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 Interaction of numerous sign
aling pathways in endothelial and mesangial cells results in exquisite control of the
process of physiological angiogenesis, with a central role played by vascular endothelial growth factor receptor 2
(VEGFR-2) and its cognate ligands. However, deregulated angiogenesis participates in numerous pathological
processes. Excessive activation of VEGFR-2 has been found to mediate tissue-damaging vascular changes as
well as the induction of blood vessel expansion to support the growth of solid tumors. Consequently, therapeutic
intervention aimed at inhibiting the VEGFR-2 pathway has become amainstay of treatment in cancer and retinal
diseases. In this review,we introduce the concepts of physiological and pathological angiogenesis, the crucial role
played by the VEGFR-2 pathway in these processes, and the various inhibitors of its activity that have entered the
clinical practice. We primarily focus on the development of ramucirumab, the antagonist monoclonal antibody
(mAb) that inhibits VEGFR-2 and has recently been approved for use in patients with gastric, colorectal, and
lung cancers. We examine in-depth the pre-clinical studies using DC101, the mAb to mouse VEGFR-2, which
provided a conceptual foundation for the role of VEGFR-2 in physiological and pathological angiogenesis. Finally,
we discuss further clinical development of ramucirumab and the future of targeting the VEGF pathway for the
treatment of cancer.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Angiogenesis inhibitors have been approved for the treatment of a
wide range of cancer types and for some ocular diseases. Many patients
have been treated with these agents for local and metastatic solid
tumorsworldwide. Anti-angiogenic agents in clinical use can be broadly
divided into two categories: 1. tyrosine kinase inhibitors (TKIs) which
are chemical agents that inhibit the kinase activity of receptor tyrosine
kinases (RTKs) and 2. protein biological agents. The latter category
includes the monoclonal antibody (mAb) bevacizumab that blocks the
function of vascular endothelial growth factor A (VEGF-A; VEGF hereaf-
ter) and ziv-aflibercept, a recombinant fusion protein that as a decoy
VEGF receptor binds VEGF, VEGF-B and placental growth factor (PlGF).
Recently, a novel biologic agent, ramucirumab, has been approved for
use in a number of cancer indications. Ramucirumab is a human IgG1
mAb that selectively inhibits the vascular endothelial growth factor
receptor 2 (VEGFR-2) and blocks the signaling pathways in endothelial
cells (ECs) thatmediate angiogenesis. Our aim is to describe in detail the
development of ramucirumab and the extensive pre-clinical data that
provided the rationale for targeting VEGFR-2 with this mAb. While
maintaining this focus, we attempt to balance our analysis by including
discussion of clinical and pre-clinical data generated with other agents
that target the VEGF/VEGFR-2 pathway.

1.1. Introduction to angiogenesis

Angiogenesis is the biological process by which new blood vessels
develop from pre-existing ones. The formation of new capillaries
through angiogenesis allows for the expansion of the blood vessel
network into newly created and avascular tissues. Angiogenesis is
distinct from vasculogenesis, which is the de novo formation of a
vascular plexus from endothelial progenitor cells (angioblasts). While
both processes expand the blood vasculature, they do so through very
different mechanisms. Vasculogenesis occurs primarily during early
embryogenesis via a pre-programmed developmental pattern, while
angiogenesis is triggered by localized biochemical cues in growing
tissues. Together, these two processes accomplish the multiplicity of
exquisitely orchestrated steps that create the vascular network. These
steps include de novo differentiation of ECs, specification of arterio-
venous fate of these cells, assembly of ECs into cords and the develop-
ment of a vascular lumen. Subsequently, EC activation, tip cell formation
and stalk cell proliferation lead to angiogenic sprouting, branching,
capillary anastomoses and association with mural cells that establish
functional and perfused vasculature. As may be expected, the spatial
and temporal control of these events is under control of a myriad of
molecular pathways [reviewed in (Potente et al., 2011)]. It is important,
in the context of this review, to keep in mind that the VEGF/VEGFR-2
pathway is a vital but by nomeans sole driver of the angiogenic process.

1.1.1. Angiogenesis in normal development
Ordered expansion of the vascular network is essential throughout

normal growth and development [reviewed in (Domigan & Iruela-
Arispe, 2012; Tung et al., 2012)]. Angiogenesis is driven primarily as a
response to the formation of oxygen gradients in tissues [reviewed in
(Semenza, 2007)]. Cells residing in regions beyond the oxygen diffusion
limits (100–200 μm) become hypoxic and initiate the secretion of pro-
angiogenic growth factors and cytokines to recruit new blood vessels
via angiogenesis [reviewed in (Torres Filho, Leunig et al., 1994;
Semenza, 2007)]. During pregnancy, an initial primitive vascular plexus
is established to provide nutrients to the developing embryo [reviewed
in (Chen & Zheng, 2014)]. These earliest events of placental vasculariza-
tion are marked by vasculogenesis, whereas by the third trimester of
pregnancy placental angiogenesis drives an expansion of the primitive
vascular network to create a more sophisticated and functional blood
vessel network to meet the needs of the growing fetus. Within the
developing embryo, angiogenesis is the major mode of production of
new blood vessels within the brain and kidney and also works in
concert with vasculogenesis in the developing lungs [reviewed in
(Baldwin, 1996)]. Postnatally, angiogenesis has been shown to be
required in the expanding blood vessel networks in expanding tissues
during growth, particularly in the epiphysis (growth plate) [reviewed
in (Hall et al., 2006)] and in the endometrium of post-pubertal females
during menstruation [reviewed in (Jabbour et al., 2006)].

1.1.2. Angiogenesis in wound healing
Quiescent vasculature is a hallmark of homeostasis in normal adult

tissues with the exception of the female reproductive organs. However,
the process of angiogenesis may be robustly activated under a variety of
tissue stresses and in diverse disease states. Acute tissue injury initiates
a wound healing program marked by discrete phases of hemostasis,
humoral inflammation, cellular inflammation, angiogenesis, and gener-
ation of mature connective tissue stroma [reviewed in (Dvorak, 2015)].
Angiogenesis during wound healing is driven primarily through the
action of VEGF secreted from hypoxic cells in the inflammatory micro-
environment. VEGF stimulates the sprouting of new vessels as well as
induction of hyperpermeability, allowing for the increased passage of
proteins (in particularfibrin and other clotting factors) and inflammato-
ry cells (polymorphonuclear granulocytes, lymphocytes, monocytes,
and fibroblasts). The complex actions of these factors and cell types
result in both the reconstitution of the vasculature and “sealing” of the
wound by fibrin deposition and stromal generation. Over time, the
newly created vessels and desmoplastic stroma in the healing wound
site gradually resolve back into a highly ordered and stable quiescent
tissue, re-establishing a homeostatic balance.

1.1.3. Pathological angiogenesis
Many pathological conditions are characterized by aberrant angio-

genesis. Insufficient or reduced angiogenesis has been demonstrated
in diseases such as amyotrophic lateral sclerosis (ALS), diabetic ulcers,
Crohn's disease, lupus, preeclampsia and coronary artery disease.
Conversely, chronic activation or over-stimulation of angiogenesis is a
hallmark in diabetic complications, arthritis, psoriasis, inflammatory
bowel disease, endometriosis, and cancer [reviewed in (Carmeliet,
2005)].

Tumor blood vessels are torturous, hyperpermeable, and highly het-
erogeneous both morphologically and with regards to efficiency of tis-
sue perfusion [reviewed in (Huang, Goel et al., 2013)]. Tumor
angiogenesis was thrust into the limelight in the early 1970s when
Judah Folkman proposed a hypothesis that angiogenesis is essential
for tumor growth and that tumors secrete “tumor angiogenic factors”
(TAFs) that induce the development of new blood vessels [reviewed
in (Folkman, 1971, 1975)]. In retrospect, the relationship of tumor
cells and vasculature is considerably more complicated. Solid tumors
originate in proximity to pre-existing tissue vasculature. Many primary
tumors initially grow along such tissue blood vessels, a phenomenon
called vessel co-option. This phenomenon may be particularly impor-
tant for the growth of metastatic lesions that frequently occur in highly
vascularized tissues such as the lung and liver [reviewed in (Donnem
et al., 2013)]. The Folkman hypothesis becomes valid when a tumor
reaches a size where its further growth becomes dependent on recruit-
ment of new blood vessels, an event referred-to as the “angiogenic
switch” [reviewed in (Shaked, McAllister et al., 2014; Semenza, 2013)].

Growth of a tumor beyond the limits of efficient oxygen diffusion
through the interstitial fluid, results in regions of hypoxia, nutrient
depletion and metabolic imbalance. These conditions result in the pro-
duction of various factors (TAFs) by both tumor cells and the associated
stromal components. In the early 1980’s the first of these TAFs were
identified from tumors. Shing and Klagsbrun (Shing et al., 1984) puri-
fied a factor from a chondrosarcoma which later became known as
basic fibroblast growth factor (bFGF) while Senger and Dvorak
(Senger et al., 1983) purified a factor they called vascular permeability
factor (VPF) from an ovarian tumor. A few years later the Ferrara
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laboratory isolated a pro-angiogenic protein from bovine pituitary
follicular cells that they termed VEGF (Ferrara & Henzel, 1989), which
was found to be the same factor as VPF. Shortly thereafter, the Ferrara
laboratory cloned the gene for VEGF (Leung et al., 1989). In a pivotal
finding, the laboratory of Eli Keshet demonstrated that VEGF gene
expressionwas stimulated by hypoxia (Shweiki et al., 1992). Mechanis-
tically, this findingwas explained by the discovery that the VEGF gene is
under direct control of hypoxia inducible factor 1 (HIF) (Liu et al., 1995;
Forsythe et al., 1996). Together, these findings ushered in a new era of
understanding in the interplay between tumor growth, metabolism
and angiogenesis [reviewed in (Hanahan &Weinberg, 2000)]. It should
be noted that tumor hypoxia has been hypothesized to be a conse-
quence of rapidly growing tumors outgrowing their vascular supply
and the inherent inefficiency of the abnormal tumor vasculature,
which we explore further in subsequent sections.

VEGF is regarded as the key pro-angiogenic factor that drives tumor
angiogenesis [reviewed in (Ferrara, 2002)]. However, unlike the
situation that exists during development and wound healing, VEGF
expression is highly deregulated in primary tumors and in metastatic
lesions. In tumors, VEGF is expressed at high levels and by amultiplicity
of cell types including cancer cells, tumor stroma and invading myeloid
cells leading to EC hyperproliferation and loss of the guidance mecha-
nisms of angiogenic sprouting. Consequently, under conditions of
VEGF over-expression, sprouting angiogenesis may only partially drive
the development of a tumor vascular bed. In a series of pivotal
experiments, the laboratory of Harold Dvorak used a reductionist
model in which a range of blood vessel subtypes that morphologically
resemble those of human tumors are generated in rodent tissues by
the administration of adenovirus engineered to express murine
VEGF164 (Pettersson et al., 2000). The initial angiogenic response
involves generation of enlarged vessels (“mother” vessels) (MVs) with
poor pericyte coverage that seem to originate by hypertrophy of pre-
existing vessels rather than by sprouting. With time, “mother” vessels
transform to other vessel types such as glomeruloid malformations
(GMP), vascular malformations (VM), feeding arteries (FA) and
draining veins (DV). It is of major interest that the late-forming vessel
types such as VMs, FAs and DVs express lower levels of VEGFR-2 than
the early MVs and GMPs and exhibit significant resistance to anti-
VEGF therapy (Sitohy et al., 2011).

1.2. Vascular endothelial growth factor
A/vascular endothelial growth factor receptor 2 family

While the past three decades have yielded an incredible wealth
of information about the numerous mediators of angiogenesis, the
activation of VEGFR-2 by VEGF is overwhelmingly regarded as the
most critical driver of tumor angiogenesis [reviewed in (Hicklin &
Ellis, 2005)]. VEGF has been shown to be expressed at high levels in
many different types of carcinomas. Dozens of reviews have covered
the role of VEGF/VEGFR signaling and its importance in tumor angio-
genesis. As such, it remains the most studied pro-angiogenic pathway
and target of anti-angiogenic therapeutic intervention. Here we will
provide only a cursory review of the most salient features of the
VEGF/VEGFR pathways.

1.2.1. Introduction to the vascular endothelial growth
factor A/vascular endothelial growth factor receptor family

The VEGF family consists of 5 ligands (PlGF, VEGF-A, VEGF-B, VEGF-
C, and VEGF-D) that bind to a family of 3 receptors (VEGF receptor-1
[VEGFR-1], VEGFR-2 and VEGFR-3) [reviewed in (Jeltsch et al., 2013;
Shibuya, 2013a, 2013b)]. A considerable amount of cross-talk exists
between ligand and receptor binding, with the most relevant and
well-studied interactions to be VEGFR-1 binding to PlGF, VEGF-B and
VEGF-A, VEGFR-2 binding to VEGF-A, VEGF-C and VEGF-D and VEGFR-
3 binding to VEGF-C and VEGF-D (Fig. 1). VEGFR-1 is widely expressed
on a variety of cell types, including tumor cells, ECs and monocytes.
Signals mediated through VEGFR-1 are involved in angiogenesis (via
PlGF and VEGF), immune cell recruitment (via VEGF), and fatty acid
uptake (via VEGF-B). VEGFR-3 is highly expressed on lymphatic endo-
thelium and binding of VEGF-C and VEGF-D to this RTK mediates the
process of lymphangiogenesis. VEGFR-2 expression is primarily limited
to ECs and signaling of VEGF through VEGFR-2 is the major driver of
angiogenesis, although there is some data to suggest that VEGF-C and
VEGF-D are also involved in VEGFR-2 mediated angiogenesis [reviewed
in (Chen et al., 2012)] and (Jauhiainen et al., 2011). Although detailed
discussion is beyond the scope of this review, expression of VEGFR-2
has also been reported on bone-marrow derived circulating cells and
on subsets of myeloid and lymphoid leukocytes.
1.2.2. Vascular endothelial growth
factor receptor 2 activation in angiogenesis

Shortly after the discovery of VPF/VEGF-A (Senger et al., 1983; Leung
et al., 1989) and its primary receptor VEGFR-2 (originally identified as
FLK-1, KDR in humans; (Matthews et al., 1991; Millauer et al., 1993),
indispensable roles for this pathway in developmental and pathological
angiogenesis were elucidated. Genetic inactivation (knockout) of either
VEGF (Carmeliet et al., 1996; Ferrara et al., 1996) or VEGFR-2 (Shalaby
et al., 1995) cause early embryonic lethality (E8.5-E9.5) as a result of
defective hematopoietic and EC development and lack of establishment
of blood islands. The vital importance of VEGF is highlighted by the fact
that loss of even a single allele disrupts embryonic vascular develop-
ment leading to lethality (Carmeliet et al., 1996; Ferrara et al., 1996).
Knockout or knockdown of VEGF in tumor cells prevents or significantly
delays their ability to establish and/or grow in preclinical models.

