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Antithrombin III/SerpinC1 insufficiency exacerbates
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Antithrombin III, encoded by SerpinC1, is a major anti-
coagulation molecule in vivo and has anti-inflammatory
effects. We found that patients with low antithrombin III
activities presented a higher risk of developing acute kidney
injury after cardiac surgery. To study this further, we
generated SerpinC1 heterozygous knockout rats and followed
the development of acute kidney injury in a model of modest
renal ischemia/reperfusion injury. Renal injury, assessed by
serum creatinine and renal tubular injury scores after 24 h of
reperfusion, was significantly exacerbated in SerpinC1+/− rats
compared to wild-type littermates. Concomitantly, renal
oxidative stress, tubular apoptosis, and macrophage
infiltration following this injury were significantly aggravated
in SerpinC1+/− rats. However, significant thrombosis was not
found in the kidneys of any group of rats. Antithrombin III is
reported to stimulate the production of prostaglandin I2, a
known regulator of renal cortical blood flow, in addition to
having anti-inflammatory effects and to protect against renal
failure. Prostaglandin F1α, an assayable metabolite of
prostaglandin I2, was increased in the kidneys of the wild-
type rats at 3 h after reperfusion. The increase of
prostaglandin F1α was significantly blunted in SerpinC1+/−

rats, which preceded increased tubular injury and oxidative
stress. Thus, our study found a novel role of SerpinC1
insufficiency in increasing the severity of renal ischemia/
reperfusion injury.
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Acute kidney injury (AKI) is a severe and common clinical
syndrome with adverse outcome.1 AKI mortality is alarmingly
high, ranging from 24 to 62%.2 Survivors of AKI have higher
long-term risk of developing chronic kidney disease.3 It is
therefore important to understand the endogenous modula-
tors of AKI susceptibility and severity.

Antithrombin III (ATIII), encoded by the gene SerpinC1, is
a serine protease inhibitor in the coagulation cascade.
Protease inhibition by ATIII is profoundly accelerated by
its interaction with heparin-like substance on the endothelial
cell surface.4 In addition, ATIII exhibits powerful anti-
inflammatory effects in part by increasing the production of
prostaglandin I2 (PGI2).

5 Administration of exogenous ATIII
was reported to reduce ischemia/reperfusion injury (IRI) of
rat liver and kidney.6–8

However, it is not known whether endogenous ATIII
has a significant role in the development of AKI and whether
insufficiency of endogenous ATIII could increase the
susceptibility to or severity of AKI. In this present study, we
identified an association between low ATIII activities and high
incidence of AKI in patients undergoing cardiac surgery. We
showed that renal IRI was exacerbated in a newly generated
rat model of SerpinC1 insufficiency. The exacerbation of renal
IRI in SerpinC1+/− rats appeared to be mediated by oxidative
stress and inflammatory mechanisms rather than renal
thrombosis.

RESULTS
Patients with low activity of ATIII presented a higher risk for
developing AKI after cardiac surgery
We examined 258 cases of cardiac surgery occurring between
1 July 2009 and 30 June 2012 at our hospital. Of these 258
cases, 7 had low ATIII activity before surgery. Of these 7 cases,
5 (or 71.4%) developed AKI after cardiac surgery. Of the 251
cases with normal ATIII activity, 32 (or 12.7%) developed
AKI after cardiac surgery. The incidence of AKI was
significantly higher in patients with low ATIII activity
(Fisher’s exact test P= 0.0008, odds ratio 16.8; Table 1). In
the group of patients with low ATIII activity, there were 4
valve replacement surgeries and 3 coronary bypass grafting
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surgeries with the average age of 56.9 years and a gender ratio
(male/female) of 4:3. In the group of patients with normal
ATIII activity, there were 172 valve replacement surgeries and
79 coronary bypass grafting surgeries with the average age of
57.6 years and a gender ratio (male/female) of 117:134. All
patients undergoing valve replacement and 10 of the 82
patients undergoing coronary bypass grafting (1 in the low
ATIII activity group and 9 in the normal ATIII activity group)
were placed on cardiopulmonary bypass. There were no
significant differences in surgery type, cardiopulmonary
bypass use, diabetes incidence, proteinuria, baseline serum
creatinine (Scr), peak Scr, operation time, heart failure,
bleeding, and perioperative hypotension between the two
groups (Table 1). There was no nephrotoxin use except
necessary anticoagulatory agents and diuretics. Moreover, we
divided these patients into quartiles based on ATIII activities
and found that the lowest quartile had a significantly higher
AKI incidence (Table 2), consistent with the analysis based on
clinically defined low and normal ATIII activities (Table 1).

