points of a continuum. Needless to say, when the different ap-
proaches deal with the same phenomenon, their results must be
compatible. For example, if a proposed neural mechanism fails to
generate illusory contours in response to a set of ‘pacmen,’ that
explanation is likely flawed.

One should bear in mind, however, that the complexity of the
brain with its large number of visual areas and myriads of neuro-
nes and neuronal connections may preclude neurophysiologists
from obtaining a comprehensive set of recordings that are associ-
ated with a given visual percept. In other words, if a putative neu-
ral mechanism fails to generate a certain perceptual phenomenon,
this does not mean that such a mechanism does not exist.

Regardless of these limitations, phenomena deserve to be stud-
ied in their own right as they represent the material on which psy-
chophysics and neurophysiology depend. This is consistent with
Purkinje’s (1819) dictum that perceptual phenomena reveal physi-
ological truths, and is compatible with the classic observations by
Mach (1865) and Hering (1874/1964) on border contrast and area
contrast.

To account for the contrast bands bearing his name, Mach pre-
dicted the existence of lateral connections in the retina (see Ratliff,
1965), an insight that was inherent in the percept, not the physical
stimulus. Similarly, Hering’s colour theory was inspired by phe-
nomenological observations on the incompatibility between oppo-
nent colours. Modern neurophysiology has confirmed a yellow–
blue antagonism where yellow is achieved by the summation of
the long- and medium-wavelength channels (red and green). An
additive combination was also concluded from spatial and tempo-
ral studies of blackness induction, demonstrating that blackness is
mediated by neural mechanisms that combine the outputs of mid-
dle- and long-wave cones (Volbrecht, Werner, & Cicerone, 1990).

Phenomena waiting to be assigned to a neural substrate are:

� The watercolour effect, a subtle and uniform colouration of a
large surface area enclosed by a chromatic double contour
(Pinna, Brelstaff, & Spillmann, 2001; Pinna & Grossberg, 2005;
Von der Heydt & Pierson, 2006; Werner, Pinna, & Spillmann,
2007).

� The tunnel effect, demonstrating extrapolation of visual motion
of an object disappearing behind, and reappearing from, a bar-
rier (Michotte, 1946/63; Ryf & Ehrenstein, 1998; Takahashi
et al., 2008; Vicario & Kiritani, 1999).

Neurocomputational models for these and other effects are
becoming increasingly available (Grossberg & Mingolla, 1985;
Neumann et al., 2007; Todorovic, 1998).
9. Going beyond correlations: why is the brain organised the
way it is?

In retrospect, neurophysiological correlations to explain percep-
tual phenomena are only one aspect of vision research; for today’s
neurophysiologists the emphasis rather is to understand why the
brain is organised the way it is as revealed by anatomical, neuro-
physiological, and imaging studies. This research is full of unex-
pected findings (Schiller, 1997). A few examples:
9.1. Retinal ON and OFF-cells

In the late 1930s, Hartline (1938, 1940) discovered that there
are ON, OFF, and ON–OFF retinal ganglion cells, a finding that led
to a Nobel Prize. Why did these systems emerge in the course of
evolution? The most plausible hypothesis is that objects in the vi-
sual scene, depending on their reflection properties, become visible
by either a light increment or light decrement, thus exciting ON- or
OFF-cells, respectively. Using intracellular recording in the retina,
subsequent work, e.g., by Werblin and Dowling (1969) in the mud-
puppy (a large salamander) established that all photoreceptors
hyperpolarise to light and that the ON- and OFF-systems arise at
the bipolar cell level by virtue of sign-inverting (ON) and sign-con-
serving (OFF) synapses (for the mammalian retina see Wässle &
Boycott, 1991). By selectively blocking the ON-channel, using the
neuro-transmitter APB, Schiller (1982) then showed that in the pri-
mate visual system, the ON- and OFF-pathways remain largely seg-
regated from the retina to the striate cortex. Detection of light
increments, but not decrements, was severely impaired by injec-
tion of APB into the eye (Schiller, Sandell, & Maunsell, 1986). The
central idea that has emerged from this work is that the ON- and
OFF-channels have evolved to provide excitatory signals for both
light and dark stimuli, an idea first proposed by Ewald Hering in
the nineteenth century and reinforced in the 1950s by Jung et al.
(1952) and Baumgartner (1961). Clearly, this was an unexpected
finding of major importance.