Binding of VEGF to VEGFR-2 initiates canonical signaling pathways
similar to other RTKs [reviewed in (Koch & Claesson-Welsh, 2012;
Shibuya, 2013a, 2013b; Domigan et al., 2015)]. The autophosphoryla-
tion of the VEGFR-2 kinase domain (Y1504 and Y1509) is one of the
earliest events upon VEGF binding and is critical for activation of the
kinase and subsequent phosphorylation events on the VEGFR-2 recep-
tor. Numerous small molecule inhibitors have been developed to inhibit
VEGFR-2 kinase activity and many of these have been developed as
effective drugs in the clinic to treat various cancers. However, a vast
majority of these inhibitors have potent activities against many other
RTKs because of the structural similarities of the kinase domains within
this family.

Several other tyrosine residues on VEGFR-2 outside of the kinase
domain are phosphorylated in response to VEGF. The most important
of these include Y951, Y1175 and Y1214, which have critical roles in
mediating endothelial permeability (Y951), endothelial proliferation
(Y1175), and endothelial migration (Y951, Y1175, and Y1214). The
phosphorylation of these residues allows for other signaling mediators
such as TSAD, SHB, SHC, PLCγ, GRB2 and NCK to bind and recruit addi-
tional factors. The establishment of these intracellular complexes on
VEGFR-2 culminates in the activation of canonical pathways such as
PKC, RAS/RAF/ERK/MAPK, and PI3K [reviewed in (Koch & Claesson-
Welsh, 2012)].

While VEGF-C and VEGF-D have been demonstrated to bind and
signal through VEGFR-2, their knockout phenotypes suggest they have
more important roles in lymphangiogenesis. VEGF-C null mice die
embryonically at E15.5–E17.5 as a result of impaired lymphatic vessel
development and edema (Karkkainen et al., 2004). VEGF-D null mice
are healthy and fertile with only minor effects noted on lymphatic
development (Baldwin et al., 2005). Knockout of either VEGF-C and
VEGF-D or compound deletion of both genes did not result in any signif-
icant effects on blood vessel development (Haiko et al., 2008), suggest-
ing that VEGF is sufficient to promote angiogenesis through VEGFR-2
during development. However, it is not clear whether in pathological
states VEGF-C alone can sufficiently activate VEGFR-2 to maintain
angiogenesis under conditions where VEGF is potently neutralized.
Experimental resolution of this question would be instrumental in



Fig. 1. The VEGF family and its inhibitors. There is considerable crosstalkwithin theVEGF familywhich consists of 5 ligands (PlGF, VEGF-A, VEGF-B, VEGF-C, and VEGF-D) that can bind to 3
different receptors (VEGFR-1, VEGFR-2 and VEGFR-3). VEGF binds to VEGFR-2 or VEGFR-1, PlGF andVEGF-B to VEGFR-1, and VEGF-C andVEGF-D to VEGFR-2 or VEGFR3.Many of the TKIs
non-selectively inhibit theVEGF receptors. Largemolecule biologic inhibitors aremore selective and inhibit either VEGFpathway ligands (bevacizumab/B20/G6or aflibercept) or receptors
(ramucirumab/DC101). Bevacizumab (or mouse B20 or G6) inhibits all of the VEGF isoforms, while aflibercept targets the VEGF isoforms plus PlGF and VEGF-B. Ramucirumab (or mouse
DC101) selectively inhibits the binding of VEGF, VEGF-C, and VEGF-D to VEGFR-2.
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clearly delineating whether the effects of inhibiting VEGF can be differ-
entiated from the effects of inhibiting VEGFR-2.

2. Introduction to therapeutic intervention in cancer

Historically, development of clinical agents that inhibit VEGF/
VEGFR-2 signaling pathway beganwith generation of neutralizing anti-
bodies to VEGF. Subsequently, TKIs, small molecular entities that inhibit
intrinsic tyrosine kinase activity of RTKs were introduced. These agents
were followed by novel biologic moieties such as VEGF-Trap and, most
recently by an antagonist antibody to VEGFR-2. These agents are
discussed in greater detail below.

2.1. Receptor tyrosine kinase inhibitors

A detailed discussion of TKIs is beyond the scope of this article and
has been extensively reviewed elsewhere (Gotink & Verheul, 2010).
Briefly, anti-angiogenic multi-targeted TKIs are small molecule inhibi-
tors with potent inhibitory activity at the catalytic binding site on the
VEGFR-2 intracellular domain. These include competitive inhibitors
such as sunitinib, allosteric inhibitors such as sorafenib and covalent in-
hibitors such as vandetanib.Most of the first generation anti-angiogenic
TKIs such as sunitinib, sorafenib and pazopanib have adverse effects un-
related to efficient VEGF blockade as they inhibit a wide range of kinase
targets such as PDGFRs, c-kit, Flt3, RET, CSF1R, B-Raf in addition to the
VEGFRs. The second generation anti-angiogenic TKIs such as axitinib,
tivozanib, cediranib have improved potency and selectivity for VEGFRs
[reviewed in (Bhargava & Robinson, 2011)]. Several of these TKIs have
been approved by the FDA in solid tumors including metastatic renal
cell carcinoma (Motzer et al., 2009), gastrointestinal stromal tumors
(Demetri et al., 2006), pancreatic neuroendocrine tumors (PNET)
(Raymond et al., 2011), unresectable hepatocellular carcinoma (Llovet,
Ricci et al., 2008), advanced soft tissue sarcoma (Ranieri et al., 2014)
and advanced medullary thyroid cancer (Duda, 2012).

2.2. Bevacizumab

Bevacizumab (Avastin) is a humanized anti-VEGF mAb which binds
to and neutralizes all human VEGF isoforms and proteolytic fragments.
It does not neutralize other members of the VEGF family [reviewed in
(Ferrara et al., 2004)]. Currently bevacizumab has been approved as a
monotherapy for recurrent glioblastoma (Vredenburgh et al., 2007), in
combination with chemotherapy for metastatic colorectal cancer
(Hurwitz et al., 2004), metastatic non-squamous non-small cell lung
cancer (Sandler et al., 2006), platinum resistant ovarian cancer
(Stockler et al., 2014) and metastatic cervical cancer (Penson et al.,
2015) and in combinationwith IFNα for metastatic renal cell carcinoma
(Escudier et al., 2010).

2.3. Aflibercept

Aflibercept, also known as VEGF-trap (aflibercept hereafter), is a
recombinant decoy receptor fusion protein created by fusion of domain
2 of vascular endothelial growth factor receptor-1 (VEGFR-1) and
domain 3 of VEGFR-2 with the Fc portion of human IgG1. It binds or
“traps” the different isoforms of VEGF as well as VEGF-B, and PlGF
[reviewed in (Gaya & Tse, 2012; Papadopoulos et al., 2012; Ciombor &
Berlin, 2014)]. Aflibercept is reported to have a higher affinity for
VEGF than VEGFR-2 or bevacizumab (Papadopoulos et al., 2012). In ad-
dition, unlike bevacizumab, aflibercept is able to target PlGF which has
been reported to be increased in response to other anti-VEGF therapies
and may play a role in the development of resistance to these drugs
(Rini et al., 2008; Willett et al., 2009). Aflibercept has been approved

Image of Fig. 1
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in combinationwith chemotherapy for 2nd line treatment of metastatic
colorectal cancer (Van Cutsem et al., 2012).

2.4. Ramucirumab

Ramucirumab (IMC-1121B) is a fully-human IgG1mAb that binds to
the ligand-binding site of VEGFR-2 and prevents the activation of this
RTK. Its development is discussed in detail below. Following an exten-
sive clinical testing program (Table 1), ramucirumab received approval
for use as a monotherapy and in combination with chemotherapy in
metastatic gastric or gastroesophageal (GE) junction adenocarcinoma,
in combination with chemotherapy for metastatic non-small cell lung
cancer and for metastatic colorectal cancer [reviewed in (Calvetti,
Pilotto et al., 2015)].

2.4.1. The development of ramucirumab
The development of therapeutic mAbs that antagonize human

VEGFR-2 has been previously reviewed (Clarke & Hurwitz, 2013).
Initially, a phage display-derived mouse/human chimeric IgG1 mAb
cP1C11(IMC-1C11) was produced [reviewed in (Hunt, 2001)]. IMC-
1C11 was extensively characterized using both cell-free and in vitro
cell-based models (Zhu et al., 1998; Tille et al., 2003; Persaud et al.,
2004). The in vivo results with IMC-1C11 are discussed in subsequent
sections. This mAb entered a dose-escalating phase I clinical trial in
2000 in patients with liver metastatic colorectal cancer (Posey et al.,
2003) but its further clinical development was not pursued. Subse-
quently, a fully-humanmAb to human VEGFR-2, was produced by affin-
ity maturation of a parent antagonist mAb to human VEGFR-2 called
2C6 (Lu et al., 2003). 2C6 was identified for high affinity binding to
human VEGFR-2 utilizing a naive phage display library of human Fab
fragments (Lu et al., 2002). Affinity maturation using chain shuffling
in association with a tailored selection process identified a clone
designated 1121. 1121 Fab and IgG forms showed 36- and 4-fold higher
affinity for VEGFR-2 relative to the parental molecule 2C6, respectively
and significantly enhanced the ability of the mAb to inhibit the interac-
tion of VEGF with human VEGFR-2 (Lu et al., 2003; Zhu et al., 2003).
1121 (IMC-1121B; ramucirumab hereafter), bound to immobilized
human VEGFR-2 (KDR) with an EC50 of 0.16 nM (B. Pytowski, Eli Lilly,
unpublished data) and blocked VEGF/VEGFR-2 interaction with an
IC50 of 0.8 nM (Lu et al., 2003). As determined by surface plasmon reso-
nance on a BIAcore instrument, ramucirumab showed an overall affinity
Table 1
Completed Phase III Ramucirumab trials.

Trial Indication Design

REVEL NSCLCa

Second-line (N = 1253)
Docetaxel (75 mg/m2)
(60 mg/m2 Korea/Taiwan) ±
ramucirumab (10 mg/kg)
q 3 weeks

REGARD G-OJb

Second-line (N = 355) 2:1
Ramucirumab (8 mg/kg)
q 2 weeks vs. Placebo

RAINBOW G-OJb

Second-line (N = 665)
Paclitaxel (80 mg/m2) ±
ramucirumab (8 mg/kg)
q 2 weeks

REACH HCCc

Second-line, post-sorafenib (N = 544)
Ramucirumab (8 mg/kg)
q 2 weeks vs. placebo

RAISE mCRCd

Second-line, FOLFOX/Bev Res (N = 1050)
FOLFIRI ± ramucirumab (8 mg
q 2 weeks

ROSE mBCe

First-line (N = 1144) 2:1 Ram:Dox
Docetaxel (75 mg/m2) ±
ramucirumab (10 mg/kg)
q 3 weeks

a Non-small-cell lung cancer.
b Gastric or gastro-oesophageal junction adenocarcinoma.
c Hepatocellular carcinoma.
d Metastatic colorectal carcinoma.
e Metastatic breast carcinoma.
of 11–50pM(Lu et al., 2003) (B. Pytowski, Eli Lilly, unpublished data). In
in vitro cell-based functional assays, ramucirumab inhibited VEGF-
stimulated VEGFR-2 activation and proliferation of human ECs as well
as VEGF stimulated VEGFR-2 phosphorylation in both human umbilical
vein ECs (HUVEC) and porcine aortic ECs transfected with human
VEGFR-2 (PAE-KDR cells) (Lu et al., 2003; Zhu et al., 2003). In addition,
ramucirumab inhibited VEGF-induced migration of human leukemia
cells (Zhu et al., 2003). Co-crystallization of ramucirumab with the Ig
domain 3 of human VEGFR-2 allowed the definition of the epitope of
this mAb at high resolution and provided structural explanation for its
antagonism of VEGF binding (Franklin et al., 2011). In vivo testing of
IMC-1C11 and ramucirumab was difficult because these mAbs do not
recognize murine VEGFR-2. However, both antibodies prolong the
survival of immunodeficient mice inoculated with human leukemia
cells that express VEGFR-2 suggesting that the growth of these cells is
at least in part driven by autocrine or paracrine production of VEGF
(Dias et al., 2000, 2001; Zhu et al., 2003).

VEGFR-2 is also activated by vascular endothelial growth factors C
and D (VEGFs C and D)when these factors are proteolytically processed
into their mature forms [reviewed in (Lohela et al., 2009)]. Structural
studies predicted that conserved residues in VEGF-C and VEGF-D
mediate binding to VEGFR-2 (Leppanen et al., 2010, 2011) in
immunoglobulin-like (Ig) domains 2 and 3 also known to mediate the
binding of VEGF (Ruch et al., 2007). In accordance with these findings,
ramucirumab inhibited the binding of VEGF, VEGF-C and VEGF-D to
soluble extracellular domain of human VEGFR-2 in a dose-depended
manner and respective IC50 values reflected the difference in affinities
of various ligands for VEGFR-2 (VEGF N VEGF-C N VEGF-D) (B. Pytowski,
Eli Lilly, unpublished data). Ramucirumab preventedVEGF-C frombind-
ing to human VEGFR-2, and inhibited VEGF-C-induced activation of
VEGFR-2 in both vascular and lymphatic ECs (Goldman et al., 2007;
Tvorogov et al., 2010). Ramucirumab has also been shown to potently
inhibit sprouting and proliferation of ECs following stimulation with
VEGF-C (Miao et al., 2006; Tvorogov et al., 2010), and block VEGF-C-
induced heterodimerization of VEGFR-2 and VEGFR-3 (Nilsson et al.,
2010). The ability of ramucirumab to block all three VEGFR-2 ligands
invites speculation whether it might offer therapeutic advantages over
agents that neutralize VEGF. However, to date, no pre-clinical or clinical
evidence has emerged to support this claim. A related unaddressed
question is whether a combination of anti-VEGF and anti-VEGFR-2
agents may offer a benefit exceeding that of either agent alone.
Primary objective Result Ref.

Overall survival Met Garon, Ciuleanu et al., 2014

Overall survival Met Fuchs, Tomasek et al., 2014

Overall survival Met Wilke, Muro et al., 2014

Overall survival Not met Zhu et al., 2015

/kg) Overall survival Met Tabernero, Yoshino et al., 2015

Progression-free Survival Not met Mackey, Ramos-Vazquez et al., 2015
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3. Preclinical targeting of the vascular endothelial
growth factor A/vascular endothelial growth factor receptor 2 axis

Murinemodels of cancer, whether syngeneic or xenogeneic, depend
on angiogenic expansion of the murine vasculature which, in turn, is
partly supported by murine stroma. As described below, the need to
accurately model in mice clinical targeting of either VEGF or VEGFR-2
with biologic agents presented researchers with significant technical
challenges that were, to a significant degree, overcome through the
use of surrogate, “proof-of-concept” antibodies.