Renal function following IRI was worsened in rats with
SerpinC1 insufficiency
To examine the role of ATIII insufficiency in determining
the severity of AKI, we utilized a rat strain with SerpinC1
heterozygous knockout that we just generated. We used a
model of modest renal IRI that combined uninephrectomy
and 30 min of warm ischemia for the remaining kidney.

Following 24 h of reperfusion, Scr was 1.09± 0.17mg/dl in
SerpinC1+/− rats that was 63% higher than wild-type littermates
(n= 6, Po0.01; Figure 1a). Blood urea nitrogen levels were also
significantly higher in SerpinC1+/− rats than in wild-type
littermates after IRI (Figure 1b). The increase in Scr following
IRI was similar between the wild-type littermates and the
commonly used, outbred Sprague–Dawley rats (Figure 1a). Scr
levels were similar in sham-operated SerpinC1+/− rats, wild-type
littermates, and Sprague–Dawley rats (Figure 1a).

Renal IRI led to significant upregulation of ATIII protein
abundance in the plasma, liver, and the kidney, as well as
ATIII mRNA abundance in the liver in wild-type littermates.
This upregulation was abolished in SerpinC1+/− rats (Figure
1c–f). ATIII mRNA in the renal cortex was more abundant in
the wild-type rats and downregulated following IRI in both
wild-type and SerpinC1+/− rats (Figure 1g). The mutant allele
in SerpinC1+/− rats is missing a 29-bp segment in exon 1 that
overlaps the start codon of the SerpinC1 coding sequence that
should prevent the expression of the native ATIII protein.
A second start codon within exon 2 could be used to create a
partial protein missing 52 amino acids in the N terminal
region of ATIII that would have a predicted molecular weight
of ∼ 50 kDa instead of 55 kDa. The antibody we used
recognizes the C terminal of ATIII. However, we did not
detect a shorter protein in any of the SerpinC1+/− rats,
suggesting that the mutant protein is not expressed or is
rapidly degraded. Even if the mutant protein is present, it

Table 1 | Incidences of AKI following cardiac surgery in patients with low or normal ATIII activities

Normal ATIII (n=251) Low ATIII (n=7) P

Gender (male/female) 117/134 4/3 40.05
Age (years) 57.6± 8.3 56.9± 6.0 40.05
ATIII activity (%, median, range) 98, 76–138 59, 48–72 o0.001
AKI, % 32, 12.7% 5, 71.4% 0.0008
Surgery (valve replacement/coronary bypass grafting) 172/79 4/3 40.05
Cardiopulmonary bypass (on-pump/off-pump) 181/70 5/2 40.05
Proteinuria pre-op (n, %) 16, 6.4% 1, 16.7% 40.05
Diabetes (n, %) 46, 18.3% 2, 28.6% 40.05
Baseline Scr (μmol/l) 66.1± 19.6 57.0± 20.4 40.05
Peak Scr of AKI patients (μmol/l) 369.2 ± 109.9 343.9± 169.7 40.05
Dialysis in AKI patients (yes/no) 10/22 3/2 40.05
Operation time (min) 205.3 ± 45.0 201.9± 31.9 40.05
Heart failure (n, %) 31, 12.4% 1, 14.3% 40.05
Bleeding 4300ml (n, %) 13, 5.2% 0, 0 40.05
Low blood pressure (n, %) 39, 15.5% 1, 14.3% 40.05

Abbreviations: AKI, acute kidney injury; ATIII, antithrombin III; pre-op, preoperative; Scr, serum creatinine.

Table 2 |AKI incidences in cardiac surgery patients divided into quartiles based on ATIII activities

Group N ATIII activity On/off-pump cardiopulmonary bypass AKI incidence Dialysis cases/AKI

Quartile 1 72 48–90% 50/22 18/72, 25%* 11/18#

Quartile 2 59 91–97% 42/17 6/59, 10.2% 0/6
Quartile 3 63 98–105% 43/20 6/63, 9.5% 1/6
Quartile 4 64 105–138% 51/13 7/64, 10.9% 1/7

Abbreviations: AKI, acute kidney injury; ATIII, antithrombin III.
*Po0.05, versus group quartiles 2, 3, and 4; #Po0.05, versus group quartiles 2 and 4.
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would completely lack the 32 amino acid signal sequence
necessary for secretion and, therefore, would not have the
systemic effect of native ATIII.

