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1. Introduction 

Let (£2, 1:, fl) be a measure space and L</J be an Orlicz space on it. A 
problem of considerable interest in L</J-space theory is to find conditions 
on the Young's functions f/J and lJI such that L</J is rotund and uniformly 
rotund. [These also are termed strict and uniformly convex. Precise 
definitions will be given later.] This was needed in [12], and generally 
the rotundity and smoothness results, without restrictions on the measure 
space, are useful in many applications. 

A fJ( tailed study for an important case of this problem was considered 
in [11], and it seems to be the only comprehensive paper on the subject. 
Another special case was considered in [8] whose result will be compared 
later in Section 4 below. The central results of [11] were obtained if 
(£2, '1:, fl) is a nonatomic a-finite measure space. This, however, is a restriction 
on the results of [11] and their use in the problems of probability theory 
(e.g., cf., [12], [14]) and elsewhere will be severely limited. This becomes 
plain if one recalls (cf., [15], p. 52) that a nonatomic (finite) measure 
space can be mapped in a one-to-one manner onto the Lebesgue measure 
space on a closed interval such that every measurable subset of the first 
space goes into a set of the latter, preserving measure. That the nonatomic 
case has special features was noted by an example in a different context 
in ([17], p. 40; see also Theorem 2 on p. 37). Since for f/J(x) = Ixl p , 1 <p < <Xl, 

the space L</J[ = Lp] is known to be uniformly rotund if (£2,1:, fl) is arbitrary, 
the general study is of interest both for applications and comparison. 

The purpose of this paper is to present "best" conditions on the Young's 
functions f/J, lJI without restrictions on (£2, 1:, fl) such that L</J is (uniformly) 
rotund and smooth (Section 4). The main results of the paper are contained 
in Sections 3, 4 and 5. The methods of [11] which use nonatomicity and 
a-finiteness so crucially, do not seem to extend to the general case. So 
in what follows, the differentiability of norms and certain related properties 
playa key role. The latter considerations have some independent interest 
and were found useful in deducing certain general results on the repre
sentation of functionals, and also for a probability limit theorem in 
Section 5. It will be seen that the results of this paper and those of [8] 
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and [11] complement each other. The next section contains, as needed 
preliminaries, a reformulation of the representation theorem of [13], in 
an improved form. 

2. Reformulation of a representation theorem 

Let (Q, E, f-l) be a measure space subject to the (nonrestrictive) condition 
that f-l has the finite subset property, FSP. (I.e., every measurable set 
of positive f-l measure has a measurable subset of positive finite Wmeasure. 
Further elaboration is given below.) Let ifJ, lJ' be normalized Young's 
complementary functions, viz., nonnegative symmetric convex functions 
on the line vanishing at the origin and satisfying 

(1) ifJ(I) + lJ'(I) = 1 , xy<.ifJ(x)+lJ'(y) , all x,y. 

The normalization here (the first part of (1)) is convenient and lends a 
direct comparison with the LP-space theory, with ifJ(x) = Ixlpjp, p> 1. Let 
L,p be the set of all (equivalence classes of) measurable scalar functions f 
on Q such that N ,p(f) < 00, where 

(2) 

N'F(·) and the complementary space L'F are similarly defined. With (2) 
as norm, L,p [L'F] becomes a Banach (or B-)space, (cf., [18], [20]). Finally 
let A,p(f-l) be the class of (scalar) additive set functions G on E vanishing 
on f-l-null sets, such that IIGII~<oo, where 

the supremum being taken relative to all finite disjoint collections {At} 
in E of finite f-l-measure. IIGII' '1' and A'F(f-l) are defined similarly. 

Let B,p(f-l) be the class of bounded additive set functions on E vanishing 
on f-l-null sets and such that the support of each v in B,p(f-l) is equivalent 
to the support of some function f in L'F satisfying SnlJ'(fJf)df-l<oo if 
fJ<.I, and = 00 if fJ> 1. The norm of v is the total variation, denoted by 
Ivl(Q). Define the class d ,p(f-l) =A,p(f-l) EEl B,p(f-l) , as the direct sum, with norm 