9.2. Centre-surround organisation of receptive fields

In the 1950s, a major discovery by Kuffler (1953) was that ret-
inal ganglion cells have a centre-surround organisation. Why has
such an organisation emerged in the course of phylogenetic devel-
opment? Studies have shown that the inhibitory surround enables
the visual system to enhance edge contrast, sharpen spatial fre-
quency channels, and suppress noise in the interest of optimising
spatial resolution. In addition, during dark adaptation lateral inhi-
bition in the receptive field decreases, thereby maximising sensi-
tivity at the cost of resolution (Barlow, Fitzhugh, & Kuffler, 1957).
The fact that retinal ganglion cells arranged in centre-surround
receptive fields can function as local difference detectors enables
the visual system to process pattern information over a huge range
of illumination levels without a large dynamic range (Werblin,
1973). The discovery of the centre-surround antagonism has had
a major impact in visual neuroscience as it is found from retina
to cortex, and not just in the visual system. Receptive fields have
been studied in other sense modalities (e.g., cutaneous) and in
numerous species from Limulus to primates. What a great and
unexpected discovery!

9.3. Orientation specificity of cortical cells

In the 1960s, Hubel and Wiesel (1965) found that the majority
of cells in the visual cortex are orientation-specific, another finding
that led to a Nobel Prize. Orientation-specific cells are tightly
spaced in systematically arranged columns, representing the entire
spectrum of orientations. Why did this columnar architecture
emerge in the course of brain development? The initial idea was
that pattern perception is accomplished by breaking down the vi-
sual scene into oriented line segments and that discrimination
could be enhanced by inhibition between neighbouring orientation
detectors (Blakemore, Carpenter, & Georgeson, 1970; Kurtenbach &
Magnussen, 1981). Alternatively, it was proposed that pattern per-
ception is accomplished by virtue of Fourier analysis in the visual
cortex (Campbell & Robson, 1968). The fact that selectivity to ori-
entation is orderly mapped onto the cerebral cortex points towards
an explanation in terms of close connectivity and minimised wir-
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ing, although other alternatives are still being discussed (Horton &
Adams, 2005).

9.4. X/Y-cells of the cat and magno/parvo-cells of the monkey

In the 1970s, it was discovered that there are two distinct clas-
ses of retinal ganglion cells, called X and Y in cats (Boycott & Wäs-
sle, 1974; Cleland, Levick, & Sanderson, 1973; Shapley & Perry,
1986), or midget and parasol cells in primates (Schiller, Logothetis,
& Charles, 1990). The midget cells projecting to the parvocellular
layers of the LGN have relatively small receptive fields and process
fine detail, colour, as well as fine stereopsis. This pathway has a
high spatial and low temporal resolution, and is fairly insensitive
to contrast, but colour-selective. In comparison, the parasol cells
projecting to the magnocellular layers of the LGN have relatively
large receptive fields and process motion and flicker, as well as
coarse stereoscopic depth. This pathway has a low spatial and high
temporal resolution, and is highly sensitive to contrast, but largely
colour-blind. The central new idea proposed is that the midget
cells have evolved to extend the range of vision in the wavelength
and spatial domains, whereas the parasol cells have evolved to ex-
tend the range of vision in the luminance and temporal domain
(Schiller et al., 1990). The finding that disparate stimulus parame-
ters are processed by creating two distinct systems that originate
in the retina was clearly a major discovery.

9.5. The ‘‘where” and ‘‘what” pathways

In the 1980s, it was shown that in primates visual processing at
the level of the striate and prestriate cortex is far from complete,
but continues into the parietal and temporal lobes (Mishkin,
Ungerleider, & Macko, 1983). Following Schneider’s (1969) finding
in the hamster of two visual subsystems, one for exploration and
one for close examination, the regions showing this functional spe-
cialisation have been called the ‘‘where” and the ‘‘what” systems.
Research has shown that the first subserves spatial localisation
and direction of motion (dorsal route), whilst the second deals
with colour and object recognition (ventral route). There is evi-
dence that these two pathways receive their inputs predominantly
from the magnocellular and parvocellular systems of the retina,
LGN and visual cortex, respectively. The magnocellular system pro-
jects to the parietal lobe, whereas the parvocellular system pro-
jects to the infero-temporal lobe (Hubel & Livingstone, 1987;
Livingstone & Hubel, 1987). These processing streams provide
the bases for early and mid-vision by linking the anatomical, func-
tional and perceptual attributes together. A beautiful set of
discoveries.