SerpinC1 insufficiency exacerbated renal histological injury in
IRI
The pathological findings in SerpinC1+/− rats and wild-type
littermates following IRI or sham operation are summarized

in Figure 2. Tubular detachment, foamy degeneration, and
necrosis were observed in rats of both genotypes following
IRI. Tubular injury, however, was significantly more severe in
SerpinC1+/− rats than in wild-type littermates (Figure 2).

SerpinC1 insufficiency did not result in renal thrombosis
Intuitively, we suspected that SerpinC1 insufficiency might
exacerbate renal IRI by causing renal thrombosis. We
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Figure 1 |Renal function following ischemia/reperfusion injury (IRI) was worsened in rats with SerpinC1 insufficiency. Rats were
subjected to uninephrectomy and 30min of warm ischemia of the remaining kidney. Blood and tissues were collected 24 h after reperfusion.
(a) Serum creatinine. (b) Blood urea nitrogen. (c) Plasma levels of ATIII. (d) SerpinC1mRNA abundance in liver. (e) ATIII protein abundance in liver.
(f) ATIII protein abundance in renal cortex. (g) SerpinC1 mRNA abundance in renal cortex. N=6. ATIII, antithrombin III; Het, SerpinC1+/− rat;
IR, ischemia/reperfusion; SD, Sprague–Dawley; Sham, sham operated; WT, wild-type littermate.
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Figure 2 | SerpinC1 insufficiency exacerbated renal histological injury in ischemia/reperfusion injury (IRI). Rats were subjected to
uninephrectomy and 30min of warm ischemia of the remaining kidney. Kidneys were harvested 24 h after reperfusion. (a) Representative
images of periodic acid–Schiff (PAS) staining (×200). (b) Tubule injury scores. N=6. Het, SerpinC1+/− rat; IR, ischemia/reperfusion; Sham, sham
operated; WT, wild-type littermate.
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examined trichrome staining of sections of unflushed kidneys
from SerpinC1+/− rats and wild-type littermates and looked
for signs of thrombosis in the renal vasculature. No sign of
thrombosis was observed in the renal vasculature of either
genotype following the IRI (Figure 3a). Plasma levels of
fibrinogen and fibrinogen degradation products were not
significantly different between wild-type and SerpinC1+/− rats
before or after IRI (Figure 3b and c), consistent with the lack
of overt thrombosis in SerpinC1+/− rats.

SerpinC1 insufficiency increased renal oxidative stress,
tubular apoptosis, and macrophage infiltration in IRI
The renal IRI was accompanied by increased renal oxidative
stress, tubular apoptosis, and macrophage infiltration in wild-
type littermates, assessed by measurements of renal levels of
malondialdehyde, TUNEL (terminal deoxynucleotidyl trans-
ferase dUTP nick end labeling)–positive cells, and F4/80-
positive cells, respectively (Figures 4–6). Renal oxidative
stress, tubular apoptosis, and macrophage infiltration follow-
ing IRI were significantly exacerbated in SperinC1+/− rats
(Figures 4,5,6).

SerpinC1 insufficiency blunted the increase in renal PGI2 at 3 h
following ischemia/reperfusion
Renal levels of prostaglandin F1α (PGF1α), a stable meta-
bolite of PGI2, increased in the wild-type group at 3 h after
reperfusion. The early increase in PGF1α was significantly
blunted in SperinC1+/− rats (Figure 7a). The blunting of the
increase in PGF1α in SperinC1+/− rats occurred before any
significant exacerbation of tubular injury or oxidative stress.
The increases in tubular injury scores and renal levels of
malondialdehyde, which were exacerbated in SperinC1+/− rats
at 24 h after reperfusion, were similar between SperinC1+/−

rats and their wild-type littermates at the 3 h time point
(Figure 7b and c).

DISCUSSION
This study revealed a novel role of endogenous ATIII levels in
modulating the development of AKI and provided mechan-
istic insights into a new clinical observation. Patients with low
levels of ATIII activity appeared to present a higher risk of
developing AKI after cardiac surgery. Renal IRI was signifi-
cantly exacerbated in a newly generated rat gene knockout
model of SerpinC1 insufficiency.

