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Low-voltage-activated T-type Ca2+ channels contribute to a wide variety of physiological functions, most
predominantly in the nervous, cardiovascular and endocrine systems. Studies have documented the roles
of T-type channels in sleep, neuropathic pain, absence epilepsy, cell proliferation and cardiovascular function.
Importantly, novel aspects of the modulation of T-type channels have been identified over the last few years,
providing new insights into their physiological and pathophysiological roles. Although there is substantial lit-
erature regarding modulation of native T-type channels, the underlying molecular mechanisms have only re-
cently begun to be addressed. This review focuses on recent evidence that the Cav3 subunits of T-type
channels, Cav3.1, Cav3.2 and Cav3.3, are differentially modulated by a multitude of endogenous ligands in-
cluding anandamide, monocyte chemoattractant protein-1, endostatin, and redox and oxidizing agents.
The review also provides an overview of recent knowledge gained concerning downstream pathways involv-
ing G-protein-coupled receptors. This article is part of a Special Issue entitled: Calcium channels.

© 2012 Elsevier B.V. All rights reserved.
Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1551
2. Protein kinase-mediated T-type channel modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1551

2.1. Protein kinase A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1551
2.2. Protein kinase C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1552
2.3. Protein kinase G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1553
2.4. Rho/Rho-kinase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1553
2.5. Calmodulin-dependent protein kinase II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1553
2.6. Protein tyrosine kinases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1553

3. Protein kinase-independent modulation of T-type channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1554
3.1. Redox, zinc and oxidizing agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1554
3.2. Anandamide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1554
3.3. Monocyte chemoattractant protein-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1554
3.4. Endostatin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1554

4. Regulation of T-type channels by modulation of their expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1554
5. New insights into the modulation of T-type channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1555

5.1. Modulation of T-types by muscarinic M1 receptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1555
5.2. Modulation of T-types by dopamine D1 receptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1555
5.3. Modulation of T-types by CRFR1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1556
5.4. Modulation of T-types by KLHL1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1556
h-voltage-activated; T-type channels, T-type Ca2+ channels; cAMP, cyclic adenosine monophosphate; PKA, protein kinase
K, protein tyrosine kinase; HEK293, human embryonic kidney 293; CHO cells, Chinese hamster ovary cells; OAG,
, phospholipase C; CaMKII, calmodulin-dependent protein kinase II; KCa3.1, Ca2+-activated K+ channels of intermediate
; NK1, neurokinin 1; MCP-1, monocyte chemoattractant protein-1; GHRH, growth-hormone-releasing hormone; KLHL1,
nsaturated fatty acids; GPCR, G-protein-coupled receptor; Gβγ, G-protein βγ subunits; CCR2, chemokine receptor 2;
rophin releasing factor receptor 1
m channels.
y, Medical College of Soochow University, 199 Ren-Ai Road, Suzhou 215123, PR China. Tel.: +86 512 65880126; fax: +86 512

l rights reserved.

https://core.ac.uk/display/82049811?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.bbamem.2012.08.032
mailto:taoj@suda.edu.cn
http://dx.doi.org/10.1016/j.bbamem.2012.08.032
http://www.sciencedirect.com/science/journal/00052736
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bbamem.2012.08.032&domain=pdf


1551Y. Zhang et al. / Biochimica et Biophysica Acta 1828 (2013) 1550–1559
6. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1556
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1556
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1556
1. Introduction

Ca2+ is a ubiquitous intracellular second messenger critical for
cellular functions [1]. The elevation of free intracellular Ca2+

([Ca2+]i) levels triggers various responses including the activation
of Ca2+ dependent enzymes, the secretion of neurotransmitters and
hormones, muscle contraction, as well as affecting cell proliferation,
differentiation and apoptosis [1,2]. Voltage-gated Ca2+ channels, es-
sential mediators of rapid influx of extracellular Ca2+ into the cytosol
of electrically excitable cells, are generally categorized into two
groups: high-voltage-activated (HVA) and low-voltage-activated
(LVA) Ca2+ channels [3]. Members of the HVA Ca2+ channel family
include the L-, N-, P/Q- and R-types, typically require stronger mem-
brane depolarization to initially open and exhibit a wide spectrum of
pharmacological and biophysical properties. The HVA channels are
heteromultimers comprising a pore-forming α1 subunit that defines
the Ca2+ channel subtype, together with ancillary β and α2δ subunits
that co-assemble to form a functional Ca2+ channel complex [4]. In
contrast, functional LVA Ca2+ channels (called T-type) appear to con-
sist of a single α1 subunit. Distinct from the HVA channels, T-type
channels exhibit properties of low unitary conductance, fast inactiva-
tion and slow deactivation kinetics, and negative steady-state inacti-
vation at physiological resting potentials [5].