3.1. The development of biologic reagents for
pre-clinical targeting of vascular endothelial growth
factor A and vascular endothelial growth factor receptor 2

Recent detailed reviews have outlined the preclinical studies of anti-
bodies targeting VEGF (Crawford & Ferrara, 2009; Bagri et al., 2010) and
aflibercept (Gaya & Tse, 2012; Ciombor & Berlin, 2014). Although
bevacizumab and other mAbs to human VEGF decrease tumor growth
in human tumor xenograft models, these agents can only inhibit the
tumor derived VEGF (Crawford & Ferrara, 2009) but cannot target
VEGF produced by mouse stroma, which has been shown to play an
important part in the angiogenesis process (Gerber et al., 2000; Liang
et al., 2006; Yu et al., 2008). Thus, to faithfully model in mice the
therapeutic activity of VEGF blockade in patients, anti-VEGF mAbs
must neutralize both human and mouse VEGF. To this end, two cross-
species reactive function-blocking antibodies targeting VEGF (B20.4-1
and G6-31; B20 and G6 hereafter) have been developed (Liang et al.,
2006). These antibodies neutralize VEGF with no detectable activity
towards other VEGF-family members such as PlGF, VEGF-B, VEGF-C, or
VEGF-D (Liang et al., 2006). In contrast, aflibercept binds to and inhibits
both human and mouse VEGF and PlGF.

Even more dramatically than in the case of bevacizumab, the com-
plete absence of cross-reactivity of IMC-1C11 and ramucirumab with
murine VEGFR-2 meant that these mAbs could not be tested at all for
anti-angiogenic activity in mice. Instead, the validity of targeting
VEGFR-2 in cancer and other pathological conditions has been
established almost exclusively with a rat anti-mouse VEGFR-2 mAb,
DC101. Although DC101 is frequently described as having been made
to provide a surrogate (“proof-of-concept”) mAb for ramucirumab, its
production and initial characterization predate ramucirumab by several
years (Rockwell et al., 1995).While complete in vitro characterization of
DC101 has not been published, binding experiments have shown that
DC101, but not ramucirumab, binds to mouse VEGFR-2 (Flk-1) with
an EC50 of about 0.28 nM. The kinetics of DC101 binding to mouse
VEGFR-2 (Flk-1) were determined by surface plasmon resonance on a
BIAcore instrument. The binding affinity (Kd) was established to be
0.11 nM, between 5 and 10-fold lower than the corresponding affinity
of ramucirumab for human VEGFR-2 (Lu et al., 2003) (B. Pytowski, Eli
Lilly, unpublished data). Specificity of DC101 for VEGFR-2 has also
been demonstrated. DC101 did not bind to mouse VEGFR-1 (Luttun
et al., 2002) (B. Pytowski, Eli Lilly, unpublished data). Similar to
ramucirumab, DC101 inhibited the binding of VEGF and VEGF-C
to mouse VEGFR-2, but was unable to inhibit binding of VEGF-C to
mouse VEGFR-3 (Pytowski et al., 2005). DC101 was not tested as an an-
tagonist of VEGF-D binding to VEGFR-2 since mouse VEGF-D binds only
to VEGFR-3.

3.2. Effect of vascular endothelial growth factor receptor 2
inhibition on physiological angiogenesis and vascular function

In vivo target engagement by DC101 was demonstrated when sys-
temic administration of DC101 to either normal or tumor-bearing
mice was found to significantly raise plasma concentration of VEGF, in
accord with the concept that ligand-induced receptor internalization
represents a key mechanism of ligand clearance. (Bocci, Man et al.,
2004). Of interest, in vivo treatment of either naïve or tumor-bearing
mice with DC101 also leads to elevated plasma levels of PlGF through
an as yet unknown mechanism raising the possibility that this factor
might be a useful pharmacodynamic marker of ramucirumab exposure
in patients (Fischer et al., 2007; Bais et al., 2010).

The availability of selective reagents that block the VEGF/VEGFR-2
pathway has been utilized to study the role of physiological angiogene-
sis in development. One of the first events in embryogenesis is
vasculoneogenesis in which ECs differentiate from precursor cells,
termed angioblasts. Experimentally, these events can be recapitulated
in cultures of embryoid bodies derived from pluripotentmurine embry-
onal stem cells (ESM). Using this approach, it was demonstrated that
signaling through endothelial fibroblast growth factor receptor 1
(FGFR-1) was insufficient for capillary plexus formation from embryoid
bodies if VEGFR-2 activation was prevented with either DC101 or anti-
bodies to VEGF (Magnusson et al., 2004).

The use of DC101 in post-natalmice also facilitated the elucidation of
the importance of VEGFR-2 signaling in organogenesis. DC101 potently
inhibited physiological angiogenic sprouting in the retinas of neonatal
mice (Tammela et al., 2008; Benedito, Rocha et al., 2012) and mice
treated with DC101 in the perinatal period demonstrated impaired
alveolization of the lungs (McGrath-Morrow, Cho et al., 2005). In a relat-
ed finding, the extensive remodeling of the primitive vascular plexus of
embryonic mouse tracheas that is initiated after birth was completely
prevented by administration of DC101 (Ni, Lashnits et al., 2010) and
the development of kidneys was disrupted by administration of
DC101 leading to formation of cysts, abnormal glomeruli and conse-
quent proteinuria (McGrath-Morrow, Cho et al., 2006). VEGFR-2 signal-
ing has also been demonstrated to play an important role in
adipogenesis and in the sensitivity of fat to insulin. Administration of
DC101 reduced angiogenesis and adipose tissue growth and inhibited
preadipocyte differentiation by disrupting paracrine interaction
between ECs and preadipocytes (Fukumura, Ushiyama et al., 2003).
Similarly, DC101 and anti-VEGF antibodies led to changes of adipose
tissue vascularization, adipocyte sizes, and insulin sensitivity although
the effect varied depending on the age of the mice (Honek, Seki et al.,
2014). Furthermore, in experiments on the role of angiogenesis on
early pregnancy in the mouse, DC101 has been shown to block the
growth of uterine decidua and the development of corpora lutea
(Pauli et al., 2005; Douglas et al., 2009). Similarly, IMC-1C11 and
aflibercept inhibited ovary follicle development, a process dependent
on angiogenesis, during the menstrual cycle in monkeys (Zimmermann
et al., 2001; Taylor et al., 2007). These studies demonstrated the crucial
role of VEGFR-2 in mediating post-natal angiogenesis that is crucial for
normal organ development and the maintenance of pregnancy.

The VEGF-VEGFR-2 autocrine loop has also been invoked in the dif-
ferentiation of murine ESC, hematopoiesis, and the generation of red
blood cells. Either genetic knock-down of VEGFR-2 or its blockade
with the kinase inhibitor (sunitinib) or DC101 in vitro allowed the
maintenance of a pluripotent state of ESCs even in the absence of leuke-
mia inhibitory factor (LIF) (Chen et al., 2014b). Hematopoiesis requires
VEGFR-2 signaling to support the development of marrow capillaries
and sinusoidal lining and stimulate the expansion of VEGFR-2+ circulat-
ing endothelial progenitor cells (CEP). Both events were stimulated by
injecting either VEGF or angiopoietin-1 (Ang1) into mice but only
VEGF-induced hematopoiesis was inhibited by concurrent administra-
tion of DC101 (Hattori et al., 2001). In a related study, potent neutraliza-
tion of VEGF/VEGFR-2 signaling with either aflibercept or DC101
induced production of red blood cells through elevated production of
erythropoietin by the liver. Since hepatocytes do not express VEGFR-2,
this phenomenon was ascribed to paracrine signaling between hepato-
cytes and hepatic ECs (Tam et al., 2006).

Quiescent endothelium is believed to be only minimally dependent
on VEGFR-2 signaling. In fact, conditional depletion of VEGFR-2 in ECs
of adult mice does not affect the viability of the mice (Ding et al.,
2010). Chronic administration of DC101 or anti-VEGF antibodies led to
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capillary regression in the intestinal villi, liver and the uterus. Both
modes of inhibition resulted in marked reduction in endothelial
fenestrations in several endocrine organs (Yang et al., 2013a). Similarly,
aflibercept and adenoviral expression of soluble VEGFR-1 or VEGFR-2,
which act as decoy receptors, decreased the vasculature in multiple or-
gans. The vasculature of these normal organs were less sensitive to
VEGF inhibition than tumor vessels, tended to be fenestrated, and had
relatively high expression of VEGFR-2 and VEGFR-3 (Kamba et al.,
2006). Together, these results indicate that the effects of VEGF pathway
inhibition on normal organs are a class-specific consequence of
inhibiting VEGFR-2 function [reviewed in (Cao, 2014)] and that depen-
dence on VEGF for vascular stability is variable from one vascular bed to
another. The changes imparted by VEGF/VEGFR-2 blockade on normal
endothelium are likely to mediate the adverse events associated with
the use of anti-angiogenic therapeutics in humans [reviewed in
(Kamba & McDonald, 2007)].

Formation of new vessels is a crucial component of re-establishment
of tissue homeostasis following injury. Organ regeneration offers one of
the best examples of this relationship. In a mouse model, liver regener-
ation and hepatic cell proliferation were reduced to a modest but
statistically-significant extent by systemic administration of DC101,
concomitant with reduction in the activation of liver endothelium
(Van et al., 2008). In contrast, while systemic administration of VEGF
accelerated compensatory right lung growth following left lung
pneumonectomy, co-administration of DC101 or the anti-VEGFR-1
mAb MF1 had no inhibitory effect suggesting VEGF acted through a
yet undefined mechanism (Sakurai et al., 2007).

Interestingly, VEGFR-2 signaling is also crucial for the regeneration
of the bone marrow. Bone marrow sinusoidal endothelial cells (SECs)
express both VEGFR-2 and VEGFR-3. However, in a SEC injurymodel in-
duced by lethal irradiation, engraftment of transplanted bone marrow
was severely impaired by systemic blockade with DC101 but not by
mAb mediated inhibition of VEGFR-3 demonstrating the central role of
VEGFR-2 in the regeneration of sinusoidal endothelium (Hooper et al.,
2009). It is of interest to note in the context of discussing tissue regen-
eration that while the formation of the tumor vascular bed is thought
to primarily result from angiogenesis, considerable evidence suggests
that, in addition, bone marrow-derived VEGFR-2(+) CEPs can be found
in the circulation of mice. CEPs are able to incorporate into distal sites
of developing blood vessels and differentiate into mature ECs, a process
termed adult vasculoneogenesis. This has been demonstrated inmodels
of tissue revascularization following experimentally induced limb ische-
mia. In these models, VEGF has been shown to be produced by various
leukocytes that invade the ischemic tissue and the VEGF-induced tissue
vascularization can be blocked by inhibition of VEGFR-2 (Heissig et al.,
2005; Ohki et al., 2005).

In addition to its important role in angiogenesis and vascular
homeostasis, the VEGF pathway has been shown to regulate vascular
permeability and blood pressure. VEGFwas originally discovered as a
VPF (Senger et al., 1986) and this activity is now known to be
mediated through the activation of VEGFR-2. Mice deficient in β3-
integrin show enhanced VEGF-mediated permeability. In this
model, administration of DC101 abolished the vascular leakage and
linked enhanced permeability to elevated expression of VEGFR-2
(Robinson et al., 2004). As discussed later, loss of endothelial integri-
ty due to excess VEGF is also a hallmark of many pathological
processes. Furthermore, administration of DC101 to normal mice
revealed that VEGFR-2 signaling is involved in the maintenance of
normal blood pressure by regulating expression of nitric oxide
synthases (NOS) in the kidney (Facemire et al., 2009).

4. Effect of vascular endothelial growth factor
receptor 2 inhibition in models of acute and chronic tissue injury

Blockade of the VEGF/VEGFR-2 pathway in vivo with highly specific
biologics was instrumental in illuminating the crucial role of this
receptor in controlling angiogenesis in tissue response to acute or
chronic injury. As we discuss below, depending on the pathological set-
ting, angiogenesis can either contribute to tissue damage or to tissue re-
covery following injury. We begin with models of ocular pathology
because of their central importance in elucidating the mechanisms of
normal and pathological angiogenesis, and then extend the discussion
to other models of tissue injury.

4.1. Mouse models of ocular pathologies

Oxygen-induced retinopathy (OIR) is one of the most commonly
used models of pathological angiogenesis. Intravitreal administration
of DC101 or bevacizumab resulted in similar reduction in retinal blood
vessel proliferation (Hollanders et al., 2015a). Similar observations
were obtained using a caninemodel of OIRwith IMC-1C11 or aflibercept
(McLeod et al., 2002; Lutty et al., 2011). Another model of vascular ocu-
lar pathology is laser-induced choroidal neovascularization (CNV).
Blood vessel density and vascular leakage were reduced by intravitreal
injections of DC101 in the mouse (Huang et al., 2011; Hollanders
et al., 2015b) and by tanibirumab in rat CNV models (Kim et al.,
2014). Similar studieswith aflibercept or anti-VEGF antibodies illustrate
the central role for the VEGF pathway in ocular pathologies (Lutty et al.,
2011; Hollanders et al., 2015a, 2015b). Such pre-clinical data spurred
the development of biologic therapeutics that target VEGF that have
revolutionized the treatment of macular degeneration and other ocular
diseases [reviewed in (Zhang et al., 2015)]. A clinical program for
ramucirumab in ocular indications has not been initiated.

4.2. Mouse models of tissue injury

Inflammation is the cardinal sign of tissue injury and pro-
inflammatory mediators frequently upregulate VEGF production and
angiogenesis which, in turn, can potentiate the process by providing a
pathway for extravasation of leukocytes and plasma proteins. For exam-
ple, treatment with DC101 in a model of contact sensitivity reduced
both dermal angiogenesis and inflammatory infiltrate (Watanabe
et al., 2004). Angiogenesis is clearly required for tissue healing following
organ transplantation but can contribute to chronic rejection of allo-
grafts. Alloimmune response appears to involve VEGFR-1 expressed by
infiltratingmyeloid cells andVEGFR-2 expressed on blood endothelium.
In a model of cardiac transplantation, combined antibody blockade of
VEGF receptors was optimal for reducing inflammation in the allografts
with the VEGFR-1 mAbMF1 inhibition reducing the inflammatory infil-
trate and DC101 reducing blood vessel density (Raisky et al., 2007). In
another study, only the combined inhibition of VEGFR-1 and VEGFR-2
prolonged allograft survival (Sho et al., 2005).