The result of this study suggests that it would be clinically
valuable to identify patients with low ATIII activities before
cardiac surgery or other clinical events that could induce AKI
via renal IRI. The study suggests that kidney functions should
be monitored more closely, and proactive measures should be

WT, reperfusion 24 h, Masson, ×100(left), ×400 (right)

Het, reperfusion 24 h, Masson, ×100 (left), ×400 (right)
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Figure 3 | SerpinC1 insufficiency did not result in renal thrombosis. Rats were subjected to uninephrectomy and 30min of warm ischemia of
the remaining kidney. Unflushed kidneys were harvested 24 h after reperfusion. (a) Several representative images of Masson trichrome staining
are shown for a broad region of the kidney (left, × 100) and glomerular capillary, arteriole, and small veins (right, × 400). Red blood cells were
observed in the blood vessels, consistent with the kidneys not being flushed before harvesting. Thrombi were not observed. (b) Plasma levels of
fibrinogen. (c) Plasma levels of fibrinogen degradation products (FDPs). N= 6. Het, SerpinC1+/− rat; IR, ischemia/reperfusion; Sham, sham
operated; WT, wild-type littermate.
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Figure 4 | SerpinC1 insufficiency increased renal cortical
malondialdehyde (MDA) levels in rats with ischemia/reperfusion
injury (IRI). Rats were subjected to uninephrectomy and 30min
of warm ischemia of the remaining kidney. Kidneys were harvested
24 h after reperfusion. N=6. Het, SerpinC1+/− rat; IR, ischemia/
reperfusion; Sham, sham operated; WT, wild-type littermate.
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taken to prevent or mitigate the development of AKI in these
patients.

ATIII, a serine protease inhibitor and glycoprotein, is
synthesized in the liver and circulates in the blood.9,10 ATIII
can not only inactivate thrombin and other serine proteases of

the coagulation cascade, but also has strong anti-inflam-
matory effects.11–14 The mechanisms underlying the anti-
inflammatory effects of ATIII include elevation of PGI2,
inhibition of nuclear factor (NF)-κB in leukocytes, reduc-
tion of leukocyte–endothelial interactions, prevention of
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Figure 5 | SerpinC1 insufficiency increased renal tubular apoptosis in rats with ischemia/reperfusion injury (IRI). Rats were subjected to
uninephrectomy and 30min of warm ischemia of the remaining kidney. Kidneys were harvested 24 h after reperfusion. (a) Representative
images of TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) staining (×400, left) and overlays with 4',6-diamidino-2-
phenylindole (DAPI) staining (right). (b) Quantatitive analysis. N= 6. Het, SerpinC1+/− rat; IR, ischemia/reperfusion; Sham, sham operated;
WT, wild-type littermate.

Sham-WT

IR-WT

Sham-Het

IR-Het

Sha
m

-W
T

IR
-W

T

Sha
m

-H
et

40

30

20

10

0

IR
-H

et

M
ac

ro
ph

ag
e 

in
fil

tr
at

io
n

(p
er

 ×
40

0 
fie

ld
)

P<0.01

P<0.01

P<0.01

50 µm

Figure 6 | SerpinC1 insufficiency increased renal macrophage infiltration in rats with ischemia/reperfusion injury (IRI). Rats were
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Representative images (×200) of immunohistochemistry analysis using an anti-F4/80 antibody. (b) Quantatitive analysis. N= 6. Het, SerpinC1+/−

rat; IR, ischemia/reperfusion; Sham, sham operated; WT, wild-type littermate.
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microvascular leakage, and inhibition of bacterial growth.12–14

Infusion of PGI2 has been shown to attenuate renal IRI in
previous studies.15,16 PGI2 is known to regulate renal cortical
blood flow in addition to its anti-inflammatory effect and
protect against renal failure.17,18 In this study, SerpinC1+/−

rats exhibited more severe oxidative stress, apoptosis, and
inflammation than wild-type littermate rats at 24 h after
reperfusion. This was preceded by an attenuation of PGI2
increase in the kidney tissues at 3 h after reperfusion. These
findings suggest that SerpinC1 insufficiency might increase the
severity of AKI in part by preventing compensatory elevation
of renal PGI2 shortly after ischemia/reperfusion, leading to
worsened renal inflammation and injury as AKI progresses.