The ten Ca2+ channel α1 subunits in the mammalian genome are
structurally similar, composed of four homologous domains (I–IV),
each of which contains six transmembrane helices (S1 through S6)
plus a re-entrant pore-forming loop that permits the selective pas-
sage of Ca2+ ions. The S4 segment in each domain contains positively
charged amino acids residues in every third or fourth position and
forms part of the voltage sensor, driving the channel to open and
close in response to membrane potential changes. The four major
domains are linked by different sized cytoplasmic regions and the
N- and C-termini are also modeled to be localized on the cytoplasmic
side. In vertebrates, the T-type Ca2+ channel family encompasses
three α1 subunit genes, CACNA1G, CACNA1H and CACAN1I, which re-
spectively encode α1G (Cav3.1), α1H (Cav3.2), and α1I (Cav3.3)
isoforms [6–10]. Each T-type isoform exhibits unique biophysical
and pharmacological profiles as well as distinct cellular and subcellu-
lar distributions [2,11–17]. The Cav3.1 and Cav3.2 currents are highly
reminiscent of prototypical LVA currents recorded in native cells
while Cav3.3 currents display distinctly slower inactivation kinetics
[6,10,18–20]. Alternative splicing notably enhances the potential
diversity of T-type channel isoforms [11,18,21] and there is growing ev-
idence for significant differences in the biophysical properties of the
various splice variants [22–24]. The unique set of biophysical properties
of T-type channels, especially their negative voltage-dependent proper-
ties and ability to generate “window” Ca2+ currents at or near resting
membrane potentials, makes them ideally suited towards regulating
cellular excitability and oscillatory behaviors.

In the heart, Cav3.1 and Cav3.2 are the predominant T-type
isoforms. The channels are more prevalent in the early development
and they disappear in the myocardium shortly after birth and are lo-
calized to the pacemaker tissue in adult hearts, where they have an
established role in pacemaker function [25]. Genetically modified
mouse models have shed additional light on the respective roles of
T-types in the pathogenesis of left ventricle cardiomyopathy. For ex-
ample, the Cav3.1 knockout mice display a depression in heart rate
and slower pacemaker activity in isolated atrial pacemaker myocytes
[26]. The complete lack of LVA currents in the atria of these mice
indicates that the Cav3.1 channels are the primary LVA pacemaker
channels [26] and are important for maximal pacing rates [27,28]. In
neurons, relatively small membrane depolarization can trigger the
opening of T-type channels with the ensuing Ca2+ entry serving to
further depolarize the plasma membrane and initiate action potential
bursts [12]. The physiological significance of T-type properties are
underscored by their well-documented roles in regulating neuronal
firing patterns under both normal physiological conditions such as
sleep [12,29–31] and in pathophysiological conditions such as epilep-
sy [32]. Of note, both T-type channel biophysical properties and their
associated physiological activities are modulated by a wide range of
cellular mechanisms and pathways (Fig. 1). Understanding these var-
ious pathways and mechanisms may identify novel strategies for
modulating T-type channel activity for the purpose of therapeutic in-
tervention. The current review focuses on recent advances in our
understating of T-type Ca2+ channel modulation.

2. Protein kinase-mediated T-type channel modulation

2.1. Protein kinase A

A large amount of literature suggests that native T-type channels
are differentially regulated by protein kinase A (PKA) activity. As
examples, in NIH 3T3 cells, an increase in T-type currents induced
by acetylcholine is abolished in the presence of Rp-cAMP, a PKA in-
hibitor [33]. Forskolin and 8-Br-cAMP reproduce the effect of acetyl-
choline confirming the involvement of PKA in the increased T-type
current [33]. In sheep pituitary somatotropes, the growth-hormone-
releasing hormone (GHRH)-mediated increase in T-type current is
abolished by Rp-cAMP and another PKA inhibitor, H89 [34]. However,
in the latter study, the direct effect of PKA activation was not reported
and no shift in the steady-state activation curve was been described
[34]. In frog atrial myocytes, intracellular cAMP increases basal
T-type currents [35]. Similarly, in rat adrenal glomerulosa cells, a
T-type current increase induced by serotonin through the 5-HT7 re-
ceptor is prevented by H89 and it is mimicked by cAMP [36].

T-type currents resulting from all three cloned channels (Cav3.1,
Cav3.2 and Cav3.3) have similarly been shown to be up-regulated
by PKA activity [37]. In Xenopus oocytes co-expressing cloned Cav3.2
and 5-HT7 cDNAs, serotonin induced a significant increase of Cav3.2
currents without altering the activation profile [38]. The effect of sero-
tonin was prevented by the PKA inhibitors, H89 and PKI, whereas
8-Br-cAMP and forskolin reproduced 5-HT7 effects. Utilizing a chime-
ric construct approach, the Cav3.2 domain II–III linker region was
necessary for mediating PKA effects [38]. Interestingly, mutating puta-
tive PKA sites in the Cav3.2 II–III linker did not alter PKA-dependent
regulation. Furthermore, 8-Br-cAMP and forskolin effects were
found to be relatively slow, suggesting that some other mediator
rather than the Cav3.2 channel itself might be the substrate for phos-
phorylation by PKA [38–40]. Of note however, some of the differences
between modulation studies may reflect experimental and/or cell-
type differences. For example, while the current density for all three
T-type isoforms exogenously expressed in mammalian cells (Cav3.1,
Cav3.2 and Cav3.3) is enhanced by activation of cAMP, the effect
was observed only at 37 °C and not at room temperature. Further, a
direct PKA-dependent phosphorylation of the Cav3.2 subunit was ob-
served at 37 °C but not at room temperature, perhaps reflecting the
temperature-sensitive nature of kinase translocation [37]. Additional
cell-type and Cav subunit-specific interactions with scaffolding and



Anandamide, AEA, 
PUFA, Endostatin 

Ser-1198
Zn2+

Ascorbate

L-cysteine/ DTT ?