Inflammation is also critically dependent on the function of
lymphatic vessels which are major conduits for immune cell trafficking.
Inflammatory processes are typically accompanied by the development
of new lymphatics known as lymphangiogenesis. Lymphangiogenesis is
primarily mediated by VEGF receptor 3 (VEGFR-3) and its cognate
ligands VEGFs C and D. However, a role of VEGFR-2 in this process has
also been suggested [reviewed in (Tammela & Alitalo, 2010)] and the
ability to specifically block this receptor in vivo with DC101 was critical
in providing experimental proof for this hypothesis. In a transgenic
model of VEGF over-expression in the skin, lymphangiogenesis was
strongly induced at sites of skin wound healing and could be inhibited
by treatment with DC101 (Hong et al., 2004). Similarly, in a model of
skin regeneration in normal mice, only co-neutralization of VEGFR-2
withDC101 andVEGFR-3-specificmAbmF4-31C1 completely prevented
formation of functional lymphatic capillaries (Goldmanet al., 2007). Fur-
thermore, in a model of lung inflammation induced by persistent infec-
tion of mouse trachea with Mycoplasma, only combined inhibition of
VEGFR-2 and VEGFR-3 prevented the pathological expansion of lung
lymphatics (Baluk et al., 2014). Chronic inflammation of the cornea can
induce pathological angiogenesis and lymphangiogenesis in this
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normally avascular tissue. In a model of corneal suture-induced inflam-
mation, both VEGFR-3 and VEGFR-2 were involved in
lymphangiogenesis and significant inhibition was only achieved by a
combined mAb blockade (Yuen et al., 2011). These studies demonstrate
that VEGFR-2 plays a significant role in lymphangiogenesis during both
tissue regeneration and chronic inflammation. Of interest, in both the
lung and corneal models of chronic inflammation, lymphangiogenesis
was only inhibited in early stages of the pathological processes indicat-
ing that established lymphatic vessels become independent of VEGFR-
2 and VEGFR-3 signaling.

5. Inhibition of vascular endothelial growth
factor receptor 2 in mouse models of tumor angiogenesis

Pre-clinical development of anti-angiogenic drugs provided a rich
armamentarium of inhibitors whose use allowed in depth investigation
of mechanisms driving tumor angiogenesis (see Section 1). Here, we
focus our attention on the contributions made to this body of knowl-
edge through the use of antibodies targeting VEGFR-2, while providing
select examples where the neutralization of VEGF with either mAbs or
aflibercept was used in similar experimental settings. An important
illustration of the Folkman principle that tumors only grow to a few
microns without additional support from the vasculature was provided
by a study of lung tumor development. As expected, DC101 had no
effect on the number of induced lung tumors but significantly reduced
the total tumor burden (Karoor, Le et al., 2010). Numerous studies
have shown that systemic administration of DC101 potently inhibits
the growth of orthotopic and subcutaneous xenograft models
(Prewett et al., 1999; Kunkel et al., 2001; Bruns et al., 2002; Yu et al.,
2002; Raisky et al., 2007) and models of spontaneous cancer (Izumi
et al., 2003; Fenton et al., 2005). We explore the mechanism of this
inhibition in greater detail later but, broadly stated, DC101 treatment
potently reduces tumor vascularity with vessels in the tumor parenchy-
ma inhibited more readily than those found in the tumor stroma.

Similarly, inhibiting the VEGF pathways with anti-VEGF mAbs
or aflibercept also led to rapid and sustainable reductions in tumor vas-
cular density and profound effects on tumor growth in subcutaneous
xenografts, orthotopic tumor models, and genetically-engineered
murine tumor models (GEM). B20 was tested in over 30 different
models with the magnitude of the response varying depending on the
tumor model. However, responsiveness was not dependent on tumor
histology, growth rate, or VEGF levels (Bagri et al., 2010). Administration
of G6, a more potent inhibitor of mouse and human VEGF, effectively
decreased (~90%) the growth of multiple tumor models irrespective of
how stromalized the xenografts were (Liang et al., 2006). G6 decreased
blood volume within 24–48 h in the HM-7 colorectal xenograft model
(O'Connor et al., 2009). In syngeneic tumor models, G6 treatment
showed varying levels of tumor responsiveness that was dependent
on the recruitment of CD11b+Gr1+ myeloid cells (Shojaei et al.,
2007). Long-term treatment of multiple GEM and xenograft tumor
models showed improved survival with B20 treatment (Bagri et al.,
2010) and long-term administration of G6 led to a substantial increase
in survival of APC+/min and Men1 mice (Korsisaari et al., 2007,
2008). Similarly, treatment of a diverse array of tumor models in mice
with aflibercept resulted in potent inhibition of tumor angiogenesis
and, consequently, tumor growth. For example, aflibercept reduced
the growth of breast cancer xenografts in a dose dependent manner
that was correlated with decreased density of tumor vessels (Le et al.,
2008). Aflibercept also decreased vascular density and tumor volume
in models of melanoma, rhabdomyosarcoma, and glioma (Holash
et al., 2002) aswell as in subcutaneous and orthotopic pancreatic cancer
models (Fukasawa & Korc, 2004). In an orthotopic murine model of
renal cancer, potency of tumor growth inhibition by aflibercept
depended on how early the treatment began, a phenomenon commonly
seen in murine cancer models and which we address in greater detail
below (Verheul et al., 2007). Aflibercept increased the survival of mice
bearing intracranial glioma xenografts either when given during the
initial onset or during advanced phases of tumor development. Longer
treatments (6 weeks vs. 3 weeks) showed even longer survival, howev-
er, a resistant phenotype was observed in these long-term surviving
mice (Gomez-Manzano et al., 2008).

5.1. Mechanistic aspects of vascular
endothelial growth factor A/vascular endothelial
growth factor receptor 2 inhibition on tumor blood vessels

The effects of VEGFR-2 inhibition on the genesis of the tumor vascu-
lature are based on the interruption of the various signaling pathways
that are activated in ECs following binding of VEGF [reviewed in
(Olsson et al., 2006); see also Section 1]. Activated VEGFR-2 mediates
several distinct biological responses of ECs including proliferation, sur-
vival, and adhesion and migration. In turn, each of these responses is
deregulated during the growth of the tumor vasculature.

The important role of VEGFR-2 in EC proliferationwas demonstrated
in a reductionist model of inducible HIF-1 in the skin of normal mice
(Oladipupo et al., 2011). Pathological neovascularization is largely
mediated by induction of the HIF family (primarily HIF-1 and HIF-2)
which in turn directly upregulates the expression of VEGF. HIF-1 induc-
tion in the skin of these mice indeed led to an increase of VEGF and
activation of VEGFR-2. Initial stages of angiogenesis were characterized
by marked activation of VEGFR-2 and EC proliferation resulting in gen-
eration of new capillaries and increase in blood flow. The induction of
the new capillary bed was sensitive to DC101. However, after 14 days
of HIF-1 expression, EC expansion stopped despite continued activation
of VEGFR-2. This more mature vasculature was in turn insensitive to
treatment with DC101. Reduction of VEGFR-2 activation with DC101
has also been demonstrated by in situ detection of receptor phosphory-
lation inwhole tumor sections of bladder cancer xenografts (Davis et al.,
2004). Furthermore, reduction in the proliferation of tumor ECs has
been directly demonstrated in experimental skin papillomas (Beck
et al., 2011) and in skin carcinoma heterotransplants (Miller et al.,
2005).

While the VEGF/VEGFR-2 axis plays an important role in EC survival;
apoptosis of ECs and tumor blood vessel regression has only been dem-
onstrated in a small number of studies (Bruns et al., 2002; Sweeney
et al., 2002; Kiessling et al., 2004; Miller et al., 2005; Mancuso et al.,
2006). In one model, treatment with DC101 induced apoptosis of
tumor vessel endothelium of colorectal cancer metastases to the liver.
EC apoptosis preceded initiation of apoptosis in tumor cells (Bruns
et al., 2002). Similarly, in a syngeneic model of peritoneal colon carcino-
matosis, DC101 prolonged the survival of the mice. Histological assess-
ment showed reduced tumor vascularity and EC apoptosis (Shaheen
et al., 2001b). However, in a model of soft tissue sarcoma, DC101 en-
hanced EC apoptosis induced by low-dose treatment with doxorubicin
but did not promote apoptosis as a monotherapy (Zhang et al., 2002).

As already mentioned, while angiogenesis is thought to be the main
mechanism of the formation of new blood vessels in adults,
vasculoneogenesis has also been observed under pathological condi-
tions. This phenomenon is mediated by the incorporation of CEPs into
the endothelium of new microvessels in sites of tissue injury. The
same phenomenon also operates during the development of the
tumor vasculature. In a pivotal study, the number of CEPs in circulation
were shown to correlate with the genetic background of the mice, and,
in turn, mice with the highest levels of CEPs appeared to mount the
strongest angiogenic responses in various in vivo models of angiogene-
sis in syngeneic as well as xenograft tumor models. While CEP levels
were elevated in tumor-bearingmice, presumably due to increased sys-
temic VEGF, these cells were reduced by DC101 treatment to nearly the
levels found in normal control animals (Shaked et al., 2005). The same
group showed that certain forms of chemotherapy, for example, pacli-
taxel, induce CEP mobilization and subsequent homing to tumor blood
vessels while others such as gemcitabine, did not. This mobilization
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appeared to bemediated by the chemokine SDF-1 and could be blocked
by administration of DC101 (Shaked et al., 2008). More recently, block-
ade of either VEGFR-1 with mAb MF1 or VEGFR-2 with DC101 signifi-
cantly reduced growth of human esophageal cancer xenografts in
immunodeficientmice. In parallel, DC101 led to a reduction of the num-
ber of VEGFR-2(+) CEP in the bonemarrow of themice (Xu et al., 2015).

5.2. Effects of inhibiting vascular endothelial
growth factor A/ vascular endothelial growth factor
receptor 2 signaling on the function of the tumor vasculature

There aremultiplemechanisms that can affect the function of tumor
vessels.Wewill focus on the effects of anti-angiogenic therapy on vessel
wall integrity and the ability of blood vessels to perfuse solid tumors
and metastatic lesions. VEGF acting through VEGFR-2 is a major media-
tor of blood vessel permeability. In some solid cancers, this increase in
permeability can lead to an accumulation of fluid in abdominal spaces
termed malignant ascites. Ascites occurs most frequently in patients
with ovarian and gastrointestinal cancers and this condition has been
re-capitulated in mouse tumor models. One expectation therefore,
would be that inhibition of VEGFR-2 activation in these models would
reduce ascites formation. Indeed, systemic administration of DC101
resulted in reduced extravasation of Evans Blue dye in mice that
received intravenous infusions of either recombinant VEGF or
malignant effusions from patients with various cancers. Both the degree
of permeability and the efficacy of DC101 correlated with the level of
VEGF in the malignant effusions (Zebrowski et al., 1999). In a model of
experimental malignant ascites formation, mice inoculated intraperito-
neally with sarcoma tumor cells developed peritoneal ascites.When the
malignant ascites was drained, its recurrence was prevented by the
administration of either DC101 or soluble human VEGFR-1 used as a
trap (Stoelcker et al., 2000). Similarly, accumulation of ascites induced
by intraperitoneal injection of a human hepatocellular carcinoma cell
line was significantly reduced to a similar extent by administration of
either DC101 or neutralizing antibodies to VEGF (Yoshiji et al., 2001).
Others have looked at the extent of vascular leakage by injection of
tracers, antibodies, or staining of fibrinogen (Nakahara et al., 2006;
Verheul et al., 2007). Inhibition of the VEGF pathway with aflibercept
showed decreased vascular leakage in an orthotopic syngeneic renal
cell cancer model and reduced ascites in an ovarian carcinoma model
(Byrne et al., 2003; Verheul et al., 2007). Using a combined method of
multispectral segmentation and dynamic contrast enhanced MRI in
a colorectal xenograft model, investigators showed that anti-VEGF
treatment decreased vascular permeability at 24 h in viable tissue
regions (Berry et al., 2008). Vascular leakage was also observed when
fibrosarcoma cells over-expressing VEGF-C were implanted in skin-
window chambers of immune-deficient mice. This increase could
be reversed with administration of DC101, demonstrating that the
permeability-promoting action of VEGF-C was through activation
of VEGFR-2 and not its primary receptor, VEGFR-3 (Kadambi et al.,
2001).

In contrast to the effect of VEGF/VEGFR-2 targeted therapy on vascu-
lar leakage, there exists a surprising degree of controversy regarding the
effect of anti-angiogenic agents on tumor vessel perfusion. One view is
that inhibition of tumor angiogenesis or regression of pre-existing
tumor vasculature induces intra-tumoral hypoxia and reduces tumor
growth by affecting blood perfusion. As a consequence, one might
expect lowered levels of oxygen and an accumulation of metabolic
waste products. Indeed, the related processes of tumor blood perfusion,
induction of tumor hypoxia, and effects on tumor growth have been
extensively studied. Reduction in blood flow of pre-existing xenograft
tumors after DC101 administration was measured by micro-
ultrasound in several xenograft models of carcinoma cells with reduc-
tion in blood flow correlating with loss of vascularity observed by
immunohistochemistry (IHC) and preceding the decrease in tumor
volume (Krix et al., 2003; Cheung et al., 2007; Jugold et al., 2008).
Preclinical studies using ex vivo microcomputed tomography and
in vivo ultrasound imaging also showed decreased perfusion and
reduced tumor blood volume within 24–48 h of anti-VEGF treatment
(O'Connor et al., 2009). In a model of pancreatic islet neuroendocrine
tumors (PNET), aflibercept decreased endothelial fenestrations,
vascular density, and decreased tumor vessel patency and blood flow
measured by lectin perfusion (Inai et al., 2004). The extent of tumor
growth inhibition by aflibercept was also shown to correlate to relative
perfusion changesmeasured by dynamic contrast enhanced ultrasound
inmultiple murinemodels of cancer (Eichten et al., 2013). In one study,
DC101 reduced tumor microvascular density and blood flow as mea-
sured by high-frequency micro-ultrasound. This has been reported to
increase the hypoxic tumor fraction as measured with pimonidazole
and to induce the expression of HIF-1 (Franco et al., 2006). Responses
of the tumor vasculature to DC101 or aflibercept have also been
observed using dynamic contrast-enhanced computerized tomography
(DCE-CT) and by dynamic contrast-enhanced magnetic resonance
imaging (DCE-MRI) that can concurrently quantify a number of vascular
physiological parameters such as perfusion, fractional plasma volume
and permeability each of which contribute to tumor hypoxia (Kiessling
et al., 2004; Cheung et al., 2007; Stantz et al., 2011; Hoff et al., 2012).
Reduction in perfusion was observed with these techniques, and was
correlated with decreased tumor vascularity measure by IHC. The
work of Kiessling et al. also showed that the decreased vascularity and
perfusion preceded the reduction in tumor volume.