It was not practical to generate rats with targeted gene
deletion until recently.19 Only a handful of rat strains with
targeted deletion of any gene have been reported. The mutant
allele of SerpinC1 in this study contained a zinc-finger
nuclease–induced deletion of 29 bp that includes the start
codon. Interestingly, ATIII protein abundance in the liver and
kidney was similar between SerpinC1+/− rats and their wild-
type littermates at baseline but was increased only in the wild-
type rats after renal IRI. It suggests that one allele of SerpinC1
is sufficient for baseline expression of ATIII in this rat model,
whereas the second allele, which is defective in SerpinC1+/−

rats, might be needed for the upregulation of ATIII induced
by renal IRI. It remains to be determined how renal IRI leads
to upregulation of liver ATIII and whether the increase in
ATIII in the kidney is due to endogenous expression in the
kidney or reflects ATIII levels in residual blood in the
harvested kidney. Renal levels of SerpinC1 mRNAs in
SerpinC1+/− rats were lower than that in wild-type littermates
and were decreased in both strains after renal IRI, suggesting
the involvement of post-transcriptional regulatory mechan-
isms in the renal expression of SerpinC1. The upregulation of
ATIII protein following renal IRI could have compensatory
effects that limit the severity of AKI, a mechanism that is
compromised in SerpinC1+/− rats, leading to greater severity
of AKI.

The findings of this study support the importance of
several studies that should be performed in the future. First, it
would be important to confirm the clinical finding in a larger
population of patients with low ATIII activities. The number
of subjects with clinically defined low ATIII was small in this
study, although the association of low ATIII and high AKI
incidence was supported by analysis of patients divided into
quartiles based on ATIII levels. ATIII deficiency, presumably
hereditary, is found in ∼ 5% of young patients with venous
thrombosis.20 Acquired forms of low ATIII activity can
develop as a result of infection or hepatic dysfunction. Of
particular interest are patients with modest reductions in
ATIII activities that are not sufficient to cause overt
thrombosis but could increase the susceptibility to or severity
of AKI. Second, although risk stratification can be carried out
based on ATIII levels before clinical events that could cause
AKI, it remains to be determined what proactive measures
could be taken to prevent AKI in patients with low baseline
levels of ATIII. ATIII supplementation may not be appro-
priate for all patients. Third, it would be important to
further understand the mechanisms underlying the effect of
SerpinC1 insufficiency on AKI. Unlike the patients with low
ATIII levels before cardiac surgery, the SerpinC1+/− rats
appear to have normal levels of ATIII at baseline but lost the
ability to upregulate ATIII following AKI. The relative
significance of baseline levels versus compensatory
upregulation remains to be examined. The mechanistic links
between ATIII, PGI2, inflammation, and renal injury also
warrant further investigation.

MATERIALS AND METHODS
ATIII activities and development of AKI in patients
undergoing cardiac surgery
Clinical information was reviewed for patients undergoing cardiac
surgery from 1 July 2009 to 30 June 2012 in Shanghai Jiao Tong
University Affiliated Sixth People’s Hospital. Patients with hepatic
diseases, endocarditis, and Scr levels of 4106 μmol/l before surgery
were excluded. ATIII activities in plasma collected before surgery
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Figure 7 | SerpinC1 insufficiency blunted the increase in renal prostaglandin (PGI2) following ischemia/reperfusion injury (IRI) before
significantly exacerbating tubular injury. Rats were subjected to uninephrectomy and 30min of warm ischemia of the remaining kidney.
Kidneys were harvested 3 h after reperfusion. (a) Renal cortical levels of prostaglandin F1α (PGF1α). (b) Tubule injury score. (c) Renal cortical
levels of malondialdehyde (MDA). N= 4–5. Het, SerpinC1+/− rat; IR, ischemia/reperfusion; Sham, sham operated; WT, wild-type littermate.
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were measured using an automatic coagulation analysis machine
(Sysmex CA7000, SIEMENS, Munich, Germany). According to the
reference values, ATIII activity at 75–125% of the standard was
considered normal, whereas o75% was considered low activity. AKI
after cardiac surgery was diagnosed if any one of the following was
present: increase in Scr by ≥ 0.3 mg/dl (≥26.5 μmol/l) within 48 h
after surgery; increase in Scr to ≥ 1.5 times baseline measured within
the previous 7 days; or urine volume o0.5 ml/kg per h for 6 h.21 For
the diagnosis of heart failure, we adopted American College of
Cardiology/American Heart Association (ACC/AHA) 2005 Guideline
for the Diagnosis and Management of heart Failure.22 Low blood
pressure was defined as blood pressure of o90/60 mmHg except
during the cardiopulmonary bypass period. This survey was
approved by the ethics committee of Shanghai Jiao Tong University
Affiliated Sixth People’s Hospital.