Extracellular+
+

+
+

+
+

+
+

+
+

+
+

+
+

Intracellular

NH

KLHL-1
?

COOH

NH2

PKA

CaMK

trafficking

PKG

PKCROCK

Gβγ

PTK

His-191

+
+

+
+

+
+

+
+

Fig. 1. Schematic representation of recently identified pathways for Cav3 channel modulation. Abbreviations: CaMKII, calmodulin-dependent protein kinase II; PKA, protein kinase
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Table 1
Summary of functional consequences of T-type channels modulated by GPCRs.

Regulatory
pathways

G-protein-coupled receptors Effects References

Protein kinases
PKA Muscarinic M3 receptor, growth

hormone-releasing hormone receptor,
5-HT7 receptor

Enhancement [33,34,38]

Neuromedin U type 1 receptor,
adrenaline, muscarinic M4 receptor

Inhibition [44–46]

PKC Angiotensin II type 1 receptor,
endothelin-1 receptor,

Enhancement [62,64]

Muscarinic M3 receptor,
neurokinin 1 receptors

Inhibition [63,71]

PTK Angiotensin II type 2 receptor Inhibition [49]
CaMKII Noradrenaline Enhancement [60]
Rho kinase Lysophosphatidic acid receptors Inhibition [74]

Novel receptor-mediated pathways
Gq/11 and Gβγ Muscarinic M1 receptor Inhibition [121]
Gβγ Corticotrophin releasing factor

type 1 receptor
Inhibition [72]

Gβ2γ2 Dopamine D1 receptor Inhibition [122]
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other proteins may also come into play. For example, caveolin-3
interacts with Cav3.2 but not Cav3.1 channels to regulate PKA-
dependent modulation in neonatal ventricular myocytes [41].

Distinct from the above PKA-mediated up-regulation of T-type
current activity, in bass retinal horizontal cells T-type currents are
inhibited by dopamine, an effect prevented by PKA inhibitors and
mimicked by 8-CPT, a cAMP analogue [42,43]. Similarly, in newt ol-
factory receptor cells adrenaline inhibits T-type currents, an effect
mimicked by 8-Br-cAMP, forskolin and by intracellular application
of the catalytic subunit of PKA [44]. In mouse dorsal root ganglion
(DRG) neurons the activation of neuromedin U type 1 receptor
(NMUR1) inhibits T-type currents, an effect which is abolished by
pretreatment with H89 or intracellular application of PKI. The inhibi-
tion of T-type currents by NMUR1 is accompanied by a shift of the in-
activation curve towards more negative potentials without effect on
the activation profile [45]. Similar results have been demonstrated
for activation of muscarinic M4 receptors [46]. In contrast to that for
native T-type currents, the inhibition of recombinant Cav3.2 currents
by dopamine D1 receptor activation persists in the presence of PKI
and inclusion of the catalytic subunit of PKA in the patch-pipette pro-
duces no effect [39], a result consistent to that observed with
8-Br-cAMP alone [40]. Moreover, native T-type channels appear in-
sensitive to cAMP in certain cell types, including adrenal glomerulosa
cells, pituitary lactotroph cells [47–49], mouse DRG neurons, rat no-
dose ganglion and NG108-15 cells [50–54]. Together, results suggest
that the PKA regulatory effects on native and recombinant T-type
currents is highly variable across cell types, interacting proteins, tem-
perature and via functionally coupling to different G-protein coupled
receptor pathways (Table 1).

2.2. Protein kinase C

A number of studies have shown that T-type channels can be either
up- or down-regulated by the activation of protein kinase C (PKC). In rat
pituitary GH3 cells, a Ni2+-resistant T-type current is inhibited by the
lipid diacylglycerol (DAG) analogue 1-oleoyl-2-acetyl-sn-glycerol
(OAG) [55]. Similar results have been reported for a Ni2+-sensitive
T-type current in both chicken DRG neurons [56], rat hippocampal neu-
rons [57,58], canine cardiac Purkinje and ventricular cells and rat DRG
neurons [59,60]. At least for exogenously expressed T-type channels,
the effect of PKC activation appears to be non-specific as PMA elevates
current density for all three T-type isoforms (Cav3.1, Cav3.2 and
Cav3.3), albeit in a highly temperature-dependent manner [37,61]. Fur-
thermore, in rat adrenal glomerulosa cells, phorbol esters and DAG an-
alogues inhibit T-type currents by shifting the activation curve to
positive potentials [62]. These effects mimic those of angiotensin II
(Ang II) in these cells and the presence of PKC inhibitors abolishes
Ang II-induced T-type current inhibition [62]. In NIH 3T3 cells, phorbol
12,13-dibutyrate (PdBU) inhibits T-type currents [33]. Activation of
muscarinic M1 receptor does not modulate T-type currents, but acti-
vates PKA. In the presence of PKC inhibitors, M1 receptor activation in-
creases T-type currents via a PKA-dependent pathway, which suggests
cross-talk between PKA and PKC downstream of the muscarinic M1 re-
ceptor [33]. Similar findings have been reported in bass retinal horizon-
tal cells [42], where dopamine inhibits T-type currents via both PKA
and PKC pathways. Inmouse DRG neurons, recent studies show that ac-
tivation of muscarinic M3 receptors by a short-chain postsynaptic
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α-neurotoxin inhibits T-type currents through a novel PKC isoform
pathway [63].