An alternative and seemingly, counter-intuitive hypothesis for
which considerable experimental evidence has been provided by the
laboratory of Rakesh Jain proposes that anti-angiogenic therapy induces
“vascular normalization” that can improve tumor perfusion by
removing the dysfunctional vasculature induced by excess production
of pro-angiogenic growth factors [reviewed in (Goel et al., 2011)]. The
normalization concept has been demonstrated in a number of pre-
clinical models with targeting the VEGF ligand or receptor (Byrne
et al., 2003; Winkler et al., 2004). When androgen-dependent mouse
mammary carcinoma cells implanted into dorsal skin chambers of
immunodeficient mice were treated with DC101, the initial response
was characterized by vessel regression and tumor hypoxia. However,
the initial phase was followed by renewed tumor growth and increased
tumor oxygenation that could be followed non-invasively in the
skin chamber. (Hansen-Algenstaedt et al., 2000). When intravital
microscopy was used to examine the effect of DC101 administration
on functional parameters of the vasculature in several types of xeno-
grafts, blockade of VEGFR-2 led to the expected pruning of immature
vessels. However, the treatment improved the function of the remain-
ing tumor vasculature as measured by the decrease in interstitial fluid
pressure (IFP), decreased vessel permeability and histological evidence
of maturation such as increased pericyte coverage and production of
collagen IV. (Tong et al., 2004). An increase of normal morphology of
the tumor vasculature after a brief treatment with DC101 has also
beendemonstrated in a skin carcinomamodel using ultrastructural anal-
ysis. The blood vessels in DC101-treated tumors exhibited a continuous
basementmembrane, normal pericyte coverage and regular intracellular
junctions (Miller et al., 2005).

The understanding of the mechanistic basis by which anti-
angiogenic therapy modulates tumor vessel perfusion is of paramount
importance for elucidating the efficacy of this therapeutic modality
when combined with either chemotherapy or radiation. We return to
this subject in Sections 5.4 and 5.5 that deal with these topics.

Finally, while angiogenesis is clearly critical for growth of solid
tumors, its role in the progression of liquid tumors has been controver-
sial. As mentioned earlier, bone marrow endothelium provides a
supportive microenvironment for the development of hematopoietic
stem cells. In one pivotal study, researchers in the laboratory of Shahin
Raffi used the specificity of anti-VEGFR-2 mAbs IMC-1C11 and DC101
to examine the roles of either autocrine or paracrine VEGF stimulation
in a series of models using VEGFR-2(+) human leukemia cells
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implanted into immunodeficient mice. The human receptor-specific
mAb IMC-1C11 interrupted the autocrine loop by preventing human
VEGFR-2 activation by tumor-derived human VEGF and prolonged the
survival of the engrafted mice. Treatment with DC101, which can only
inhibitmurine VEGFR-2, also prolonged the survival of themice indicat-
ing that the growth of the leukemic cellswas partly supported by signals
produced by murine endothelium. Interestingly, only the treatment
with both antibodies led to long-term remission of the disease (Dias
et al., 2001).

5.3. Resistance of tumor vasculature to mAb-mediated
inhibition of vascular endothelial growth factor receptor 2

Generally disappointing clinical results of anti-angiogenic agents in
the treatment of solid tumors stimulated a concerted research effort
aimed at understanding the mechanisms mediating both intrinsic and
acquired resistance of tumor blood vessels to VEGF/VEGFR-2 targeted
therapies. Here we discuss how efficacy of anti-VEGF/VEGFR-2 therapy
is dependent on the state of tumor vessel maturation, degree of tumor
stroma, and the location of the tumor in the primary versus metastatic
sites. We then go on to address how tumor resistance to these modes
of treatment may be mediated by the emergence of alternative,
pro-angiogenic pathways. Finally, we briefly discuss the role of myeloid
cell infiltration of tumors in the context of resistance to anti-angiogenic
therapy and end with the somewhat distantly related subject of vascu-
lar niche that may affect therapy by providing a microenvironment
supportive of survival of cancer stem cells (CSCs).

It is a common observation that there exists an inverse relationship
between efficacy of anti-angiogenic therapy and the timing of initial
treatment in preclinical models of angiogenesis. This has been
interpreted to demonstrate gradual blood vessel maturation concurrent
with the acquisition of independence from VEGF signaling. As men-
tioned earlier, in a transgenic inducible model of HIF-1 expression in
the skin of normal mice, DC101 became ineffective in the more mature
vasculature. Turning off the HIF-1 transgene after 14 days also led to
maturation of the skin vasculature that was insensitive to DC101
(Oladipupo et al., 2011). This phenomenon extends to other forms of
pathological angiogenesis since in corneal neovascularization models
anti-VEGF treatment is more effective when given early (Chen et al.,
2014a). Similarly, DC101 as a monotherapy showed some efficacy in
GEMs, however the efficacy was lost in late-stage tumors (Casanovas
et al., 2005; Hassan et al., 2011;Wicki et al., 2012). In addition, in either
syngeneic transplant or spontaneous murine tumor models, a delay in
DC101 administration relative to tumor growth initiation adversely
affected the efficacy of treatment (Fenton et al., 2004a).

Another element that appears to negatively impact the efficacy of
DC101 is the relative abundance of tumor stroma and localization of
tumor blood vessels within the tumor parenchyma versus stromal
regions. In a series of well characterized tumor xenograft models,
tumor containing vessels in the parenchyma were sensitive to DC101,
whereas the tumors with vessels within stromal tracts were refractory
to treatment (Smith et al., 2013). Extensive fibroblast-rich desmoplastic
tumor stroma which characterizes pancreatic ductal adenocarcinoma
(PDAC) is formed in part due to the action of sonic hedgehog (Shh)
secreted by neoplastic cells. Shh-deficient tumors have a reduced
stromal component, are more aggressive and proliferative and exhibit
increased vascularity. Interestingly, treatment of Shh-deficient but not
parental PDAC tumors with DC101 results in reduced vascularity and
prolonged the survival of tumor-bearing mice demonstrating that
tumor stroma may reduce the efficacy of some anti-angiogenic treat-
ments in this disease (Rhim et al., 2014).

While most murine tumor models reflect primary disease, in a vast
majority of cancer patients the most common target of therapy is a
tumor that hasmetastasized to distant organs (see Section 5.7). Benefits
of anti-angiogenic therapy in the metastatic setting of preclinical
models have been somewhat modest. Triple-negative human breast
cancer cells in a visceral metastatic setting were completely resistant
to treatment with DC101 (Francia et al., 2008). In another study, both
DC101 and the TKI, sunitinib, were efficacious in treating established
orthotopic primary tumors. However, sunitinib was ineffective using
the same cells in a model of postsurgical advanced metastatic disease.
While DC101was effective in this metastatic setting, the relative poten-
cy was much lower than what was observed in the primary tumors
(Guerin et al., 2013). The mechanisms that convey the resistance of
metastatic tumors to anti-angiogenic therapy are unclear but may in-
volvemore cooption of the existing vasculature thanwhat is seen in pri-
mary tumors. However, somewhat different results were obtained in
models of metastatic lesions resulting from orthotopic implantation of
prostate cancer tumor cell lines. In both cases, growth of the primary
tumor was sensitive to treatment with DC101 (Sweeney et al., 2002;
Burton et al., 2008). In these models, DC101 also potently reduced
growth of the lung metastases (Burton et al., 2008) and also inhibited
tumor growth and bone destruction when tumors were directly im-
planted into the articular surface of the bone (Sweeney et al., 2002). It
is unclear why blockade of VEGFR-2 shows differential ability to inhibit
growth of metastasized tumors in these various models.

Many mechanisms of acquired and innate resistance to inhibitors of
the VEGF/VEGFR-2 pathway have been proposed based on non-clinical
investigation. These pathways involve the action of alternative pro-
angiogenic factors such as PlGF, VEGF-C and -D, basic FGF and platelet
derived growth factor C (PDGF-C). VEGFR-1 (Flt1) is a high-affinity
receptor for VEGF, PlGF and VEGF-B. The role of VEGFR-1 in pathological
angiogenesis, however, has been controversial because VEGFR-1 has
low tyrosine kinase activity and an alternative slicing event produces
a soluble form of the receptor that acts as a trap for VEGF and is crucial
for proper angiogenic patterning during development (Kappas et al.,
2008). Furthermore, mice that express kinase-dead variant of VEGFR-
1 are fully viable (Hiratsuka et al., 1998). For these reasons, VEGFR-1
has been generally considered a negative modulator rather than
mediator of angiogenesis. An additional complication arises from the
expression of VEGFR-1 by a diverse array of circulating progenitor
cells as well as circulating and tissuemyeloid cells that can affect angio-
genesis indirectly by secreting pro-angiogenic factors (Fischer et al.,
2007). Nevertheless, blockade of VEGFR-1 with the anti-mouse
VEGFR-1 mAb MF1 showed benefit in angiogenic disorders such as
retinal ischemia, arthritis and atherosclerosis. MF1 also significantly
reduced the growth of human epidermoid xenograft tumors and rat
gliomas; although to a lesser extent than DC101 (Luttun et al., 2002).
More recently, the same laboratory demonstrated that anti-PlGF anti-
bodies can enhance the effect of DC101 (Fischer et al., 2007). Another
example of the pro-angiogenic action of VEGFR-1 was provided in a
study where subcutaneous growth of melanoma cells was only
inhibited by a simultaneous blockade of VEGFR-1 with MF1 and
VEGFR-2 with DC101 (Gille et al., 2007). PlGF transfected murine fibro-
sarcoma cells formedmore normalized tumor vasculature than parental
tumors and treatment with MF1 did not significantly reduce tumor
growth rates. In contrast, treatments of parental tumors with DC101
or the TKI sunitinib, resulted in significant normalization of the tumor
vasculature and decreased tumor growth rates (Hedlund et al., 2009).
In support of the role of VEGFR-1 as a negative regulator of VEGFR-2/
VEGF pro-angiogenic signaling, reduced production of PlGF using
shRNA in a human choriocarcinoma significantly accelerated tumor
growth. Tumors with down-modulated PlGF production exhibited
resistance to anti-angiogenic drugs including DC101. In contrast,
gain-of-function of PlGF in tumors showed increased sensitivity to
anti-VEGF antibodies. Furthermore MF1 and DC101 antibodies had
opposing effects on tumor angiogenesis whereby VEGFR-2 blockade
was inhibitory and VEGFR-1 blockade resulted in enhanced tumor
angiogenesis (Hedlund et al., 2013). Surprisingly, when a VEGF-null
fibrosarcoma cell line generated from VEGF deficient mice was
transfected with PlGF, the growth of the tumors was accelerated but
was still sensitive to inhibition by DC101 or anti-VEGF antibodies
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(Yang et al., 2013b). One explanation for VEGF-dependence of PlGF-
stimulated angiogenesis would be that VEGF is produced by VEGFR-
1+myeloid cells that infiltrate tumors that produce high levels of PlGF.

Another member of the VEGF receptor family whose activity has
been invoked as a possible resistance mechanism for anti-VEGF/
VEGFR-2 therapies is the vascular endothelial growth factor receptor 3
(VEGFR-3). VEGFR-3 is expressed in embryonic endothelium but in
adults is primarily a mediator of lymphangiogenesis. Expression of
VEGFR-3 has been documented in tumor but not normal blood vessels
and a neutralizing mAb to mouse VEGFR-3 (mF4-31C1) has shown in-
hibitory activity in a number of tumor xenograft models (Laakkonen
et al., 2007). Furthermore, the combination mF4-31C1 and DC101 led
to a significant decrease in blood vessel density in human LNM35 lung
cancer xenografts and B16 syngeneic tumors as compared to adminis-
tration of either antibody alone (Tammela et al., 2008).

Members of the fibroblast growth factor family are known activators
of ECs, driving EC proliferation, migration, and capillary tube formation
in vitro and tumor angiogenesis in vivo. When DC101 treatment of
pancreatic xenograft tumors was combined with SSR128129E (SSR), a
small molecule allosteric inhibitor of FGF receptor (FGFR) signaling,
both tumor weight and volume were more potently inhibited by the
combined therapy than by either monotherapy. However, it is unclear
whether the combination effect was due to co-targeting of the ECs
since FGFs also stimulate multiple cell types in tumor stroma and thus
the anticancer potential of SSR is likely due to a combined effect on
many cell types (Bono et al., 2013). In a mouse model of PNET, DC101
initially impaired angiogenesis in pancreatic islet dysplasias, decreased
vessel density and reduced tumor burden. However, the effect was
transient and followed by renewed tumor progression coincident with
re-induction of angiogenesis. The resumption of tumor growth was
paralleled by elevated production of alternative pro-angiogenic factors
including FGF1, FGF2, FGF7, FGF8, Ephrin-A1, and Angiopoietin-2
(Ang2) suggesting emergence of VEGF/VEGFR-2 independent blood
vasculature. In fact, treatment of the refractory tumor vessels following
VEGFR-2 inhibition with a FGF-trap decreased tumor vessels and tumor
growth (Casanovas et al., 2005). Interestingly, bFGF may also drive
VEGF-dependent angiogenesis. Overexpression of bFGF in a model of
hepatocellular carcinoma led to increased VEGF production and reduced
anti-tumor activity of DC101 (Yoshiji et al., 2002).

The Ang2–Tie2pathwayhas also been implicated in the resistance to
therapy targeting the VEGF pathway. GEM models of both PNET and
mammary adenocarcinomas become refractory to DC101 treatment.
Additional testing showed that DC101 increased Ang2 within the
PNET model but not the mammary model. Targeting both Ang2 and
VEGFR-2 was able to suppress the revascularization and progression
of most tumors in the PNET model (Rigamonti et al., 2014).