Generation of SerpinC1 knockout rat
SerpinC1 heterozygous knockout rats were established in a congenic
model SS.BN-(D13Rat151-D13Rat197)/Mcwi using zinc-finger nu-
cleases targeting exon 1, resulting in a 29 base-pair deletion removing
the endogenous translation start codon. The zinc-finger nuclease
method for generating gene knockout rats has been described
previously.19,23 Homozygous knockout of SerpinC1 was embryoni-
cally lethal. SerpinC1+/− rats and wild-type littermates were
produced by breeding SerpinC1+/− rats with SS.BN-(D13Rat151-
D13Rat197)/Mcwi rats.

Model of modest renal IRI
Modest renal IRI in rats was induced similar to that described
previously.24 Briefly, rats were subjected to right nephrectomy. Left
renal ischemia was induced by nontraumatic vascular clamps over
the renal artery for 30 min. Reperfusion was established. Rats were
killed 3 or 24 h later. The animal protocols were approved by the
institutional animal care and use committee of Medical College of
Wisconsin.

Biochemical markers of renal function
Commercial kits (BioAssay System, Hayward, CA) were used to
measure Scr and blood urea nitrogen.

Plasma levels of ATIII, fibrinogen, and fibrinogen degradation
products
Rat antithrombin III and fibrinogen ELISA Kits (GenWay Biotech,
San Diego, CA) and rat fibrinogen degradation product ELISA Kit
(Cusabio, Wuhan, China) were used to measure plasma levels of
ATIII, fibrinogen, and fibrinogen degradation products, respectively,
following the vendors’ instructions.

Western blot
Western blot was performed similarly to that described previo-
usly.25,26 The primary antibodies used were goat anti-ATIII
polyclonal antibody (sc-3253, dilution 1:200; Santa Cruz Biotech)
and mouse anti-β-actin monoclonal antibody (A5441, dilution
1:20,000; Sigma-Aldrich). The secondary antibodies were chicken
anti-goat IgG-peroxidase antibody (sc-2953, dilution 1:1000; Santa
Cruz, Dallas, TX) and sheep anti-mouse IgG-peroxidase antibody
(A5906, dilution 1:2000; Sigma-Aldrich, St Louis, MO), respectively.
ATIII levels were normalized by β-actin.

Morphological assessments
The formalin-fixed left kidney was embedded in paraffin and cut
into 3 μm sections for histological analysis similar to that described
previously.27,28 After hematoxylin–eosin, trichrome, or periodic
acid–Schiff staining, the slides were viewed by light microscopy.
Renal injury was scored by grading tubular necrosis, loss of brush
border, cast formation, and tubular dilatation in 10 randomly
chosen, non-overlapping fields. The degree of injury was estimated
by the following criteria: 0, none; 1, 0–10% (percentage of area
affected); 2, 11–25%; 3, 26–45%; 4, 46–75%; and 5, 76–100%, as
described previously.29 In addition, the slides with trichrome staining
were examined by light microscopy to evaluate whether there was
microthrombosis in the renal vasculature.

Evaluation of oxidative stress
Malondialdehyde levels in renal tissues were determined using a
commercial kit (ab118970; Abcam, Cambridge, MA) following the
manufacturer’s protocol.

Renal apoptosis
TUNEL staining was performed using an in situ cell death
detection kit (Roche Diagnostics, Mannheim, Germany) according
to the manufacturer’s instructions. Apoptotic cells with nuclei
staining green fluorescence were counted by fluorescent microscopy.
Numbers of TUNEL-positive tubular cells were quantified by
counting 10 randomly chosen, non-overlapping fields per slide.

Macrophage infiltration in renal tissues
Immunohistochemistry was performed with an anti-F4/80 antibody
(ab74383; Abcam) to identify infiltrated macrophages in renal tissue.

Real-time PCR
Quantitative renal-time PCR was performed as described
previously.30,31 The primers for rat SerpinC1 were as follows:
forward: 5′-TTGGGCTGTGCTGTCTGTCA-3′ and reverse: 5′-GGT
TCACGGGGATGTCTCG-3′.

PGF1α assay
Renal levels of PGF1α, a stable metabolite of PGI2, were measured
using a commercial ELISA kit (Abcam; ab133023) following the
vendor’s protocol.

Statistical analysis
SPSS (Ver 18.0, Chicago, IL) was used to perform statistical analysis.
A one-way analysis of variance with Sidak compensation was used
for parametric data and Kruskal–Wallis with Dunn’ compensation
for nonparametric data. A value of Po0.05 was considered
significant.
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