A PKC-induced increase in a Ni2+-sensitive T-type current has also
been reported [64,65]. In cultured neonatal rat ventricular myocytes,
endothelin-1 induces an increase in T-type currents that can be
prevented by PKC inhibitors H7 and staurosporine and mimicked by
PMA and PdBU [64]. In Xenopus oocytes expressing recombinant
Cav3 channels, PMA induced an increase in Cav3.2 T-type currents
without changes in biophysical properties, and which was attenuated
by pre-incubation with various PKC inhibitors [65]. Interestingly, a
similar PKC-dependent effect was not reproduced in mammalian
cells and therefore modulation may depend upon cell type, inter-
acting anchoring proteins and temperature [66]. Finally, some studies
also report no effect of phorbol esters or DAG analogues on T-type
currents, albeit HVA Ca2+ currents are modulated [67–70].

Rangel and colleagues describe a new mechanism wherein GPCRs
modulate the Cav3.2 T-type channel [71]. The authors report that acti-
vation of the neurokinin 1 (NK1) receptor leads to reversible inhibition
of recombinant human Cav3.2 channels transiently expressed in
HEK293 cells. Using a combination of pharmacological and molecular
approaches, Cav3.2 inhibition is shown to be mediated by a voltage-
independent process involving the sequential activation of Gq/11 sub-
units, phospholipase C β (PLCβ) and PKC. These results differ with
those reported by Wolfe et al. [39], who showed that inhibition of
Cav3.2 channels by dopamine D1 receptors (another Gq/11 protein-
coupled receptor) expressed in the adrenocarcinomal cell line H295R
is mediated by direct interaction of Gβ2γ2 subunits with the α subunit
of Cav3.2. Further, Tao et al. [72], reported that corticotrophin releasing
factor receptor 1 (CRFR1) specifically inhibits recombinant Cav3.2 chan-
nels in HEK293 cells by a pathway that involves neither Gq/11 nor PKC.
Discrepancies across these studies may be due to the cell type and/or
GPCR pathway specificity (Table 1). In addition, it is possible that
cell-specific differences in alternative splice variants of the T-type chan-
nels could lead to the activation of distinct signaling pathways and re-
sult in different downstream responses.

2.3. Protein kinase G

In newt olfactory receptor cells, a Ni2+-sensitive T-type current is
increased when cGMP is applied in the patch-pipette [73]. The effect
on T-type currents is mimicked by application of either the cGMP
phosphodiesterase inhibitor, zaprinast, or the permeant cGMP ana-
logue, CPT-cGMP. In addition, the selective cGMP-dependent protein
kinase inhibitor, KT5823, abolishes cGMP-induced effects [73]. The
cGMP-mediated increase in the olfactory receptor cells T-type current
is associated with a hyperpolarizing shift in the activation curve with-
out altering inactivation kinetics. Contrastingly, a Ni2+-sensitive
T-type current in NG108-15 cells was not affected by application of
either cGMP or 8-Br-Cgmp [49,52].

2.4. Rho/Rho-kinase

Application of lysophospatidic acid (LPA) acts through activation
of Rho kinase to mediate a reversible inhibition of transiently
expressed Cav3.1 and Cav3.3 channels and with a shift to more
depolarized potentials of the activation and inactivation profiles for
the Cav3.2 channel [74]. LPA is known to act on LPA receptors, a fam-
ily of GPCRs that are highly promiscuous in their coupling to down-
stream effectors [75], including activation of Rho kinase and ROCK
[74]. Interference with LPA receptor coupling to the Rho kinase path-
way using dominant-negative inhibitors of Gα12 and Gα13 signaling,
inactivation of RhoA, or pharmacological inhibition of ROCK prevents
the LPA-mediated modulation. In the Cav3.1 subtype, the site of ac-
tion of Rho kinase has been localized to two clusters of serines and
threonines within a highly conserved region of the domain II–III
linkers [74] (Table 1). The physiological implications of Cav3.1
regulation by Rho kinase is likely underscored by the wide distribution
of this T-type channel in the central nervous system [15]. Recently it has
been shown that ROCK inhibitors mediate a reduction of seizures in
mice [76,77], pointing to a possible role for the Rho/Rho-kinase signal-
ing pathway in epilepsy. LPA receptor activation has also been linked
to neuropathic pain [77], although it remains to be determinedwhether
this involves altered Cav3.2 channel function.