Another event that may lead to a tumor vasculature resistant to
anti-VEGFR-2 therapy is an increase in pericyte coverage of blood
vessels, a cardinal sign of vessel maturation. Pericytes are specialized
mesenchymal cells that share the basement membrane of ECs and
help in establishing quiescence and stabilization of mature blood ves-
sels. Pericyte-EC signaling involves multiple pathways. Initial attraction
of mesenchymal cells to growing blood vessels during angiogenesis and
their differentiation into pericytes is thought to be mediated in part by
the activation of the platelet-derived growth factor receptor beta
(PDGFRβ) by its cognate ligands, PDGFs BB and CC (Benjamin et al.,
1998). PDGFRβ knockout mice die perinatally due to incomplete
coverage of blood vessels by pericytes and consequent hemorrhage
(Soriano, 1994). PDGFRβ signaling is abnormal in tumor vasculature.
Thus, co-targeting of PDGFRβ and VEGFR-2 appears to be a possible
path to more potent anti-angiogenic treatment of solid tumors. Overex-
pression of the PDGFRβ ligand, PDGF-C in a human glioblastoma cell
line led to tumors with smaller vessel diameters and lower vascular
permeability when the cell line was implanted in a cranial window in
nude mice. In contrast to parental tumors, PDGF-C-over-expressing
tumors were insensitive to DC101, reinforcing the notion that VEGFR-
2 targeted therapies act optimally on newly formed, immature blood
vessels (di Tomaso et al., 2009). In addition, studies combining inhibi-
tion of VEGF with bevacizumab with an aptamer targeting PDGF-B
showed greater effects on tumor growth of orthotopic ovarian models
of cancer (Lu et al., 2010) indicating that loss of pericyte coverage on
tumor vessels leads to better efficacy of anti-VEGF therapy. Indeed,
treatment of mice bearing pancreatic tumor xenografts with a mAb
specific for mouse PDGFRβ gave a modest anti-tumor effect but
enhanced the anti-angiogenic effect of DC101 leading to superior
control of tumor growth (Shen et al., 2007). Similarly, combination of
DC101 with another mAb capable of blocking both mouse and human
PDGFRβ (IMC-2C5) resulted in significantly enhanced antitumor activi-
ty in several xenograft tumor models compared with either treatment
alone. In addition, IMC-2C5 attenuated the expression of VEGF and
bFGF in tumor stroma elevated by VEGFR-2 inhibition (Shen et al.,
2009). However, targeting PDGFRβ needs to be approached with
caution since pericyte depletion by variousmethods, including PDGFRβ
promoter-driven selective cell killing, has been shown in some models
to promote metastatic tumor dissemination (Cooke et al., 2012).

Amajor factor that appears to limit the efficacy of anti-VEGF/VEGFR-
2 therapy in cancer is the infiltration of the tumor by cells that mediate
innate immunity. Several subtypes of such myeloid cells promote both
initial tumor growth and resistance to anti-VEGF/VEGFR-2 therapy by
secreting a large array of pro-angiogenic and pro-inflammatory factors
[reviewed in (Rivera & Bergers, 2015b)]. This adverse effect is potentiat-
ed by the fact that subsets ofmyeloid cells (MDSCs) can also promote an
immunosuppressive tumor microenvironment. A recent publication
demonstrated the link between tumor-induced inflammation and sen-
sitivity of tumor vessels to anti-VEGFR-2 agents. In breast cancer
models, anti-angiogenic therapies were shown to induce expression of
cyclooxygenase-2 (Cox-2), leading to elevated levels of its product pros-
taglandin E2 (PGE2). Cox-2 inhibition normalized PGE2 levels in tumors
and enhanced the activity of DC101 and the TKI, sunitinib (Ben-Batalla
et al., 2015). Myeloid cell infiltration can be modeled in reductionist,
non-tumormodels in vivo.Matrigel plugs impregnatedwith a combina-
tion of hepatocyte growth factor (HGF) and bFGF were rapidly infiltrat-
ed with M2-like macrophages which are known to promote
angiogenesis by secretion of angiogenic growth factors such as VEGF,
FGF-2 and TGFβ and various matrix metalloproteinases. The HGF/FGF-
2 plugs became well vascularized and this angiogenic response could
be inhibited with either DC101 or with macrophage depletion with
clodronate; implicating the M2 macrophages as a major source of
host-derived VEGF (Barbay et al., 2015). In transgenic models of PNET,
treatmentwith either the TKI sorafenib or with DC101 led to tumor sta-
sis followed by resumption of tumor growth. Sensitivity to VEGF inhibi-
tion was associated with myeloid-cell derived angiostatic and
immunostimulatory chemokines such as CXCL14 and CXCL4. Further
studies revealed that PI3K signaling in myeloid cells leads to the immu-
nosuppressive and proangiogenic phenotype in relapsed tumors
(Rivera et al., 2015). While increased Gr1+CD11b+ cells were ob-
served in tumors refractory to anti-VEGF agents [reviewed in (Ferrara,
2010)], targeting of these cells was not sufficient to sensitize tumors
to anti-angiogenic agents due to compensatory up regulation of
tumor-associated macrophages (Rivera et al., 2015).

Finally, it is worth mentioning that tumor blood vessels have been
proposed to create a specialized microenvironment, termed the
vascular niche, in which the proximity to the ECs supports the long-
term survival and self-renewal of CSC also known as tumor stem cells
(TSCs; hereafter) which are capable of generating the entire heteroge-
neous population seen in tumors (Krishnamurthy et al., 2010). In turn,
survival of the TSC pool may represent a mechanism of long-term resis-
tance to anti-angiogenic therapy. This hypothesis has been investigated
in a number of murine models of TSC-derived cancers using in vivo
VEGFR-2 blockade with DC101. In a rat glioma xenograft model,
DC101 or chemotherapy alone inhibited tumor growth and the combi-
nation treatment was more potent than either therapy alone. However,
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neither treatment alone had an effect on the TSC fraction of the tumors
as measured by the number of tumor sphere-forming units, indicating
that the TSC cells represent a form of resistance to anti-angiogenic
therapy. The TSC fraction was only reduced in the combination group
(Folkins et al., 2007). However, an opposite result was obtained in the
mouse model of skin tumors in which DC101 not only caused tumor
regression associated with a significant decrease in EC proliferation
and tumor microvascular density but also reduced the proportion of
CD34(+) TSCs (Beck et al., 2011). Together, these studies indicate that
the role of targeting the VEGF pathway in TSC biology remains
controversial.

5.4. Inhibition of vascular endothelial growth factor receptor 2
in tumor vasculature in relation to efficacy of concurrent chemotherapy

With the exception of the approval of ramucirumab in gastric cancer,
all other approved indications for selective VEGF pathway inhibitors
have been in combination with chemotherapeutics. Numerous in vivo
pre-clinical studies have shown that antibody-mediated blockade of
VEGFR-2 potentiates the therapeutic effect of concurrent chemothera-
py. DC101 was effective when combined with paclitaxel in xenograft
models of bladder cancer (Inoue et al., 2000), doxorubicin in models
of soft-tissue sarcoma (Zhang et al., 2002, 2006), gemcitabine inmodels
of pancreatic cancer (Bruns et al., 2002) and vinblastine in models of
neuroblastoma (Klement et al., 2000). Similar combination effects of
anti-VEGF or aflibercept with a number of cytotoxic agents have been
seen in multiple tumor models (Hu et al., 2005; Chiron et al., 2007;
Bagri et al., 2010; Singh et al., 2012).

As mentioned previously, vascular normalization has been invoked
to explain why in multiple randomized phase III trials, the anti-VEGF
antibody bevacizumab prolonged survival only when combined with
chemotherapy [reviewed in (Jain, 2005)]. This hypothesis suggests
that improved perfusion increases access of the chemotherapeutic to
the tumor cells when combined with bevacizumab. In a colorectal
model, pretreatment with bevacizumab or a VEGFR-2 TKI (pazopanib)
lowered the interstitial fluid pressure (IFP), increased penetration of
chemotherapy delivered intraperitoneally, and delayed tumor growth
(Gremonprez et al., 2015). In several tumor models, treatment with
DC101 led to the reduction of IFP and induction of a hydrostatic pressure
gradient across the tumor endothelium. These events correlated with
elevated extravasation of fluorescently-labeled BSA into the tumor
parenchymawhichwas used as a surrogate assay for chemotherapeutic
drug delivery (Tong et al., 2004). In an interesting clinical study, glio-
blastoma patients treated with the pan-VEGF TKI cediranib were
assessed for tumor blood perfusion. In this study, improvement of per-
fusion was correlated with increased survival, raising the possibility
that cediranib acted both to induce vascular normalization and to
directly affect tumor growth by inhibiting RTKs expressed by tumor
cells (Sorensen et al., 2012). It should be noted that the normalization
hypothesis remains controversial and a number of studies have shown
the opposite effect; i.e. reduction in the delivery of chemotherapeutic
drugs to the tumor. For example, positron emission tomography of
non-small cell carcinoma patients showed rapid reduction of uptake
of radioactive docetaxel upon administration of bevacizumab (Van der
Veldt et al., 2012). Taken together, the studies highlight our limited
understanding of how anti-angiogenic drugs act in concert with chemo-
therapy in cancer patients.

Chemotherapeutic agents exert their action primarily by cytotoxic
damage to tumor cells. Most of these agents are administered at close
to the maximum tolerated dose (MTD) at which life-threatening
toxicity becomes unacceptable. Due to this narrow therapeuticwindow,
chemotherapy is usually administered with prolonged breaks between
successive cycles. Generally, this leads to profound response followed
by regrowth after cessation of treatment. Anti-VEGF therapymay either
delay or prevent this relapse during these chemotherapy drug holidays
(Bagri et al., 2010), but it is not known whether extended VEGF
depletion in this context can ultimately lead to the demise of the
tumor. An alternative chemotherapy dosing approach referred to as
“metronomic” chemotherapy has been developed,which consists of ad-
ministration of chemotherapeutic agents at levels well below MTD but
either continuously or at frequent intervals. Interestingly, “metronomic”
chemotherapy appears to act in part through damage to tumor endo-
thelium and this effect can be potentiated by co-administration of
targeted anti-angiogenic agents [reviewed in (Kerbel & Kamen,
2004)]. When an established orthotopic breast tumor xenograft in
SCID mice was treated with DC101 and either low dose cyclophospha-
mide (CTX) given continuously in drinking water or MTD CTX given
every other day; both regimens proved significantly superior to any sin-
gle monotherapy. However, mice treated with DC101 and CTX at MTD
showed rapid weight loss and died significantly earlier than the mice
in the DC101 and low dose CTX group (Man et al., 2002). These findings
were further substantiated using a combination of DC101 and low-dose
chemotherapy in models of breast cancer exhibiting multi-drug resis-
tance due to over-expression of P-glycoprotein (Klement et al., 2002).
The relative advantage of DC101 combined with metronomic chemo-
therapywas also observed inmodels ofmelanomawhere the treatment
was initiated after removal of the primary tumor and the disease had
metastasized to the lungs (Cruz-Munoz et al., 2009) and in a model of
advanced hepatocellular carcinoma where the tumor cells were
orthotopically implanted into the liver (Tang et al., 2010).

Finally, another hypothesis for the effectiveness of combining anti-
angiogenic agents with chemotherapy suggests that such combinations
may reduce the fraction of tumor cells that exhibit a TSC phenotype. As
discussed earlier, only the combination therapy of DC101 and cyclo-
phosphamide reduced the number TSCs in a glioblastoma tumor
model (Folkins et al., 2007).

5.5. Inhibition of vascular endothelial growth
factor receptor 2 in tumor vasculature in relation
to efficacy of concurrent ionizing radiation therapy (RT)

Despite an extensive clinical testing program for bevacizumab and
to a lesser extent, aflibercept, to date, no anti-angiogenic therapy has
been approved for use with concurrent RT. However, considerable
pre-clinical and clinical evidence suggests that anti-angiogenic therapy
can act as a radiosensitizer in a variety of tumor types. Concurrent anti-
angiogenic treatment with RT can either potentiate the magnitude of
tumor response to RT or extend the time of tumor stasis [reviewed in
(Verheij et al., 2010)]. It is generally believed that the extent of
radiation-inducedDNAdamage is critically dependent on tumor oxygen
levels as a key mechanism of RT is the generation of reactive oxygen
intermediates. As mentioned above, anti-angiogenic treatment induces
tumor hypoxia so the use of anti-angiogenic agents and RT seems
counterintuitive. Nevertheless, a number of non-clinical studies have
demonstrated beneficial combinatorial effect of systemic DC101 and
RT in mouse tumor models. In xenograft models of glioblastoma and
small cell lung carcinoma in athymic mice, DC101 reduced the dose of
RT required to control local growth of 50% of the tumors (Kozin et al.,
2001). The combination of DC101 and RT also significantly reduced
tumor growth in two models of squamous cell carcinoma (Li et al.,
2005). In another xenograft model of human lung cancer, local RT led
to the reduction of tumor growth rate but resulted in eventual relapse.
Treatment with DC101 resulted in a reduction of the recurrent tumor,
compared to primary or “radiation-naïve” tumors (Kozin et al., 2007).
Furthermore, in a syngeneic model of murine mammary carcinoma,
the potency of the combination of DC101 treatmentwith RTwas greater
than either monotherapy despite the fact that RT or DC101 induced
tumor hypoxia (Fenton et al., 2004b).

One explanation for the efficacy of DC101 combined with RT is that
the anti-angiogenic effect of VEGFR-2 blockade provides a “window”
of tumor vessel normalization that reduces hypoxia and enhances the
effect of RT. Consistentwith this idea, DC101 improved the effectiveness
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of ionizing radiation (IR) by decreasing hypoxia, which is known to
adversely affect the efficacy of IR. When γ-radiation or DC101 was
used in an orthotopic model of human glioma, radiation but not
DC101 significantly delayed the tumor growth. However, when RT
was given several days after DC101 treatment began, the tumor growth
delay significantly exceeded the expected additive effect (Winkler et al.,
2004). The observed synergy was suggested to result from an increase
in the number of mature tumor vessels due to DC101-mediated up-
regulation of expression of Ang1 and consequent recruitment of
pericytes.

Additional support for the normalization model comes from a study
in which blood perfusion of subcutaneous pancreatic tumor xenografts
was measured using DCE-CT. Either low or high dose of DC101 given
one week prior to RT delayed tumor growth compared to RT alone.
Physiological maps of tumors obtained by DCE-CT suggested a signifi-
cant decrease in the heterogeneity of the tumors suggesting more uni-
form and potentially more efficient blood flow (Cao et al., 2014).
Similarly, anti-VEGF therapy with bevacizumab given five days before
RT decreased tumor growth compared to RT or anti-VEGF alone,
which was associated with vascular normalization and increased pO2

levels (Myers et al., 2010). In general, while vascular normalization
can improve the efficacy of chemotherapeutics and RT, its effectiveness
appears limited by acute dose-dependence, and difficulty in creating a
persistent “normalized” phenotype without further pruning the tumor
vessels leading to hypoxia. Current efforts are focusing on the ability
to sustain vessel normalization [reviewed in (Rivera & Bergers, 2015a)].

An alternative view was offered in a study of the induction of
apoptosis of ECs by RT. Irradiation of ECs in culture induced apoptosis
mediated by a wave of ceramide production due to activation of acid
sphingomyelinase (asmase). The apoptosis of ECs after in vitro RT was
rescued by exogenous VEGF but potentiated by DC101. In vivo studies
using a fibrosarcoma model showed that neither anti-VEGF therapy
nor DC101 induced tumor cell apoptosis alone but both treatments
potentiated the pro-apoptotic effect of RT on tumor ECs. The
radiosensitizing effect was observed only when RT was given within a
short time period (1 h) after the anti-angiogenic treatment and was
lost by 24 h. However, the potentiation of RT-induced EC apoptosis by
either anti-VEGF or DC101 was abrogated in tumors grown in
asmase−/− mice strongly suggesting that the mechanism of synergy of
anti-angiogenic treatment and RT is due to potentiation of damage to
tumor endothelium (Truman et al., 2010).

