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Abstract 

In the limestone/gypsum wet flue gas desulfurization technology, the control process of the absorber slurry pH 
value is a significantly non-linear, time-varying process. This paper proposed a combined control strategy for dealing 
with nonlinear pH control, which composed of a neural predictive controller (by controlling the flow of limestone 
slurry to control the pH value) and feedback controller (by controlling the loop slurry flow to control the outlet SO2 
concentration). This paper introducing the design and implement steps of the combined control strategy and the 
results show that the control system has good dynamic performance and robustness. 
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As we all know, the emission of Sulfur dioxide has adversely affected on human health and the 
environment. In recent years, there have been many methods used to remove sulfur dioxide in coal-fired 
power plant flue gas. In these methods, WFGD (wet flue gas desulfurization) is the most popular 
technique, and the control of pH value is one of the key factors that affect the desulfurization rate and the 
quality of gypsum [1], thus, the control model of pH value established is very important. However, because 
of the complexity, nonlinear and multi-variable of the pH control, it is difficult or even impossible to 
establish the mathematical model. Traditional methods always take decentralized feedback control or 
multi-variable predictive control [2] and other linear control strategies. But when the pH has significant 
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non-linearity, the linear control techniques may not meet the control requirement. This paper presents a 
CCS (combined control strategy), which including the pH NNPC (neural network predictive controller) 
and SO2 feedback controller.  

1. Nonlinear identification of pH value for predictive control  

Rated operating points of the identification experiment are: Inlet flue gas SO2 concentration: 
4400mg/Nm3; L/G ratio: 10; pH value: 5.0-6.0; Desulfurization rate: 95%; Outlet flue gas SO2
concentration: 220 mg/Nm3; Reagent ratio (Ca/S): 1.03. 

The steps of dynamic system identification are general divided into the following sections [3-5]:

1.1. Input and output selection of dynamic model 

NNPC using neural network model to control pH value which by controlling the flow of limestone 
slurry (Q). Therefore, dynamic model between pH value and Q must be established, because if take multi-
variables as input to the system will make the identification process very difficult. Therefore, we use the 
pH value as output, Q as input of neural network model. 

1.2. Identification experiment design 

Identification experimental design including the choices of input signals, sampling time and other 
contents, to make the collected data sequence contains characteristics of the system including the inherent 
information as much as possible, experiment input signals should meet the following requirements:  
• (1)Spectrum requirements, the input signal spectrum required to cover the spectrum of the process. 
• (2)Margin requirements, in the entire scope of work, maintaining the input signal amplitude within a 

certain range. Random amplitude signal meets this requirement. 

1.3. Neural network model structure selection 

This paper establishes system dynamic model based on ERNN (external recurrent neural network) [6],
and selects MLP (multilayer perceptron) neural network with one hidden layer of sigmoid neurons and 
output layer of linear neurons. The input of ERNN is the regression vector )(tϕ , the number of hidden 
neurons were designed to 8 with heuristic rules. Therefore, this paper uses a simple three-layer neural 
network as the prediction model, the structure is shown in Figure 1. 

Fig. 1. ERNN network structure of pH predictive control system 
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The shadow neurons represent the diagonal regression neural element,  means the delay of a time 
step. We can prove that when the network trained by weight decay method, if the learning rate satisfies 
certain value, then it can be ensuring the training will be convergence with quadratic function.  

1−z

1.4. Model parameters optimization 

The neural network was trained using weight decay method, the training objective function 
optimization includes two aspects: inhibition of prediction error ( LF ) and inhibition of neural network 
parameters for the fitting, as is shown in eq. (1). 
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In eq. (1),  is the number of samples, N ε  is the predictive error,  is the neural network parameter 
vector, and 

Λ
A  is a diagonal matrix, which is usually IA α= ,α is the weight decay, I  is the unit matrix. 

Use the AFPE (Akaike's final prediction error) which bases on LF (Loss Function) criterion [7] to test the 
results of the identification model. The training objective is to find a weight decay to smallest neural 
network’s AFPE, analyze the sensitivity of the model when , in order to avoid local 
minima in the training objective function, for each value of 

110 3 <− α<
α ,the neural network was trained 3 times 

with different initial parameters. The minimum AFPE was achieved for α=10-2, as is shown in table 1. 
Using the optimal ERNN, the neural network can track the pH value dynamic ideally.  

Table1. Mean square prediction error (LF) and Akaike’s final prediction error (AFPE) Comparison Table 

α=10-3 α=10-2 α=10-1 α=100

Training 1: AFPE 

                   LF 

3.1 

3.7 

2.6 

3.13 

3.0 

3.3 

40 

48 

Training 2: AFPE 

                   LF 

3.2 

3.75 

2.7 

3.1 

3.05 

3.3 

44 

52 

Training 3: AFPE 

                  LF 

3.25 

3.8 

2.75 

3.3 

3.1 

3.6 

68 

76 

1.5. Model test 

This article using a nonlinear model predictive controller based on ERNN to establish pH value control 
dynamic model, we do experiments to test the NNPC performance for a step change in pH value set point. 
And the result shows that the control performance is quite good, the closed-loop response is fast, with 
neither overshoot nor offset at steady state.  