2.5. Calmodulin-dependent protein kinase II

The Ca2+/calmodulin-dependent protein kinase II (CaMKII) path-
way is implicated in T-type channel modulation. In canine ventricular
and Purkinje cells, a decrease in [Ca2+]i results in a significant de-
crease of T-type currents [60]. By using ethylene glycol tetraacetic
acid (EGTA) to buffer [Ca2+]i in these cells, Tseng and colleagues con-
cluded that a noradrenaline induced T-type current increase results
from an increase in [Ca2+]i [60] (Table 1). Native Cav3.2 currents in
bovine adrenal glomerulosa cells are also increased by elevating
[Ca2+]i [78,79]. Incremental changes in [Ca2+]i significantly enhance
T-type currents by a hyperpolarizing shift in the activation profile.
This effect is dependent upon CaMKII phosphorylation since it is
abolished by either KN-62, a CaMK antagonist, or a specific CaMKII
peptide inhibitor [48,79,80]. In the absence of increased [Ca2+]i, per-
fusion of a purified CaMKII mutant increases T-type currents in the
presence of adenosine triphosphate [80].

Recombinant Cav3.2 T-type channels expressed in HEK293 cells
have also been shown to be modulated by CaMKII [81]. As observed
with native Cav3.2 currents, a rise in [Ca2+]i induces a shift of the ac-
tivation profile to more negative potentials without changes in inacti-
vation [81]. Interestingly, the Cav3.1 T-type appears not to be
modulated by either a rise in [Ca2+]i or CaMKII activation [81]. Utiliz-
ing reconstituted chimeric constructs Barrett and colleagues identi-
fied that domain II–III linker of Cav3.2 as the target for CaMKII
modulation [82]. Indeed, currents resulting from chimeric Cav3.1
channels containing the Cav3.2 II–III linker were increased by a rise
in [Ca2+]i while chimeric Cav3.2 channels containing the Cav3.1 do-
main II–III linker were not modulated. Cav3.2 domain II–III serine res-
idues 1198 and 1153 are phosphorylated by CaMKII and mutation of
serine 1198 to alanine abolishes the CamKII-dependent modulation
[82]. In contrast, in mouse spermatogenic cells calmodulin (CaM) an-
tagonists decrease a Ni2+-sensitive T-type current [83] independent-
ly of CaMKII activation [84]. Application of the CaM inhibitor W7, but
not the weaker antagonist W5, inhibits T-type currents and the ef-
fects of W7 are attenuated by either including CaM into the patch
pipette or substituting extracellular Ca2+ by Ba2+. In these cells,
CaMKII activation is not involved inW7mediated T-type current inhi-
bition since the CaMKII inhibitor KN-62 does not reproduce the W7
effects. While further studies are required, it is possible that CaM
can directly modulated T-type channels [84,85].

2.6. Protein tyrosine kinases

T-type channels are subject to modulation by certain protein tyro-
sine kinases (PTK). In mouse spermatogenic cells, a Ni2+-sensitive
T-type current is increased by PTK inhibitors tyrphostin A47 and
A25 while tyrosine phosphatase inhibitors phenylarsine oxide and
sodium orthovanadate inhibit T-type currents [86]. In contrast, the
PTK inhibitors genistein and lavendustin A inhibit a Ni2+-sensitive
T-type current in NG108-15 cells [87]. This latter study does not de-
scribe the effect of PTK activators or tyrosine phosphatase inhibitors,
and direct effects of PTK inhibitors on T-type currents cannot be
completely excluded. Interestingly, extracellular application of genis-
tein, a PTK inhibitor, has been shown to decrease T-type currents [72].
The inhibitory effect of genistein is associated with a hyperpolarizing
shift in the voltage-dependence of inactivation. Genistein inhibits
Cav3.1 currents in transiently transfected HEK293 cells independently
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of PTK activity [88]. In addition, Cav3.1 channels expressed in HEK293
cells are not modulated by PTKs, since the PTK inhibitor tyrphostin
AG213 and the catalytically active PTK p60C-SRC have no effects [88].
Interestingly, Cav3.3 channels expressed in HEK293 cells are directly
blocked by the PTK inhibitor imatinib-mesylate [89] although they ap-
pear not to be affected by another PTK inhibitor, genistein [72]. Finally,
both sodiumorthovanadate, a tyrosine phosphatase inhibitor and intra-
cellular application of an antibody against tyrosine phosphatases pre-
vent the decrease of T-type currents induced by Ang II in NG108-15
cells [49] (Table 1). Importantly, it should be noted that these com-
pounds had no effect on basal T-type currents in this latter study.

3. Protein kinase-independent modulation of T-type channels

3.1. Redox, zinc and oxidizing agents

T-type Ca2+ channels are notable in their being modulated via sev-
eral signaling pathways that do not involve classical intracellular mes-
sengers or protein kinases. Reducing agents such as the endogenous
amino acid L-cysteine both up-regulate T-type currents in nociceptive
neurons and trigger the development of hyperalgesia [77] likely due
to an increase in excitability [90]. This type of redox-dependent modu-
lation has also been demonstrated for T-type currents in reticular tha-
lamic neurons and appears to occur selectively on Cav3.2 channels
[91]. Conversely, certain oxidizing agents selectively inhibit Cav3.2
channels [92]. For example, both T-type current inhibition and the inhi-
bition of reticular thalamic burst-firing are observed upon application of
endogenous nitrosothiol reagents such as L-nitrosocysteine [92] and by
oxidizing agents such as ascorbate [93]. In the case of ascorbate, the
mechanism of action involves oxidization of a unique histidine residue
(His-191) located in the Cav3.2 domain I S3 and S4 loop. Interestingly,
the sameHis-191 residue is involved in the augmentation of Cav3.2 cur-
rents in response to L-cysteine, which is able to prevent blockade of the
channel by endogenous zinc ions that normally inhibit Cav3.2 channel
activity due to binding to extracellular histidine residues [94].