(3') 

d'F(f-l) is defined similarly. 
It should be mentioned that all these set functions G's in d ,p(f-l) (and 

d'F(f-l)) and f-l, are assumed to have been defined initially on the same 
ring of sets [Jf and then are extended in the usual way. This and its 
importance was discussed and stressed in [19]. A brief description 
(following [10]) may be instructive. Let [Jf be the class of sets in E such 
that each set has a finite measure relative to all set functions in d ,p(f-l), 
d 'F(f-l) and f-l. Then [Jf is a ring. Let El be the collection of sets E of Q, 
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such that Ell F E fJl for all FE fJl. Then 1:'1 is a field, and let 1:" be the 
a-field generated by 1:'1. DefineG' such thatE E 1:",G' ±(E) = sup G±(E II F), 
for FE fJl, where G+(G_) denotes the positive (negative) part of G. If 
G' = G' + - G' _, (and similarly for ft) then these new set functions /./, G' 
on 1:" have the same properties as the old ones. It is these new ones that 
are of interest in the sequel. Dropping the primes, the old symbols will 
be used hereafter in the new sense. [I have briefly mentioned this in [13], 
referring to [10] and [19], but the above elaboration would have been 
more helpful.] This assumption removes certain uninteresting and es
sentially trivial cases without being restrictive. This formulation will be 
referred to as the FSP. 

It was shown in [13], that d lP(ft), d 'JF(ft) are B-spaces with (3') as norm. 
Let MlP[M'JF] denote the closed subspace of LlP[L'JF] determined by the 
wsimple functions. [As usual f E LlP means that f is any member of its 
equivalence class.] So MlP={f: SQ rp(kf) dft<oo, all k}. 

The representation theorem of [13], takes the following form. 

The 0 I' e mI. Let rp, lJI be normalized Young's complementary function8 
and LlP, d 'JF(ft) be the Orlicz space and the space of set functions defined 
above. Then for every F E (LlP)*, the conjugate space of LlP, there exists a 
unique G in d 'JF(ft) such that 

(4) F(f)= f fdG, fELlP, 
Q 

and 

(5) IIFII= IIGII'JF' 
In particular, if F E (MlP)*, conjugate of MlP, then there exists aft-unique 
"quasi-function" (i.e., one that is equivalent to a measurable function on sets 
of finite ",-measure) g* in L'JF such that, for all f in MlP, 

(6) F(f) = S fg* dft, IIFII =N 'JF(g*). 
Q 

g* is measurable if and only if either (i) M'JF =L'JF or (ii) ft is localizable (or 
a-finite). An exactly similar result holds if rp and lJI are interchanged 
throughout the above statement. 

This result without normalization (and omitting the last line) was 
proved in ([13]rr, Theorems 3 and 4). Except for obvious modifications 
(where 1 should be replaced by rp(l) or lJI(l) appropriately) that proof 
applies here verbatim. The present interest is the equality (5) and the 
last statement about L'JF. This is further illustrated by the following result 
whose proof again is the same as that of ([13], Theorem 5). 

Corollary 1.1. If rp, lJI are normalized Young's functions such that 
MlP = LlP and M'JF = L 'JF, then LlP is isometrically equivalent to its second 
conjugate (LlP) * *, (i.e., LlP, L'JF are reflexive). 

The point here is that, in the past, there was only the topological 
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equivalence between L<1> and (L<1»**. But now there is the isometric 
equivalence. This clarifies the remarks in ([7], p. 126, p. 224) on relations 
between various norms. The usefulness of the normalization was stressed 
in [20] and it will be exploited here. Finally, it will be noted that, if 

M<1>=L<1> and lJI(·) is continuous, then l/J(x) t 00 or + 0 as x t 00 or x + O. 
x 

Since l/J'(.), the derivative, exists a.e., it may be assumed, in the case 
when lJI(·) is continuous, to exist everywhere (i.e., l/J'(.) is continuous) 
by a redefinition, (e.g., joining the discontinuities with straight line 
segments; cf., [20], p. 25 and [7], p. 6 ff). This will be assumed together 
with the normalization of l/J, lJI in the rest ofthe paper, whenever M<1> = L<1>, 
and M'P =L'P (or lJI continuous). 

3. Differentiability of norms 

If !!C is a B-space and Xo E!!C, then the norm 11·11 is said to be weakly 
(or Gateaux) differentiable at Xo if 

(*) 1. Ilxo + txll-Ilxoll un "-----"'----'-'--'-" 
1--+0 t 

exists for each x in !!C, and is strongly (or Frechet) differentiable. if the limit 
in (*) is uniform in x on the unit sphere S={x: Ilxll=1} of !!C. The norm 
is uniformly strongly differentiable if the limit in (*) is uniform in both 
Xo, x for Xo, XES, (cf., [3] and [2]). Further classifications were introduced 
in [2], but the above definitions will suffice here. In this section, conditions 
for differentiability of the norm (2) for L<1> (and L'P) will be obtained 
without restricting the measure space. 