The combination of VEGFR-2 blockade with DC101 and RT in some
models led to significant adverse events. Nearly half of mice bearing
small cell lung carcinoma tumors and treatedwith DC101 and RT devel-
oped peritoneal ascites (Kozin et al., 2001). This observation is difficult
to reconcile with the known ability of DC101 to reduce pathological
vascular leakage. Furthermore, DC101 treatment was studied in irradi-
ated and non-irradiated intracerebral GBM-bearing mice. Surprisingly,
systemic administration of DC101 led to increased mortality of the
mice when given alone or in combination with RT as compared to RT
monotherapy. This toxicity was mainly characterized by edematous
changes in the pancreas and the intestine. The adverse effect of DC101
on mortality was difficult to explain as histological examination of the
tumors showed a significant combination effect of the two treatments
in terms of reduced tumor area, reduced tumor proliferation, and
increased apoptosis (Verhoeff et al., 2009). These concerns are not
unique to anti-VEGFR-2 inhibition as anti-VEGF therapy combined
with RT also leads to toxicities in normal tissues (Mangoni et al., 2012).

5.6. Therapeutic combinations of anti-vascular endothelial growth factor
receptor 2 treatment and other therapies

In other experimental approaches, VEGFR-targeted mAbs have been
combined with agents that either disrupt or alter the function of the
vascular endothelium or with biologics that target oncogenic pathways.
VEGF regulates blood pressure and vascular permeability by up-
regulating levels of nitric oxide (NO), primarily via endothelial NOS in
ECs. In turn, there have been reports that NO can up-regulate VEGF by
enhancing the action of HIF-1. When systemic DC101 treatment was
combined with an oral NOS inhibitor, N-nitro-L-arginine (NNLA), the
combination reduced growth of pancreatic tumor xenografts better
than either agent alone. This combination was also more potent than
either agent in reducing tumor blood vessel permeability. On the
other hand, blockade of NO synthesis but not treatment with DC101
reduced mean vessel diameter in tumors (Camp et al., 2006). When
sub-dermally implanted tumors were treated with either OXi-4503, a
second-generation derivative of the vascular disrupting agent (VDA)
combretastin-A4 phosphate (CA4-P) or DC101, OXi-4503 produced
central tumor hypoxia and necrosis while DC101 resulted only in
hypoxia. In both types of monotherapies, the tumors retained a well-
perfused viable rim of tumor cells. The combination of the two agents
significantly decreased perfusion and increased hypoxia and necrosis,
which was associated with suppressed tumor growth. One mechanistic
explanation for this combination effect was that VDA treatment induces
production of CEP cells that enhance angiogenesis in the tumor
viable rim. This raise in CEP was not observed in mice treated
with DC101 before the administration of the VDA (Shaked et al.,
2006). Finally, combination treatment of anti-VEGF (B20) with an anti-
body targeting a tumor vessel secreted protein (EGFL7), caused
increased progression-free and overall survival benefits associated with
decreased tumor volume and tumor vessels in GEMM models (Johnson
et al., 2013).

Combining targeted agents that affect the vasculature with agents
that block the initiation of oncogenic signaling hold promise because
of the relatively low toxicity profiles of these molecules as opposed to
chemotherapy and multi-targeted TKIs. MAbs directed against the
epidermal growth factor receptor (EGFR) are used for the treatment
of wild-type RAS metastatic colorectal cancer (cetuximab, and
panitumumab), metastatic non-small cell lung cancer, and head and
neck cancer (cetuximab); while the mAb trastuzumab is used in breast
cancer patients whose tumors express the epidermal growth factor
receptor 2 (HER2). Clinical results of combining anti-EGFR antibodies
with bevacizumab, however, have been uniformly disappointing
[reviewed in (Di Maio et al., 2014)]. These failures highlight the
difficulty in translating the results of pre-clinical models to the clinic
despite a significant body of literature showing the efficacy of such com-
binations in xenograft tumor models. Synergistic effects of combining
cetuximab with DC101 were shown in a subcutaneous xenograft
model of colorectal cancer (Tonra et al., 2006). Similar results were ob-
tained in a xenograft model of colon cancer peritoneal carcinomatosis
(Shaheen et al., 2001a). In both models, an additive effect on tumor
cell apoptosis was observed. EGFR overexpression is also found in a sub-
set of gastric cancers and has been reported in a majority of pancreatic
tumors. In this respect, combination of DC101 and cetuximab proved
beneficial in xenograft models of gastric and pancreatic cancers
(Jung et al., 2002; Tonra et al., 2006). In addition, anti-EGFR mAbs are
currently in development or in clinical trials for the treatment of
glioblastoma multiforme (GBM). GBM is of particular interest with
respect to anti-angiogenic therapy because genetic ablation of VEGF or
treatmentwith DC101 has been shown to increase local tumor invasion
leading to per-tumoral metastatic sites referred to as “satellites” (Paez-
Ribes et al., 2009). In two mouse models of GBM, the combination of
DC101 and cetuximab was more potent than either monotherapy
(Diao et al., 2010; Yi et al., 2011). In both of these studies, DC101
increased the number of microsatellites but this pro-metastatic effect
was reduced by co-administration of cetuximab. In another study, the
combination was no better than DC101 alone (Lamszus et al., 2005).
Comparatively less information exists on pre-clinical use of combined
anti-VEGFR-2 antibodies and trastuzumab in breast cancer models. In
one study, the combination of DC101 and trastuzumab led to significant
improvement in the survival of mice bearing HER2+ tumors in the
brain (Kodack et al., 2012). Interestingly, when HER2+ breast cancer
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cells were implanted orthotopically, resistance to trastuzumab emerged
after about one month of therapy. These resistant tumors exhibited
sensitivity to the anti-VEGF antibody bevacizumab probably because
the resistant tumors produced elevated levels of VEGF (du Manoir
et al., 2006). In addition, in a HER2 overexpressing breast tumor xeno-
graft model low dose aflibercept and low dose trastuzumab were
shown to have additive effects on tumor growth, vascular density, and
cell proliferation (Le et al., 2008).

5.7. Inhibition of vascular endothelial growth factor
receptor 2 in tumor vasculature and tumor metastasis

The contribution of angiogenesis to the metastatic dissemination of
primary tumors is widely accepted and the mechanisms by which
tumor cells enter blood vessels has been extensively studied [reviewed
in (Reymond et al., 2013)]. Although many anti-angiogenic treatments,
for example aflibercept (Verheul et al., 2007) and DC101 (Sweeney
et al., 2002) inhibit distant organ metastasis in murine tumor models,
the mechanism of this inhibition is likely to be complex. Anti-
angiogenic agents inhibit the size of the primary tumors and reduce
tumor vascularity thus simultaneously decreasing the number of
tumor cells that can metastasize and the vascular surface available for
extravasation. As also mentioned previously, anti-angiogenic treatment
normalizes the tumor vasculature and the resulting “normal” vessels
may be harder for tumor cells to penetrate than the chaotic and disorga-
nized tumor blood vessels. The readouts of distant organ metastasis
can also complicate study interpretation as anti-angiogenic treatment
may reduce the growth of lesions in distant organs making these
micrometastases difficult to detect. This, in turn, gives a falsely low
measure of the metastatic rate. For these reasons, we will focus our
discussion on the effects of anti-angiogenic therapy on the invasion of
the tumor cells into the regional normal tissue, a subject of considerable
recent controversy.

One of the earliest studies of local tumor invasion also represents
the first in vivo use of DC101. Transplantation of benign and malignant
(ras-transformed) keratinocytes under the skin of mice resulted in
distinct patterns of angiogenesis and local tumor invasion. Malignant
cells induced amore aggressive invasion into the local stroma accompa-
nied by aggressive and directional growth of capillaries. This vascular
expansion was driven by elevated tumor-derived VEGF and increased
expression of VEGFR-2 on the tumor endothelium. Treatment of
established malignant tumors with DC101 reduced tumor vascularity
to the level seen in transplants of non-malignant keratinocytes and
dramatically reduced tumor invasion into the surrounding stroma
(Skobe et al., 1997). Using similar skin heterotransplant models, the
same laboratory further demonstrated that treatment with DC101
normalizes the tumor vessels and stroma in part by down-modulating
expression of stromal matrix metalloproteinases (Miller et al., 2005;
Vosseler et al., 2005).

In contrast to these earlier findings, recently much attention has
been generated by non-clinical studies showing that anti-angiogenic
treatment can increase local invasiveness and, in a few cases, distant
metastasis. Several publications document increased invasiveness
induced by inhibition of the VEGF pathway in PNETs. In the first study,
both tumor cell-specific deletion of the VEGF gene or systemic treat-
ment with DC101 resulted in increased local, lymph node, and distant
metastasis and the effect persisted after the cessation of DC101 treat-
ment. Furthermore, DC101 induced hypoxia in both the primary islet
tumors as well as in the liver metastases. (Paez-Ribes et al., 2009).
Similarfindings in thismodel were obtained in another study but, inter-
estingly, the pro-invasive effect of DC101 was reversed by concurrent
treatment with semaphorin 3A (sema 3A) (Maione et al., 2012).
Sunitinib or inhibition of VEGF with an antibody has also shown
increased hypoxia associated with increased tumor cell migration and
invasiveness in PNET tumors. This increase in invasiveness was reduced
by co-treatment of these VEGF pathway inhibitors with inhibition of
cMET or sema 3A, which reduced tumor expression of HIF-1 and
phosphorylation of cMET (Maione et al., 2012; Sennino et al., 2012).
Together, these studies indicate that anti-angiogenic treatment elevates
tumor hypoxia, which induces MET activity and increases tumor cell
migration and invasiveness. However, a recent study in this PNET
model contradicts the findings described above. In this study, DC101 or
amAb to Ang 2 inhibited the growth of the tumors and the combination
showed superior anti-angiogenic effect and tumor control (Rigamonti
et al., 2014). Despite seeing potent anti-angiogenic blockade and strong
induction of hypoxia, these authors did not observe any increase in
tumor invasiveness.

It is important to state that at this junction the increase in local
tumor invasion has only been demonstrated clinically in patients with
high grade glioblastoma (de Groot et al., 2010) despite thousands of
patients representing diverse solid tumor types having been treated
world-widewith biologic and TKI anti-angiogenics. The clinical findings
with glioblastoma have been recapitulated in mouse models of intrace-
rebral glioblastoma xenografts in which either bevacizumab (de Groot
et al., 2010) or DC101 showed pro-metastatic effects as evidenced by
an increase in local satellite tumors (Lamszus et al., 2005). In the later
study, DC101-induced invasion was ameliorated by concurrent treat-
ment with the EGFR antagonist antibody cetuximab. It is important to
note that, due to its species specificity, DC101 can only mediate its
pro-invasive activity by blocking VEGFR-2 on the vascular endothelium
of tumor xenografts, as an important role for VEGFR-2 on tumor cells
has recently emerged. In orthotopically implantedmurine glioblastoma
cells that were found to express VEGFR-2 in complex with the RTK
cMET, a receptor for HGF, either genetic knock-out of VEGF expression
or pharmacological inhibition of VEGF with B20 increased local
invasion. This pro-metastatic effect was ascribed to the induction of
cell migration by HGF-activated cMET that was no longer being
inhibited by VEGFR-2 signaling (Lu et al., 2012). Taken in toto, pre-
clinical and clinical findings suggest that metastasis induction by anti-
angiogenic treatment is limited. Where this phenomenon does occurs,
however, it is still not clear whether the induction of tumor hypoxia
after anti-VEGF/VEGFR-2 therapy selects for tumor sub-populations
with increased aggressiveness, increased ability to use alternative
angiogenic pathways, or both.

We conclude this section with a brief mention of the role played by
VEGFR-2 in metastasis of tumor to regional lymph nodes as revealed by
the use of antagonist mAbs. The negative prognostic value of tumor
dissemination to regional lymph nodes has been recognized for a long
time although the clinical significance of tumor spread through lym-
phatic vessels has been controversial [reviewed in (Alitalo & Detmar,
2012)]. As already discussed, VEGFR-2 is expressed on lymphatic vessels
although, unlike the case of angiogenesis where VEGFR-2 signaling is
paramount, lymphangiogenesis is primarily mediated by activation of
VEGFR-3 [reviewed in (Tammela & Alitalo, 2010)]. In an orthotopic
model of breast cancer tumor spread to lymph nodes and lungs,
both DC101 and the anti-VEGFR-3 mAb mF4-31C1 reduced tumor
lymphangiogenesis. While DC101 was much more potent in reducing
the size of the primary tumor, inhibition of VEGFR-3 activation more
potently suppressed regional anddistantmetastases. Finally, the combi-
nation of the two treatments was more potent than either treatment
alone. As in the case of dissemination through blood vessels, an earlier
(prevention) therapy, given soon after implantation of the tumor cells,
was more effective than later (intervention) therapy (Roberts et al.,
2006). This study supports the concept that VEGFR-2 plays a role in
tumor lymphangiogenesis although clearly not as pivotal as that played
by VEGFR-3. In contrast, in an orthotopicmodel of prostate cancer,mF4-
31C1 potently reduced tumor lymphangiogenesis and metastasis to
regional lymph nodes and distal vital organs without influencing
tumor growth. DC101, however, inhibited growth of the primary
tumor and reduced distant metastasis but had little effect on
lymphangiogenesis and tumor spread to lymph nodes (Burton et al.,
2008). Also, in an ear model of tumor spread to lymph nodes, the anti-
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VEGFR-3 mAb potently blocked tumor dissemination, while DC101
primarily reduced the growth of the metastatic lesions (Hoshida et al.,
2006). These studies indicate that at this time the exact role played by
VEGFR-2 in tumor metastasis through the lymphatic vasculature
remains to be delineated.