It should also be noted that in addition to a potent zinc-mediated
inhibition of Cav3.2 channels, zinc ions cause slowing of Cav3.3 tail
currents, which culminates in increased Cav3.3 channel activity dur-
ing action potential bursts [95]. These observations are particularly
interesting when considering recent findings showing that the inter-
ference with endogenous zinc ions can alter the occurrence and fre-
quency of epileptiform discharges [96]. The authors suggest that
this is the result of zinc-mediated modification of the gating kinetics
of Cav3.3, a T-type isoform highly expressed in certain thalamic neu-
rons. Interestingly, lead ions have been recently shown to have an ex-
citatory effect on T-type activity and thereby on action potential firing
of pyramidal neurons in the CA1 region of rat hippocampal slices [97].
This effect appears to involve the release of Ca2+ from the internal
stores through inositol trisphosphate and ryanodine receptors.

3.2. Anandamide

Anandamide, an endogenous cannabinoid, inhibits both T-type
native currents in NG108-15 cells and all three recombinant T-type
isoforms transiently expressed in HEK293 cells [98]. Inhibition is spe-
cific to anandamide since 2-AG, another endogenous cannabinoid,
and δ9-THC, the major psychoactive component of marijuana, both
have no effect on T-type currents. Of note, anandamide inhibits
T-type channels independent of both cannabinoid receptors and pro-
tein kinases, acts from intracellular side of the membrane, and inhibi-
tion persists in the presence of GDP-β-S. Anandamide accelerates
T-type current inactivation kinetics and shifts steady-state inactiva-
tion properties towards more negative potentials [98]. Fatty acids
such as arachidonic acid, as well as other N-acyl ethanolamides and
various polyunsaturated fatty acids, similarly inhibit T-type channels
in the micromolar range through a membrane-delimited, possibly di-
rect interaction [40,47,99].

3.3. Monocyte chemoattractant protein-1

Monocyte chemoattractant protein-1 (MCP-1) is a cytokine
known to be involved in the recruitment of monocytes to the sites
of inflammation [100]. MCP-1 activates the chemokine receptor 2
(CCR2), a seven-transmembrane helix GPCR implicated in inflamma-
tory pain responses [101]. You and colleagues have recently shown
that MCP-1 selectively inhibits Cav3.2, but not the Cav3.1 and
Cav3.3 T-types [102]. Interestingly, this modulation does not require
CCR2 receptor activation and seems to involve a direct action of the
ligand on the channel. Whole-cell T-type currents in acutely dissoci-
ated DRG neurons are effectively inhibited by MCP-1, consistent
with the notion that these cells predominantly express Cav3.2. The
MCP-1-induced T-type channel response is eliminated by heat dena-
turation and further is sensitive to the application of the divalent
metal ion chelator diethylenetriaminepentaacetic acid, which sug-
gests that metal ions acts as a co-factor. Together, these findings
may provide novel avenues for the development of inhibitors of
T-type channels for the treatment of pain and other T-type channel
linked disorders [102].

3.4. Endostatin

Our recent studies have shown that endostatin (ES), a carboxyl-
terminal proteolytic fragment of collagen XVIII, selectively inhibits
T-type currents in human glioblastoma U87 cells, where Cav3.1,
Cav3.2 and Cav3.3 are all endogenously expressed [103]. Pretreatment
with NNC 55‐0396, a mibefradil nonhydrolyzable analog with reduced
L-type Ca2+ channel affinity, completely abolishes the ES-induced
T-type current inhibition. The inhibition is independent of either
G-protein or protein tyrosine kinase. Examining heterologously
expressed Cav3 subunits in HEK293 or CHO cells, Cav3.1 and Cav3.2,
but not Cav3.3, were significantly inhibited by ES. The inhibition of
T-type currents by ES is highly dependent upon the inactivation state
of the channels. Interestingly, ES hyperpolarizing induces a hyperpolar-
izing shift in the steady-state inactivation profile in U87 cells, whereas
the activation curve is not affected. Although it remains unclear wheth-
er the hyperpolarizing shift in steady-state inactivation produces a sig-
nificant modification in the T-type window current, the results suggest
that the reduced T-type currents by application of ES are due to more
channels remaining in the inactivated state.