9.6. Transformation from 2D to 3D

A continuing problem throughout vision research – and the arts
– has been the question of how two-dimensional images on the
retinal surface can result in the perception of depth. The perception
of depth is of major importance for spatial navigation, pursuit of
prey, and flight from predators. So, how do we recover depth? Sev-
eral factors are involved: binocular cues such as disparity and ver-
gence, and monocular cues, such as motion parallax, shading,
perspective, and accommodation. Neurophysiologists have estab-
lished that there are neurones in areas V1 and V2 of the visual
brain that respond selectively to different lateral disparities, there-
by giving rise to stereoscopic depth perception (Poggio & Fischer,
1977); and that there are neurones in area MT sensitive to differ-
ential motion velocity, presumably contributing to motion parallax
(Nadler, Angelaki, & DeAngelis, 2008). A behavioural experiment
showed that when disparity and shading cues were presented to-
gether, monkeys performed better than with either cue alone, as
did humans (Zhang, Weiner, Slocum, & Schiller, 2007). This sug-
gests an interaction between the various cues for the optimal util-
isation of depth stimuli and offers a challenge to single-cell
neurophysiologists for future study.

9.7. Foveation of targets by saccadic eye movements

Vision without eye movements is crippling as is easily realised
when one immobilises the eye muscles with curare (von Holst &
Mittelstaedt, 1950). The ability of guided eye movements to bring
the centre of gaze (fovea) onto a peripheral target greatly enhances
the operational range of visual awareness. What is the neuronal
machinery that helps us fixate and perform saccades? In anatomi-
cal studies, it was established that the mammalian retina projects
to the superior colliculus and the lateral geniculate nucleus of the
thalamus, which in turn projects to the visual cortex. So the ques-
tion came up what are the roles of the retino-thalamic-cortical sys-
tem as opposed to the retino-collicular systems in vision? We now
know that the superior colliculus together with the frontal eye
fields is involved in the generation of accurate eye movements
(i.e., foveation) by utilizing an error signal, or vector code, that
specifies the difference between the present and intended eye
positions (Schiller, True, & Conway, 1979). Saccadic eye move-
ments are essential for scutinizing peripheral objects. Without
them we would see motion and temporal changes, but we would
not know what the objects are.

Discoveries of this kind are largely the outgrowth of efforts that
have addressed the question of why the brain has a plethora of
neuronal systems as revealed by anatomical, physiological and
imaging studies. This research strategy has had great success
and, by providing a functional and structural framework, adds
immeasurably to a better understanding of the neurophysiological
correlations described above (chapter 6).
10. Outlook

A fitting culmination to the work of the past generation on par-
allels between phenomenological observation and single neurone
responses would be a general account of Gestalt psychology’s
best-known descriptive principles (e.g., proximity, closure, good
continuation, symmetry, similarity, and common fate). The gener-
ality of these principles in many kinds of percepts suggests that the
physiological mechanisms may be implemented in multiple visual
areas.

These neurophysiological mechanisms may be more universal
than what we have discussed so far, because now one is looking
beyond percept-to-cell correlates to principles for organising corti-
cal functions, such as self-organising processes in the interest of
the simplest, most regular and balanced field (Prägnanzprinzip).
From such regularity must come the universal principles long as-
serted by the Gestaltists and yet to emerge, in what we may call
neo-Gestalt neurobiology.

This paper shows that phenomenology and neurophysiology are
not mutually exclusive, but complement each other. Phenomena in
search of neurophysiological processes and neuronal mechanisms
in search of phenomena are complementary strategies (Valberg &
Lee, 1991). Although this relationship is mutual, it is not symmet-
rical. Whilst there are many phenomena that have spurred on the
search for neuronal counterparts, there have been few neurophysi-
ological findings that have led to new phenomena.

One example is the anthill effect (Nelson, 1974) that was in-
spired by known differences in the X- and Y-cell visual path-
ways. Here, two percepts were shown to alternate when
looking at an anthill: a percept of ‘‘motion everywhere”, includ-
ing velocity and directional information, with positional informa-
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tion being poor (the ants seem regularly spaced); and a percept
of high visual acuity and recognition of detail around the point
of fixation. Nelson argued that X- and Y-cells and their corre-
sponding pathways in the temporal and parietal cortex are so
different in their spatio-temporal properties that they cannot
support two percepts, a global and a focal one, at the same time.
Conscious perception therefore must choose – and will alternate
– between them.

Fechner (1860/1966) would have called the complementary
relationship between neural correlates and phenomena ‘‘inner psy-
chophysics” as opposed to the relation between retinal stimuli and
perceptions, i.e., ‘‘outer psychophysics.” An account of visual per-
ception requires a conceptual framework that describes, as well
as explains, in neural terms, what we see, including illusions. Pres-
ent-day physiological theories can explain only a fraction of our
phenomenal experience. Future research will show more clearly
the correlation between perceptual phenomena and neurophysio-
logical processes. Any approach towards this goal is desirable
and legitimate, but only a coherent integration of both, phenome-
nology and neuronal correlation, holds promise for the full picture.
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