To begin with, the weak differentiability of the norm is easy to settle, 
and will be useful in other computations. It is convenient to extend the 
definitions of l/J'( . ) and lJI'( . ) to negative values by setting l/J'( - x) = - l/J'(x) 
and lJI'( -x)= -lJI'(x), for x>O. 

Proposition 1. Let l/J and lJI be continuous Young's functions and 
M<1> be the subspace of L<1> determined by the f1,-simple functions. Then the 
norm functional N <1>( • ) is weakly differentiable at every point of M<1>, except 
at the origin. Moreover if l/J' is continuous, the weak derivative GUo; .) at 
fo E M<1> n S<1>, where S<1> is the unit sphere of L<1>, is given by 

(7) GUo; f)= S fl/J'Uo) df1, , f E M<1> n S<1>. 
n 

Proof. First note that for f E M<1>, Snl/JUjk)df1, exists for all k>O 
and tends to 0 or + 00 according as k --+ + 00 or O. This is a simple 
consequence of the fact that simple functions are dense in M<1> and that 
l/J is continuous. Next note that l/J'U) E L'P even if l/J'(.) is a right (or 
left) derivative of l/J. This fact was proved for a finite nonatomic measure 
space in ([7], p. 73), and the same proof applies for the general case with 
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the following modification. Since IE M</>, there is a sequence of simple 
functions {In} such that Ini ---l>- I pointwise and in norm. With {Ini} for 
the bounded sequence used in the proof of [7], the same holds here. [In 
fact, if IE L</>, then tP'(f)xE E L'P for every set E of finite ,u-measure by 
the proof of [7], and the general case follows with the procedure used 
in the proof of ([13], Lemma 1).] 

Now let k(t)=N</>(fo+tf), for 10, IE M</> n S</>. Then by what precedes 
and ([20], p. 175), it results that 

(8) tP( 1) = S tP (/0 + tl) d 
Q kit) fl· 

On the other hand for each 10, I if F(t, k) = tP ('0; tl ), then 

(9) dF = - tP' (/o+tl) 10 +tl dk+ tP' (/o+tl) 1 dt 
k k2 k k 

which exists, whenever 10 + tl =1= 0, by elementary differentiation, (and set 
it equal to zero when 10+tl=0). For It I < 1, k(t);>tX>O and hence the right 

side of (9) is dominated by 2tP' (1/01 + III) (1/01 + III) which is integrable by 
tX tX2 

Holder inequality and the preceding paragraph. This permits the inter
change of integral and differential in (8), for It I < 1, so that 

0= - ~2 (J tP' ('o;tl) (fo+tf) dfl) dk + ~ (J tP' ('o;tl) I dp ) dt. 

From this it follows that dkjdt exists, and noting that k(O) = 1, one gets 

(10) 

since the denominator is non-negative, <: 1 by Holder inequality, and 
zero if and only if 10tP'(fo) = 0, a.e. This last possibility is ruled out since 
10 EM</> n S</>. If moreover, tP'(·) is continuous, then by ([20], p. 175) 
there is equality in Holder inequality and thus the denominator in (10) 
is 1. Consequently (10) reduces to (7), completing the proof. 

Remark. The above proof is based on the arguments of ([9], p. 404), 
and the nonatomic case of ([7], p. 188). A precise comparison of the latter 
will be given after the next result. 

Now the conditions for strong differentiability can be given in 

Theorem 2. Let tP, 'P be continuous Young's lunctions, tP'(·) be 
continuous, and M</> C L</> be as above. Suppose 'P(.) is such that 

I 'P(N~(f)) dp = 'P(I) 
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lor I E L'P. Then the norm lunctional N tP( . ) is strongly differentiable at every 
point 01 MtP except at the origin whenever either (i) ft is localizable or (ii) 
M'P = L'P (and ft is arbitrary). Moreover, the strong derivative at 10 in MtP (') StP 
is the same as the weak derivative and is given by 

(7') G(/o; f)= S 1(/>'(/0) dft , IE MtP (') StP. 
Q 

Remark. The condition on P, P(I)= 1 P(N:(/») dft is automatic 

in case (ii) and, in case (i), if the integral exists for N 'P(/) replaced by 
some k < N 'PU). 