4. Regulation of T-type channels by modulation of
their expression

The subcellular distribution of T-type channels across the central
nervous system varies with T-type isoform and brain region
[12,15,16]. For example, in neocortical pyramidal cells, Cav3.1 chan-
nels exhibit a mainly somatic distribution, whereas Cav3.3 channels
are expressed at the soma, as well as in proximal and distal dendritic
[12]. The molecular mechanisms that underlie the differential subcel-
lular distribution and membrane trafficking of individual channel
subtypes are unknown. For example, although co-expression of
T-type α1 subunits with HVA calcium channel β and α2δ subunits
can increase α1 subunit surface expression [104], no physical interac-
tion among these subunits has ever been demonstrated. It is likely
that different T-type channels are able to associate with a plethora
of interacting proteins, which in turn might affect the extent of mem-
brane trafficking, and the specific targeting to various subcellular loci.
It is also important to note that increased Cav3.2 channel membrane
expression has been reported for channels possessing missense muta-
tions associated with childhood absence epilepsy [105], although it
is unclear whether this is due to the altered ER retention or
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increased membrane trafficking/stability. Direct effects of epilepsy
mutations on membrane expression or effects on interactions with
regulatory proteins that are involved in channel targeting could po-
tentially account for their pathophysiological impact even in the ab-
sence of any alterations in channel biophysical properties.

Another potential mechanism for affecting the expression of
T-type channels might be related to hormonal changes that occur
in epilepsy patients [106]. For instance, it has been shown that
17β-estradiol treatment induces an increase in Cav3.1 mRNA expres-
sion, which leads to increased functional expression of Cav3.1 chan-
nels and increased burst-firing in hypothalamic neurons [107] and
may at least in part account for the increased T-type expression ob-
served in mouse models of absence epilepsy [108]. An up-regulation
of T-type channel expression is also associated with both painful dia-
betic neuropathy [109] and irritable bowel syndrome (IBS) models
[110] neuropathy in dorsal DRG sensory neurons. Conversely, knock-
down of spinal Cav3.2 and Cav3.3 channels in rats mediates potent
analgesia [111,112]. Although potentially directly contributing to
pathophysiology, altered regulation of either trafficking of T-type
channels to the plasma membrane, or affecting their stability in the
plasma membrane, might provide a novel means of modulating
T-type activity for therapeutic purposes.

T-type channel variant expression can further be regulated by alter-
nate splicing [113,114]. Underscoring the significance of alternative
splicing to disease pathophysiology, the splicing of T-type subunits
can crucially affect how the channels respond functionally to amissense
mutation associatedwith absence epilepsy [115] and further, splice var-
iant expression can be altered during development and in certain dis-
ease models [116–118]. A recent study has provided evidence that
certainmutations and/SNPs associatedwith childhood absence epilepsy
might affect splicing of the Cav3.2 gene by altering splice junctions
[119]. This is in turn predicted to give rise to inappropriate splice
variants in specific cell types and result in altered neuronal function.
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Fig. 2. New insights into the modulation of T-type channels. Muscarinic M1 receptor activati
involve the phospholipase Cβ (PLCβ)/PKC pathway and requires partial involvement of Gβγ s
units via a cholera-toxin-sensitive Gs subunit. The final coupling mechanism between these
inhibits T-type activity via a direct action of Gβ2γ2 subunits. The neuronal actin binding pro
kinetics. These changes lead to an overall increase in the Ca2+ influx without a change in c
Along these lines, when conducting in vitro mutagenesis studies, is es-
sential that themutations be introduced into the appropriate splice var-
iant since effects of such mutations might manifest themselves only in
certain channel variants [120]. Overall, alterations in the normal T-type
expression patterns may play significant roles in T-type channel patho-
physiology although our current understanding of the underlying mo-
lecular mechanisms that regulate T-type channel expression at the
mRNA and protein levels remains poor.

5. New insights into the modulation of T-type channels

5.1. Modulation of T-types by muscarinic M1 receptors

Hildebrand and colleagues have shown that activation of musca-
rinic M1 receptors selectively inhibits transiently expressed Cav3.3
channels in HEK293 cells [121] (see Table 1 and Fig. 2). The authors
showed that this inhibition is mediated by a Gq/11-linked pathway
and partially involves Gβγ subunits. The M1 receptor-mediated mod-
ulation appears not to involve any of the major second messenger
pathways and suggest a novel regulatory pathway for T-type modula-
tion. The M1-receptor mediated effect may involve a redundant in-
hibitory mechanism composed of Gβγ and unidentified second
messengers that complement each other. It is also possible that mul-
tiple kinases are activated by M1 receptors concomitantly, with each
being capable of inhibiting T-type activity. Such a mechanism would
be consistent with the authors’ observation that multiple structural
regions of the channel are involved [121].

5.2. Modulation of T-types by dopamine D1 receptors

Wolfe and colleagues have shown that inhibition of Cav3.2 chan-
nels by dopamine D1 receptors expressed in the adrenocarcinomal
cell line H295R are mediated by direct interaction of Gβ2γ2 subunits
Extracellular