869Yifeng Wu et al. / Procedia Engineering 15 (2011) 866 – 8714 Yifeng Wu,et al/ Procedia Engineering 00 (2011) 000–000 

2. Combined control strategy 

2.1. Neural predictive control of pH 

The structure of the neural network predictive control is shown in Figure 2. 

Fig.2. Neural network predictive control structure diagram 

The purpose of optimizer is to find optimal control increment sequence { , }
to smallest the objective function. The objective function is shown in eq. (2).  
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The optimizer uses the neural network model to predict the future behavior of pH value for changes in 
limestone slurry flow rate. The neural network also takes into account modeling errors and unmeasured 
disturbances correction to prevent deviation from the steady state. The most common method in nonlinear 
predictive control is add a prediction bias correction based on the prediction error, that is, the difference 
between the current pH value  and current predictive current pH value)( )(mpH )( pH , as eq. (3) show. 
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The predicted pH value is determined by the equivalent linear model of ERNN, the linear model is 
shown in eq. (4). (Sampling time: 120s, pH=5.2, Q=44m3/h). 
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)(tϕ  is the regression vector. 
Constrained optimization problem is as eq. (5).  
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2.2. Combined control strategy adjustment 

When adjust the CCS, we fist adjust NNPC and feedback controller alone, then fine-tuning the CCS. It 
needs to set the input and output when adjusting the NNPC, the value of incremental weight coefficient 
varies between 0 and 1, we limit the maxQΔ to 4m3/h and the desired control effect was achieved when 
the incremental weight coefficient ρ  = 0.05, the initial values were set as: Sampling time(s):120s; 
Prediction domain :5; Control domain :2; Incremental weight coefficient)(P )(m )(ρ :0.05, and 
these values will be used to adjust the CCS. SO2 feedback controller is designed based on the IMC-PID 
adjustment rules [8] of linear dynamic model identification, specific design process can reference [8]. 
Using the previous initial set but set the control domain to 4 minutes (two intervals) to adjust the CCS, the 
result shows good anti-jamming performance.  

3. Performance of the combined control strategy 

The performance of CCS can only assessed for rejecting changes in the inlet SO2 load, because this is 
the most important control objective in wet FGD plants. In order to study the robustness of the control 
strategy, the control experiments were carried out at different pH values,  and each value using inlet SO2
load with different magnitude changes. To assess the CCS the largest anti-jamming capability by itself, 
the control system did not add feed-forward action. The principle is to make the pH and the concentration 
of outlet SO2 control error less than 0.15 and 145 mg/Nm3, respectively. Assumed that the concentration 
of inlet SO2 is constant (4400 mg/Nm3), and the expected biggest change in the inlet SO2 emissions is 
300Kg / h. The results are shown in Figure 3 (a) and (b), they are the performance of CCS for 75% and 
85% of maximum expected step change in the inlet SO2 load when set points are: pH =5.2, SO2=220 and 
200 mg/Nm3. It can seem that using a NNPC instead of a feedback controller in a decentralized control 
strategy greatly improves the performance of pH control, but cannot get better SO2 control. Therefore, it 
should be added feed-forward control to the SO2 control loop to achieve the desired control effect. This 
was test by carrying out simulations of the CCS with and without feed-forward action for SO2, as shown 
in Figure 3 (c): Simulations of disturbance rejection with and without SO2 feed-forward action (dashed 
and solid line, respectively) when the maximum step change in the inlet SO2 load is 85%. 

      

Fig. 3. (a)      (b)      (c) 

It can see from the figure, the SO2 feedback controller significantly improves the control performance 
of SO2, while the control effect of pH by the NNPC is still very good. Meanwhile, in the pH study range, 
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the robustness of NNPC is very good, and it works well with changes in slurry recycle flow rate and inlet 
SO2 load which are unmeasured disturbances. It can also concluded that the choice of  DMC correction 
was correct, this is because when the DMC correction was used with a predictive controller based on 
ERNN,  it can effectively control the model error, such as the reference [9] said.  

4. Conclusions 

This paper proposed and assessed the CCS of nonlinear pH value in the WFGD, and described the 
design and implementation steps of the CCS. When do experiments without feedback controller, the 
performance of CCS relatively poor. However, after adding the feedback to the SO2 loop, the CCS 
performance has greatly improved. So when the pH value of the non-linearity is very high, the 
combination of pH nonlinear predictive controller and a SO2 feedback controller with feedback action can 
achieve good control objectives. Then, there is no need to use more complex control strategies, such as 
nonlinear multivariable predictive controllers. 
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