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SUMMARY

Neurotrophic small molecules have the potential to
aid in the treatment of neuronal injury and neurode-
generative diseases. The natural product fellutamide
B, originally isolated from Penicillium fellutanum,
potently induces nerve growth factor (NGF) release
from fibroblasts and glial-derived cells, although
the mechanism for this neurotrophic activity has
not been elucidated. Here, we report that fellutamide
B potently inhibits proteasome catalytic activity.
High-resolution structural information obtained
from cocrystallization of the 20S proteasome reveals
novel aspects regarding b-subunit binding and ad-
duct formation by fellutamide B to inhibit their hydro-
lytic activity. We demonstrate that fellutamide B and
other proteasome inhibitors increased NGF gene
transcription via a cis-acting element (or elements)
in the promoter. These results demonstrate an unrec-
ognized connection between proteasome inhibition
and NGF production, suggesting a possible new
strategy in the development of neurotrophic agents.

INTRODUCTION

The development of neurotrophic therapeutics for treatment of

neuronal injury or the neurodegenerative effects of stroke, is-

chemia, and CNS diseases (e.g., Parkinson’s disease and Alz-

heimer’s disease) has attracted much attention. In particular,

the neuroprotective and restorative effects of nerve growth fac-

tor (NGF) or other neurotrophins (reviewed in Huang and Reich-

ardt, 2003) in ameliorating the symptoms or pathophysiology in

animal models of the disease(s) have been documented in the lit-

erature (Castellanos-Ortega et al., 1999). For example, cotrans-

plantation of NGF along with fetal ventral mesencephalic cells

into the striatum of lesioned rats (a model of Parkinson’s disease)

significantly restored spontaneous locomotor activity and striatal

and nigral dopamine levels, compared with those in rats receiv-

ing transplanted cells alone (Chaturvedi et al., 2006). These re-

sults suggested that NGF both exhibited neuroprotective effects

on the transplanted cells and helped rescue remaining host do-

paminergic neurons from cell death. Similarly, NGF can attenu-
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ate lesion-induced cholinergic deficits and cognitive impair-

ments in animal models of Alzheimer’s disease: chronic NGF

treatment induced increased blood flow and nicotine uptake in

the cerebral cortex (Lapchak, 1993), and implantation of geneti-

cally engineered NGF-secreting fibroblasts into the brains of pa-

tients with early-stage Alzheimer’s disease significantly slowed

cholinergic nerve deterioration (Tuszynski et al., 2005). However,

the requirement for direct administration of neurotrophins or

large molecules into the CNS to circumvent the blood-brain bar-

rier severely limits their therapeutic utility and is not without side

effects (Venero et al., 1996). Efforts to promote penetration of

NGF across the blood-brain barrier by conjugating it to transfer-

rin (Liao et al., 2001) have been made; however, the amount of

modified NGF detected in the CNS was very small.

The development of small molecule neurotrophic compounds

capable of entering the brain is, therefore, an attractive thera-

peutic strategy. Literature reports have described small mole-

cules that are able to up-regulate selected neuronal proteins or

induce neurite outgrowth of cultured preneuronal cells (Cheng

et al., 2006; Warashina et al., 2006). However, the mechanism(s)

whereby such molecules act and the extent to which they can

completely mimic the actions of endogenous neurotrophins are

yet unknown. The fellutamides are marine fungal metabolites

(Shigemori et al., 1991) reported to induce the synthesis and se-

cretion of NGF (Yamaguchi et al., 1993) from cultured brain cells

and fibroblasts. Thus, fellutamide B might be considered an

‘‘indirect neurotrophin,’’ in much the same manner as a drug such

as reserpine, which triggers the release of norepinephrine from

presynaptic vesicles, is considered an indirect adrenergic ago-

nist. An indirect neurotrophic small molecule is likely to reap

the combined benefits of easier CNS access and the ultimate

therapeutic effects of the induced endogenous proteins. We re-

cently reported the first total synthesis of fellutamide B (Schnee-

kloth et al., 2006). Here, we explore the mechanism by which fell-

utamide B exerts its neurotrophin-inducing effect. We show that

fellutamide B potently inhibits the 20S proteasome, leading to

increased NGF gene expression and secretion.

RESULTS

Functional and Structural Evidence of Proteasome
Inhibition by Fellutamide B
Given the similarity in chemical structure between fellutamide B

and peptide aldehyde proteasome inhibitors (as exemplified by
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Figure 1. Inhibition of Proteasome Activities by Fellutamide B and Other Inhibitors

(A) Chemical structures of fellutamide B and the known peptide-aldehyde proteasome inhibitor, MG132. Their respective active aldehyde groups are boxed

in red.

(B) Fellutamide B inhibits the chymotryptic-like, the tryptic-like, and the caspase-like activities of the mammalian proteasome. Proteolytic reactions were initiated

by addition of proteasomes to premixed substrate and inhibitor. Results presented are the mean ± standard error of three independent experiments.

(C) Potency of fellutamide B versus other proteasome inhibitors to inhibit chymotryptic-like activity of mammalian proteasome. Proteolytic reactions were initiated

by addition of proteasomes to premixed substrate and inhibitor. Results presented are the mean ± standard error of three independent experiments.