5.8. Blockade of vascular endothelial growth
factor receptor 2 signaling in models of tumor immunity

The relationship between tumor angiogenesis and anti-tumor
immune response is highly complex, involving cells that mediate both
innate and acquired immune response. Inhibitors of VEGF/VEGFR-2
alter tumor blood vessels and may facilitate extravasation and function
of effector T cells [reviewed in (Lanitis et al., 2015)]. At the same time,
these agents induce tumor hypoxia which is known to polarize myeloid
cells to an immunosuppressive phenotype and pro-angiogenic pheno-
type [reviewed in (Rivera & Bergers, 2015b). Despite these
uncertainties, the recent successes of cancer immunotherapies have
raised the interest of combining these novel modalities of cancer treat-
ment with inhibitors of angiogenesis. Cancer immunotherapy can
depend on several immune mechanisms such as antibody-dependent
cell mediated cytotoxicity (ADCC), enhancement of immunity through
tumor vaccines, or blockade of immune checkpoint molecules. At least
in murine models, each of these forms of immunotherapy can be suc-
cessfully combined with anti-angiogenic therapy mediated by VEGFR-
2 blockade with DC101. One of the first studies involved co-targeting
VEGFR-2 with DC101 with direct induction of anti-melanoma ADCC
using themAb TA99which recognizes TYRP-1/gp75 (tyrosinase-related
protein-1). The growth of subcutaneous melanoma tumors was
significantly suppressed by DC101 and by TA99 treatment alone. The
combined treatment resulted in a significant enhancement of tumor
growth suppression. In addition, significant reduction of lung metasta-
ses resulting from tail vein injection of the tumor cells was observed
with the single agent treatments and this response was enhanced
with combined therapy (Patel et al., 2008). In another study with
melanoma cells, adoptive cell transfer (ACT), synergized with either
DC101 or anti-VEGF mAb B20 in reducing the growth of the tumors.
However, only treatmentwith B20 increased the numbers of autologous
tumor-infiltrating lymphocytes (TILs) and improved survival (Shrimali,
Yu et al., 2010). The mechanism for this differential action of the two
modes of anti-angiogenic therapy in this study is unclear. However, it
should be pointed out that the effect of anti-angiogenic therapy on the
infiltration of immune cells into tumors may be context dependent. In
a model of spontaneous colon tumors that develop in adenomatous
polyposis coli conditional knockout mice, continuous administration
of DC101 impeded the infiltration of CD4+ and CD8+ cells into the
tumor region (Yang, Choi et al., 2015). In contrast, low doses of DC101
were shown to increase T-cell tumor infiltration in a breast cancer
model (Huang et al., 2012).

Concurrent administration of DC101 also appeared to be efficacious
in enhancing tumor vaccine treatment in two models of breast cancer.
Effect of HER-2/neu (neu) — targeted vaccination in FBV mice was po-
tentiated by treatment with DC101 with increased tumor-specific
CD8+ T cells and tumor regression. In contrast, in Neu-N mice which
are derived from the parental FVB strain but exhibit peripheral immune
tolerance, neu-specific vaccination was ineffective and addition of
DC101 reduced tumor growth without inducing tumor regression or
antigen-specific T-cell activation (Manning et al., 2007). In a second
study which used whole cancer cell vaccine therapy in mice bearing
orthotopic breast cancer tumors, the effect of vaccination was potentiat-
ed by subsequent treatmentwithDC101.However, one provocativefind-
ing was that the effect was observed only with low (10 mg/kg) and not
high (40mg/kg) dose DC101 although the high dose resulted in superior
anti-angiogenic response and reduction in tumor growth. This result was
interpreted to mean that lower doses of DC101 have a superior vascular
normalizing effect that reverses the immune-suppressive tumor
environment and facilitates tumor penetration by effector T cells
(Huang et al., 2012).

It should be pointed out that agents targeting the VEGF/VEGFR-2
axis can also excert their effects directly on immune cells. One group
followed up on the clinical observation that bevacizumab reduces
the number of regulatory T cells (Treg) in peripheral blood of
patients with metastatic colon cancer (mCRC). These authors found
that Treg from mice bearing colorectal carcinoma tumors expressed
VEGFR-2 and directly proliferated in response to VEGF. In these
mice, anti-VEGF mAb B20 and sunitinib treatments reduced Treg.
This treatment seemed to affect Treg percentages but did not induce
any changes in their function. Similar effects were seen with DC101
(Terme et al., 2013).

The clinical successes with cancer immunotherapy have been pri-
marily obtained with mAbs directed at CTLA-4 and the programmed
death 1 (PD-1) receptor and its ligands PD-L1 and PD-L2. A recent
review highlights the preclinical rationale of combining angiogenesis
inhibition and immune checkpoint inhibition for cancer treatments
(Ott et al., 2015). To date, only a single study combined in vivo
VEGFR-2 blockade with an antibody to PD-1. Using a colon adenocarci-
noma model, these investigators found that simultaneous blockade of
PD-1 and VEGFR-2 produced a synergistic anti-tumor effect (Yasuda
et al., 2013). Although DC101 but not anti-PD-1 disrupted tumor ves-
sels, the infiltration of T cells into tumors treated with anti-VEGFR-2
mAb or combination was unaffected. Despite the limited amount of
experimental data available to date, there is ample reason for optimism
that targeting the tumor vasculaturemaypositively affect T cell function
either by altering the endothelial barrier to facilitate T cell entry or by
reducing the immune inhibitory activity directly promoted by the ECs
[reviewed in (Lanitis et al., 2015)].
6. Clinical targeting of the vascular
endothelial growth factor A/vascular endothelial
growth factor receptor 2 pathway in cancer – the road forward

Several biologic anti-angiogenic agents targeting the VEGF/VEGFR
pathway that are currently approved provide significant clinical bene-
fits. Some patients do achieve complete responses but in the majority
of patients, average increases in PFS or OS is only weeks to months.
Clinical efforts are underway to expand and extend the scope of clinical
utility of anti-angiogenic agents by exploring novel indications, earlier
interventions, and combinations with other forms of therapy.
6.1. Bevacizumab and aflibercept — clinical development

While extensive review of the current clinical development of
bevacizumab and aflibercept is beyond the scope of this review, a
brief overview of some current trials is provided below and within
the supplemental table. The majority of the ongoing clinical
trials are focused on expanding the benefit of anti-VEGF based ther-
apies in approved indications such as glioblastoma, mRCC, mCRC,
gastroesophageal cancers either by combining them with agents
that inhibit alternate pro-angiogenic pathways such Ang/Tie2
(trebananib), BMP9/ALK1 (TRC105), or by combining with cancer im-
munotherapy agents such as ipilumumab (anti-CTLA4 antibody),
nivolumab/pembrolizumab (anti-PD1 antibody), atezolizumab (anti-
PD-L1 antibody) and rindopepimut (a 14-mer peptide vaccine that
spans the length of EGF receptor variant III) [reviewed in (Swartz et al.,
2014)]. Some of the ongoing clinical trials are focused on new indications
such as melanoma, which would broaden the patient population that
could potentially benefit from anti-angiogenic therapy by combining
them with recently approved targeted agents such as vemurafenib
(BRAF inhibitor), cobimetinib (MEK inhibitor) or immunotherapy agents
such as ipilumumab.
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6.2. Additional vascular endothelial
growth factor A pathway inhibitors in the clinic

Additional inhibitors of the VEGF pathway have also been described.
These include another inhibitor targeting VEGFR2 and a bispecific anti-
body targeting VEGF and Ang2. Tanibirumab (TTAC-0001) is a novel an-
tagonist antibody to VEGFR-2 that has been developed from a fully
human naïve single chain variable fragment (ScFv) phage library and
has recently completed a phase I clinical trial in solid tumors. Although
primary literature on the characterization and clinical trial outcome of
Tanibirumab is not available, this mAb is reported to cross-react with
mouse, rat, human, andmonkey VEGFR-2. It also appears to be effective
in various tumor models in rodents, suggesting anti-angiogenic activity
[reviewed in (Lee, 2011)].

A bispecific antibody blockingVEGF-A based on bevacizumab on one
arm and Ang-2 based on an Ang2 selective human IgG1 on the other
(R05520985; Ang-2-VEGF-A CrossMab) has been developed (Kienast
et al., 2013). It is currently being tested in a phase I trial in metastatic
solid tumors and in a phase II trial in combination with FOLFOX in
untreated metastatic colorectal cancer.

6.3. Ramucirumab — clinical development

Several clinical trials of ramucirumab are currently underway
(Table 2). Of particular interest is RAINFALL, a randomized, double-
blind, placebo-controlled phase III study of cisplatin plus a
fluoropyrimidine with or without ramucirumab as first-line therapy in
patients withmetastatic gastric or gastroesophageal junction adenocar-
cinoma. The clinical development plan for ramucirumab also includes a
Table 2
Ongoing Ramucirumab clinical trials.

Trial Name Phase Indicatio

Ramucirumab plus anti-PD-1 (pembrolizumab) NA I G-OJb, N

Ramucirumab plus anti-PD-L1 (MEDI4736) NA I Gastroin
maligna
NSCLCc,

Abemaciclib (LY2835219) in combination with other
anti-cancer drugsk

NA I NSCLCb

Multikinase inhibitor of MET, MST1R and others
(LY2801653) in advanced cancerl

NA I Advance
HNSCCg
liver me

Ramucirumab or necitumumab (anti-EGFR) with
investigational third-generation EGFR inhibitor AZD9291

NA I NSCLCc

Antibody to cMET (LY2875358) in combination with
ramucirumab in participants with advanced cancer

NA 1/II Advance
HCCe,RC

TGF-bR1 inhibitor (LY2157299) in participants With HCCe NA II HCCe

Ramucirumab versus placebo in patients with HCCe and
elevated baseline alpha-fetoprotein

REACH-2 III HCCe

Ramucirumab in combination with erlotinib in participants
with EGFR mutation-positive metastatic NSCLCc

RELAY III NSCLCc

Ramucirumab plus docetaxel in participants with
urothelial cancer

RANGE III UCj

Cisplatin plus a fluoropyrimidine with or without
ramucirumab as first-line therapy in patients with
metastatic gastric or gastroesophageal junction
adenocarcinoma

RAIN-FALL III G-OJb

a Ramucirumab combined with indicated therapeutic.
b Gastric or gastro-oesophageal junction adenocarcinoma.
c Non-small-cell lung cancer.
d Transitional cell carcinoma of the urothelium.
e Hepatocellular carcinoma.
f Metastatic colorectal carcinoma.
g Head and neck squamous cell carcinoma.
h Cholangiocarcinoma.
i Renal Cell Carcinoma.
j Urothelial carcinoma.
k Abemaciclib also combined with Pemetrexed, Gemcitabine or PI3K/mTOR dual Inhibitor (L
l LY2801653 also combined with Cetuximab, Cisplatin or Gemcitabine.
number of early and late phase studies exploring subsets of patients, ad-
ditional tumor indications, and combinations with agents targeting
tumor vessels (cMet), tumor cells (EGFR, CDK4/6, cMet), or the immune
system (TGFβR1, PD-1, PD-L1). While the results from the REACH trial
in second line HCC did not achieve its primary endpoint in overall sur-
vival, there was an improvement in overall survival in a population of
patients with high alpha-fetoprotein (Zhu et al., 2015). The REACH-2
study will examine whether ramucirumab can improve survival in
patients with high alpha-fetoprotein in second line HCC patients
following sorafenib treatment. Ramucirumab is also being explored in
a phase III trial (RANGE) in combination with docetaxel in urothelial
carcinomas which would represent a new histology for this class of
inhibitors. Finally, ramucirumab trials explore combinations with
agents targeting EGFR (erlotinib) in NSCLC, CDK4/6 (abemaciclib) in
NSCLC, cMet (Emibetuzumab) in advanced cancers, amultikinase inhib-
itor (merestinib) in advanced cancers, TGFβR1 (galunisertib) in HCC,
PD-1 (pembrolizumab) in multiple cancers, or PD-L1 (durvalumab) in
gastrointestinal or thoracic cancers.

6.4. Key challenges

Many patients progress after initial disease stabilization due to
acquired resistance to anti-angiogenic drugs. Some of the challenges
for intrinsic or acquired resistance to anti-angiogenic agents include
multiple other pro-angiogenic factors besides VEGF (Kopetz et al.,
2010), resistance due to myeloid cell infiltration [reviewed in (Bergers
& Hanahan, 2008)], inflammatory host response, and angiogenesis
independent growth through vasculogenesis, vessel co-option or vascu-
larmimicry [reviewed in (Loges et al., 2010)]. Tumors producemultiple
n Patient segment(s) Combinationa

SCLCc, or TCCUd Locally advanced and unresectable or
metastatic

Pembrolizumab

testinal or thoracic
ncies including G-OJb,
or HCCe

Locally advanced and unresectable or
metastatic

MEDI4736

Stage IV Abemaciclib

d cancer including CRCf,
, Uveal melanoma with
tastasis, CCh, NSCLCc

Advanced cancer LY2801653

Advanced EGFR T790M positive AZD9291

d Cancer G-OJb,
Ci, NSCLCc

Advanced cancer LY2875358

Progressed on or ineligible for sorafenib
with no previous systemic treatment

LY2157299

Second line following first-line
therapy with sorafenib
Untreated patients with EGFR
mutation positive metastatic NSCLCc

Erlotinib

Locally advanced or Unresectable or
Metastatic UCj who progressed on or
after platimun-based therapy

Docetaxel

Metastatic gastric or G-OJb
adenocarcinoma with no prior
systemic chemotherapy except for
(neo)adjuvant

Cisplatin plus a
fluoropyrimidine

Y3023414).
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angiogenic molecules and different stages of tumor development may
depend on different angiogenic factors and therefore blocking a single
pro-angiogenic molecule might have very little impact or no impact
on tumor growth and overall survival. Combination strategies and
approaches such as intermittent dosing schedules, sub-MTDs to delay
hypoxia onset thereby improving oxygenation and delivery of co-
administered drugs is the future of anti-angiogenic therapy. Novel
combination approaches include simultaneously targeting multiple
pro-angiogenic factors that impact tumor growth at different stages
and influence different stages of blood vessel maturation.

In addition to novel combinations of anti-angiogenic agents, the use
of anti-angiogenic therapy in conjunctionwith selective agents targeting
the tumor signaling pathways is also being explored. Aside from
ramucirumab in second line gastric cancer, biologic anti-angiogenic
agents have only been approved in combination with chemotherapeu-
tics. Combinations of anti-angiogenic agents with agents targeting
tumor cells may improve response with non-overlapping toxicities, un-
like the current combinations.

Patient responses to anti-angiogenic therapies are variable within
and across indications. Most of the reported outcomes are averages
but in reality these vary quite extensively from complete responses to
no responses. Thus, it is very important to find predictive biomarkers
to identify patients that benefit from anti-angiogenic therapies. Several
biomarkers including circulating biomarkers (soluble proangiogenic
ligands), tissue biomarkers (receptors), physiological response
biomarkers (hypertension, blood flow), genetic biomarkers (SNPs),
and imaging biomarkers (DCE-MRI) have been explored with variable
results [reviewed in (Murukesh et al., 2010)]. To date no predictive or
surrogate response biomarker has been identified which could identify
responders or non-responders to anti-angiogenic therapies [reviewed
in (Hatch et al., 2015)].

The future of anti-angiogenic therapies depends upon identifying
predictive biomarkers to monitor response and upon creative, novel
combination approaches that can overcome innate resistance, avoid
induction of acquired resistance, and provide a meaningful survival
benefit to the patients.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.pharmthera.2016.06.001.
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