Proof. If 10,/EMtP (')StP, it is to be shown that NtP(/o~tl)-1 -+ G(/o; f) 

uniformly in I as t -+ o. Only the uniformity needs to be shown, because 
of the above proposition. However, this is nontrivial and is proved as follows. 

For 10 in MtP (') StP, by a form ofthe Hahn-Banach theorem ([18], p. 146, 
Theorem 5) there exists an Fo in (MtP)* such that Fo(fo) = NtP(fo) = 1, 
and 11F011 = 1. By Theorem 1 (cf. (6» there is a unique go in L'P, such that 

(11) 1 = Fo(fo) = S logodft , N'P(g) = 11F011 = 1, 
Q 

where go is actually a measurable function (not merely a quasi-function), 
under (i) or (ii) above. For the proof here it is necessary to show that 
the Fo is unique. If Fl in (MtP)* is another element with the same property, 
then F2 = i(Fo + F1 ) E (MtP)* and 11F211 <; 1. Since 1 = N tP(fo) = F2(fo), one 
must have 11F211 = 1 and as in (11) there exist gr, g2 in L'P such that 

1 = F2(fo) = i S lo(go + gl) dft = S IOg2 dft, 
Q Q 

and by uniqueness of this presentation and isometry one has g2 = i(go + gl) 
a.e., and N 'P(g2) = 1 = i(N 'P(go) + N 'P(gl)). Now using the condition on 
P( .), it follows that 

P(I)= j P(g2)dft= 1 p(gO~gl)dft<i 1 [P(go)+P(gl)]dft=P(I), 

since P(x) t 00 as x t 00, on account of (/>'(x) t 00. The contradiction of 
x 

the above line shows that Fo=Fl. Moreover from (11) since (/>'(.) is 
continuous, and the fact that (Holder) equality holds there, one has (cf. 
[20], p. 175), 

(12) go=(/>'(/o), a.e. , (= (/>' (N~°(f))). 
From the preceding paragraph, after a rearrangement of terms, and (7), 

(13) 

~ NtP(fo~tl)-1 - G(fo;f) = ~ j lo[(/>'(N:~~:tf)) - (/>'(fo)Jdft + 

( j I [(/>' (N:~/::tl») - (/>'(fo)J dft· 
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By Proposition 1, for each fo, f in MCP n SCP, the left side tends to 0 as 
t -+ 0, so that the right side must tend to O. Since cJJ' ( .) is continuous 
and the norm N cp(.) is absolutely continuous on MCP, (cf., [8], p. 58; and 
[7], p. 87), it follows by the dominated convergence theorem that the 
second term on the right of (13) tends to zero, uniformly in f E SCP. 
Consequently one must have 

(14) l~ ~ J fo [cJJ'(N~(f:~tf)) - cJJ'Uo)] dfJ=O. 

Now writing tf=/" it is clear that Itl=Ncp(f'), and (14) implies 

(15) N!~~->oN:U')J fo [cJJ'(N~(f:~f')) - cJJ'Uo)] dfJ=O, foEMCPnSCP. 

(15) is evidently equivalent to the statement that (14), and hence the 
right side of (13), tends to 0 uniformly in f. This completes the proof. 

Corollary 2.1. Let cJJ, 'P be such that MCP=LCP and M'1'=L'1', (i.e., 
LCP, and L'1' are reflexive). Then the norm in LCP (and L'1') is strongly differ
entiable at every point except at the origin. 

This follows from the theorem since cJJ'(.) and 'P'(.) are continuous (by 
the normalizations, cf. end of Section 2) and that the following holds: 

cJJ(I) = 1 cJJ(N:U)) dfJ and 'P(I) = J 'P(N~(fJ dfJ· 

Remark. Using as counterexamples the Ll and Loo, it can be seen 
that the conditions given on cJJ, 'P cannot be improved appreciably in 
the above results. Also the result of case (ii) of the theorem was proved 
in [7], for finite nonatomic measures in a different way. The present 
proof, based on the Hahn-Banach theorem, seems more direct. 

Finally conditions for uniform strong differentiability of norms will be 
given, as it will be important for later work. The following useful inequality 
on Young's functions cJJ, 'P, discovered by Milnes, will be needed. Its 
proof may be found in his paper ([11], p. 1473). 