Gq/11 βq/11 β2γ2

Gβ2 2

KLHL-1

Intracellular

Gβ2γ2
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a2+

on via Gq/11 inhibits T-type activity via an undefined mechanism pathway that does not
ubunits. Activation of CRF1 receptors inhibits T-type channels via activation of Gβγ sub-
Gβγ subunits and the T-type channel is not understood. D1 receptor activation via Gq/11

tein Kelch-like 1 (KLHL1) selectively increases Cav3.2 current density and deactivation
onductance or open probability.
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with Cav3.2 [39,122] (Table 1 and Fig. 2). Gβ2γ2 inhibits Cav3.2 chan-
nels directly without affecting the voltage-dependent gating proper-
ties, whereas other types of G-protein β subunits do not mediate
this type of direct regulation. It is important to note that this form
of regulation is specific to the Gβ2 subunit. Thus, a possible explana-
tion for the observed differences in the signaling by these two Gq/11

protein-coupled receptors might be attributed to a low endogenous
level of Gβ2γ2 dimer in HEK293 cells. Recent studies from the Barrett
lab have indicated that Cav3.2 must be phosphorylated by protein ki-
nase A to be responsive to Gβ2γ2 inhibition [122]. This leads to a sce-
nario in which differences in basal phosphorylation states can alter
hormone-mediated inhibition of Cav3.2 and adds yet another possi-
ble explanation for the variability observed across studies.

5.3. Modulation of T-types by CRFR1

The Soong group has described the regulation of Cav3.2 channels by
corticotrophin releasing factor receptors (CRFR) [72] (Table 1 and
Fig. 2). In transiently transfectedHEK cells the activation of CRFR1 selec-
tively inhibits Cav3.2 channels. The inhibition does not involve protein
kinase pathways, but is dependent upon Gβγ subunits activated via a
cholera-toxin-sensitive Gα pathway. Interestingly, this observedmodu-
lation differs from the previously described inhibition mediated by
Gβ2γ2, in which a leftward shift in the half-inactivation potential was
observed. Such a shift in the steady-state inactivation profile leads to a
decrease in size of thewindow current and a reduced T-type availability
for opening. However, a recent report by Kim and colleagues [123] has
shown that activation of CRF receptors inhibits T-types expressed in
MN9D cells (a cell line with characteristics of dopaminergic neurons),
an effect is dependent on PKC activity. This suggests that not only the
coupling between CRFR and T-type channels but also the consequence
of PKC activation are highly dependent on the cellular environment,
splice variant or other factor.

5.4. Modulation of T-types by KLHL1

Aromoralaran and colleagues have reported another novel regula-
tory mechanism in that the neuronal actin binding protein (ABP)
Kelch-like 1 (KLHL1) selectively increases Cav3.2 current density
and deactivation kinetics [124] (Fig. 2). These changes lead to an
overall increase in Ca2+ influx, without altering the conductance or
open probability. KLHL1 is a constitutive protein that is widespread
in the brain and contributes to the modulation of pacemaker activi-
ties, short burst-firin, and low-threshold Ca2+ spikes [125]. KLHL1
also participates in neurite outgrowth and its genetic elimination in
Purkinje neurons leads to dendritic atrophy and motor insufficiency.

6. Conclusions

T-type channels are critical contributors to membrane excitability
in both neuronal and nonneuronal cells [126,127], and aberrant
T-type function and expression have been linked to a number of seri-
ous disorders. Although there is an increasing understanding of the
molecular determinants that underlie regulation of T-types by a
range of second messenger pathways, the intricate mechanisms that
control T-type expression and distribution remain largely unknown.
Animals with the genetic knockout of Cav3.1 and Cav3.2 have been
produced and will be helpful to further explore the involvement of
T-type channel isoforms in a variety of physiological and pathophysi-
ological states. To date, the Cav3.1 knockout mice have provided
solid evidence that this T-type channel plays a major role in sleep
and absence epilepsy by affecting burst-firing in the thalamocortical
relay neurons [128,129] while the Cav3.2 knockout mice has con-
firmed a role for Cav3.2 in nociception [130]. As yet, there has been
no report showing the functional consequences of Cav3.3 deficiency.
Gene knockout mice are undoubtedly useful animal models to probe
the physiological and pathophysiological roles of T-type channels.
However, the constitutive inactivation of these genes may lead to
compensatory responses that mask the precise involvement of
T-type channel activity. For example, discrepancies in the neuropath-
ic pain phenotype between Cav3.2 knockout mice and animals that
undergo antisense knockdown [111,130] suggest that compensatory
effects in knockout animals may in part alleviate responses to
hyperalgesia. In some cases the effects of the changes to T-type activity
may also be related to changes in potassium channel activity. Small- and
large-conductance Ca2+ activated K+ channels have been shown to be
functionally coupled in neurons and vascular smooth muscle cells
where they are involved in regulating neuronal firing patterns and
vasodilation, respectively [131–133]. Recently, voltage-activated K+

channels (Kv) [134,135] and Ca2+-activated K+ channels of intermedi-
ate conductance (KCa3.1) [136] have also been found to be coupled
both functionally and physically to T-type channels.

From the clinical perspective, the search for subtype-specific
T-type channel blockers has been of considerable interest. While
a number of classes of T-type blockers have been described
(dihydropyridines, succinimide derivatives, diphenylbutylpiperidine
derivatives, bendodiazepines, anesthetics), their action has not yet
proven sufficiently selective against the various T-type isoforms
[137–141]. Given that T-type channels exhibit isoform-specific distri-
butions and biophysical and modulatory properties, the need to de-
sign drugs selective for a given T-type variant is likely to be crucial
yet significant challenge.
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