Lemma. (MILNES [11]). Let cJJ, 'P be Young's functions, such that 
cJJ(2x).;;;;OcJJ(x) for x:>O, and a 0<0<00, and 'P(.) is continuous. If for 
each O<e< 1, there exist a !5(e) > 0 and a k.> 1, (15. -+ 0 as e -+ 0) such that 

(i) cJJ,(f:~!)u) :> k. and (ii) lu'-ul:>!5. u>O, then one has 

(16) 'P(v'):> 'P(v) + 'P'(v) (v' - v) +L. cJJ(lu' - ul), 

for some L.>O, which depends only on e, where v=cJJ'(u) and v'=cJJ'(u'). 

Thus prepared the following result can be established. 

Theorem 3. Let cJJ, 'P be Young's functions such that MCP=LCP and 
M'1' = L'1', and that cJJ' and 'P' are continuous. Then the norm N cp( .) in L cP 
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is uniformly strongly differentiable if and only if 

(17) N;~~O N~(f) J fo [q)' (N:~f:~f)) - q)'(/O)] df-l=O 

uniformly in fo E Sq,. A sufficient condition for (17) to hold (i.e. for uniform 
strong differentiability of N q,( . )) is that for all u> 0 and 0 < e < 1 there exist 
l<k.<C<=, such that, 

( 18) P'((I+e)u):>k.P'(u) , P(2u) <,CP(u). 

Proof. The first part is immediate. For, if (17) holds, then the integral 
in (17) also tends to zero uniformly in (/0, f) E Sq, xSq" so that the right 
side of (13) tends to zero uniformly in fo, f. Conversely, if Nq,(·) has the 
latter property, then the right side of (13) must tend to zero uniformly 
in fo and f. It follows that (17) holds in that case. However it is more 
difficult to show (and the proof is long) that (18) implies (17), or the 
uniform strong differentiability of N q,(.). This will be demonstrated now. 

Since Nq,(/o+tf) is convex in t, it is well-known (cf., [20], p. 24) that 
it can be expressed as an indefinite integral of its derivative, on [ - I, I]. 
Since the (weak) derivative G(/o; .) of N q,( .) exists at fo E Sq" it follows 
after a slight computation (given in [2], p. 301) that, for all f ESq, and 

It I < 1, 

I N q,(/o: tf) - 1 - G(/o; f) I <, J I G(/o + tlXf; f) - G(fo; f)I dlX . 

1 

<, S IIG(fo+tlXf; . )-G(fo; .) II dlX 
o 

by Holder inequality, 

(19) 

= i "G (N~(f::Lf); .) - G(fo; .)" dlX 

since G(fo; .) = G({3fo; .), all (3 > 0, 

= i N~[q)'(N~(f::Lf)) -q)'(fo)]dlX. 

The last equality follows from the fact that G(fo; .) is a bounded linear 
functional in Lq" and then using Theorem 1. 

It will now be shown that the right side of (19) tends to zero uniformly 
in (/0, f) E Sq, xSq, as t --+ o. For this it suffices to show that for each IX, 
the integrand tends to zero as t --+ o. This is equivalent to showing, in 
view of M~=L~, that 

(20) If! J P[q)'(N~(f:~IXLf)) - q)'(fo)] df-l=O. 

In fact, if {In} C L~, then N ~(fn) --+ 0, as n --+ =, if and only if 
Sg P(kfn) df-l--+ 0 asn --+ = for each k:> 1. This is known and is proved 
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by a simple argument. Indeed, if N 'P(fn) --+ 0, then let n be large enough 
such that kN'P(fn)<.I, and hence, by convexity, (O<P(I)<I), 

J P(k/n) dfl<.k N'P(fn) j P(N~(/n)) dfl=k P(I) N'P(fn) --+ 0. 

Conversely, if k;;d is arbitrary, for every h in SCP, Ncp(h/k)<.I/k, so that, 
by Young's inequality (of. (1)), for large n satisfying f .o P(k/n)dfl<.l/k, 

1 2 
J I/nhl dfl <. f P(k/n) dfl + -k <. k· 
.0 .0 

Consequently the Orlicz norm II/nll'P<.2/k and by ([20], p. 174) 

P(I) N 'P(fn) <'11/nll'P<' 2/k. 

Since O<P(I)<1 and k is arbitrary, N'P(fn)--+O, as was to be shown. 
Now with (18), it will be shown that (20), or fA S.o P[ ] dfl drx, --+ ° 

as t --+ 0, holds. If ° < e < 1 and (18) holds, then for an 1](e) > ° (--+ ° as e --+ 0), 
there is an L'1 > 0, such that 

(21) lP(u') -lP(u) > lP'(u) (u' - u) +L'1 P(lv' - vI) 

whenever Iv'-vl>1]v>O and v=lP'(u»O, v'=lP'(u'»O. In (20), first 

consider /0>0, />0, a.e., and O<t<l. Let u=/o,u' = N~~/::rx:rxf)' and 

!:h={w; Iv'-vl>1]v>O}, where v' and v are the w-functions defined in 
terms of u' and u above. Hence 

(22) S P[v'-v]dfl <.; S [lP(u')-lP(u)-lP'(u)(u'-u)]dfl· 
.01 '1.01 

But also for any x', x> 0, it is clear that the convex function lP( . ) satisfies 
lP(x') >lP(x) +lP'(x) (x'-x). So integrating this on Q-Q1 with the above 
u and u' for x and x', and adding the result to (22), one has 

1 S P[ v' - v] dfl <. L S [lP(u') -lP(u) + lP' (u)(u - u')] dfl 
.01 '1.0 

= ; S lP'(u)(u-u') dfl, since u, u' E SCP, 
1).0 

1 N (/ /0 + trx/ ) . rF.'(/) S'P <. L'1 cp 0- Ncp(fo+trxf) ,smce 'P 0 E , 

1 21tlrx 
<. L1) 1 -It I ' by ([2], p. 301, eq. (2)) 

which tends to zero as t --+ ° uniformly in /0, f E SCP. The same holds if 
t<O, by considering /<.0 a.e. On Q-Q1 the result is simpler, since 
Iv'-vl<'1]v, 0<1]<1, 

S P(v'-v) dfl<' S P(1]v) dfl<'1]P(I), 
.0-.01 .0 
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which --+ 0, for 10, I in S</J, since 'fJ is arbitrary. Hence (20) is proved. 
Consequently 

1, 1 It I 
S S P(v -v) df-l diX < L I-Itl + 'fJP(I), 
o Q TJ 

so that (19) --+ 0 as t --+ 0 uniformly in 10, I in S</J, and thus the result is 
true in this case. 

The general case, that 10, I are arbitrary in S</J, is reduced to the special 
one treated above by a standard trick (e.g. cf., [11], p. 1480). Let ItO and /t' 
be defined as (with notations introduced above (22)), 

to = { Ivl if v+v' has the sign of v 
I 0 otherwise, 

't = { Iv'l if v +v' has the sign of v' 
I 0 otherwise. 

Then O</t°< lvi, 0<1t' < Iv'l, a.e., and Iv+v'l <Ito+ It', and (as most easily 
seen by drawing a picture) lv' -vi <21ItO- 1t'1, a.e. It is also clear that 
N p(ftO) < 1, N p(ft') < 1, and ItO --+ <1>'(f0), It' --+ <1>'(f0), a.e. Thus writing 
St=P'(ftO), St'=P'(/t'), one notes that N</J(St) < 1, N</J(s't)<I, and 

1 1 1 

f S P[v'-v] df-l diX< S S P[2(ftO-f't)]df-ldiX<O S S P[ftO-f't]df-ldiX, 
OQ OQ OQ 

and since /to, It' and hence St, st' satisfy the hypothesis of the special 
case, where one uses the fact that S Q <1>(St) df-l--+ <1>( 1), S Q <1>(St') df-l--+ <1>( 1), 
as t --+ 0; (since N </J(St) --+ 1, N </J(St') --+ 1 and N </J( .) is absolutely con
tinuous). Thus the result is valid in the general case as well. The proof 
of the theorem is therefore complete. 

Remarks. 1. For this result, condition (18) is "best" will become 
clear with the work of the next section. From the above proof, it is also 
clear that the necessary and sufficient condition for uniform strong 
differentiability of N </J( .) at every point except the origin is that 

I G (N ~(/: ~Lf) ; I) - G(fo; f) I < e whenever N </J (N ~(/: :iXLf) - I) < b(e), 

for all 10, I in S</J. General conditions were given, for this to hold (in terms 
of the spherical image map), by Cudia, [2], for arbitrary B-spaces. 
However, it is not easy to translate them to the present case. 

(To be continued) 