(D) Fellutamide B treatment causes accumulation of ubiquitinated proteins in vivo similar to other proteasome inhibitors (top panel). L-M cells were treated for 2 hr

with either 10 mM fellutamide B, 500 nM epoxomicin, 25 mM MG 132, or 0.1% DMSO (vehicle control); corresponding a-tubulin levels (bottom panel).
MG132; Figure 1A), we investigated whether fellutamide B could

inhibit the three hydrolytic activities of the 20S proteasome. As

shown in Figure 1B, fellutamide B potently inhibits the chymo-

tryptic-like activity with an IC50 of 9.4 ± 2.5 nM. The tryptic-like

and caspase-like activities were also inhibited by fellutamide

B, albeit less potently (2.0 ± 0.4 mM and 1.2 ± 0.8 mM, respec-

tively). The potency of fellutamide B against the chymotryptic-

like activity was, in fact, greater than that of the peptide aldehyde

inhibitor MG132 (40 ± 3.3 nM) and approached the high potency

seen with the irreversible proteasome inhibitor (Meng et al.,

1999b) epoxomicin (5.7 ± 1.3 nM) (Figure 1C). As with the other

two established proteasome inhibitors, treatment of L-M mouse

fibroblasts with fellutamide B led to accumulation of ubiquiti-

nated proteins (Figure 1D), confirming its ability to inhibit the pro-

teasome in intact cells.

We next determined the crystal structure of the yeast 20S pro-

teasome in complex with fellutamide B to reveal its mechanism

of inhibition. The electron density was well defined in all active

sites, showing fellutamide B covalently bound to each active

site by a hemiacetal bond formed between its functional alde-

hyde group and the Thr1 g-oxygen (Figure 2A), similar to other
502 Chemistry & Biology 15, 501–512, May 2008 ª2008 Elsevier Ltd
aldehyde inhibitors, such as calpain inhibitor I, for which the

crystal structure is also well defined (Groll et al., 1997; Löwe

et al., 1995). However, the carbonyl-oxygen of the hemiacetal

formed by fellutamide B is hydrogen bridged to the Thr1 N termi-

nus (2.9 Å); this differs from the interaction between the carbonyl

oxygen of calpain inhibitor I and the backbone amide of Gly47

(Figure 2B). This difference is especially noteworthy because

previous data on aldehyde inhibitors had defined the backbone

amide of Gly47 as the stereotypical oxyanion hole stabilizing

the transition state intermediate by hydrogen bonding to the

carbonyl group of the peptide bond undergoing hydrolysis.

It is known that aldehydes act as proteasome inhibitors only if

they contain a peptide backbone that allows their stabilization at

the proteasomal active sites through formation of an antiparallel

b sheet structure. These interactions are necessary to increase

the mean residence time of the ligand at the active center. By

varying their peptide backbone, proteasome inhibitors sharing

the same reactive functional group show preference for certain

active sites (Myung et al., 2001). Compared with other aldehyde

proteasome inhibitors, fellutamide B also contains an extended

b-hydroxy aliphatic tail. Surprisingly, the whole aliphatic tail,
All rights reserved
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Figure 2. Structural Data of Fellutamide

B Cocrystallized with S. cerevisiae 20S

Proteasome

(A) Fellutamide B (yellow) bound to the chymotryp-

tic-like subunit (b5) of the proteasome (space filling

model).

(B) Distinct stabilization of hemiacetal carbonyl-

oxygen (red) of fellutamide B (green) by Thr1

versus that of calpain inhibitor I (yellow) by Gly47.

The chymotryptic-like subunit is gray, and the

hemiacetal bond itself is pink. The inhibitor hydro-

gen-bonding elements within the chymotryptic-

like subunit—Thr1 and Gly47—are colored black.

(C) Different, subunit-specific orientations of the al-

iphatic tail of fellutamide B. Fellutamide B is

colored green, yellow, and blue, when bound to

the chymotryptic-like (b5), tryptic-like (b1), and cas-

pase-like (b2) proteasomal subunits, respectively.

(D) Electron density diagram showing fellutamide

B (green) interacting with designated residues

(black) along the specificity pocket of the chymo-

tryptic-like active site of the proteasome.
which shows high flexibility in solution, has well-defined elec-

tron density at all proteolytic active sites. This stands in contrast

to synthetic long-chain aldehyde inhibitors, which are structur-

ally ordered only in their first three residues (Loidl et al., 1999).

Interestingly, structural superposition of fellutamide B bound

to the proteolytic active sites indicates that, although the pep-

tide backbone adopts similar conformations, the orientation of

the aliphatic tail differs completely (Figure 2C). In particular,

and uniquely at the chymotryptic-like subunit, C24 to C29 of

the fellutamide B aliphatic tail (Figure 1A) interact with a hydro-

phobic groove through van der Waals forces with protein resi-

dues Pro95, Tyr96, Pro115, and Val116 of subunit b6 (Figure 2D).

Interestingly, the hydrophobic groove to which the aliphatic tail

is bound is formed only during ligand binding, following con-

certed movements of the aliphatic tail and protein side chain

residues.
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Neurotrophic Effects of Fellutamide B and Other
Proteasome Inhibitors on Mammalian Cells
Fellutamide B induces NGF secretion from a number of cells that

previously have been used as models to study NGF synthesis

and secretion (Table 1). All five of these cell lines (L-M, NIH

3T3, S-180, A172, and C6-2B cells) responded to 10 mM felluta-

mide B treatment by up-regulating NGF secretion, as detected

by ELISA of culture medium. L-M cells secreted the most NGF

overall and also exhibited the most robust response to the

drug, a 16.8-fold average induction, whereas NIH 3T3 cells

also responded to fellutamide B with an average 15.8-fold in-

crease in NGF secretion. S-180 sarcoma cells increased NGF

secretion by only 4.0-fold, although perhaps these tumor cells

by their very nature are already operating at nearly their maxi-

mum capacity to produce this neurotrophin. By comparison,

the two glial-derived cell lines, A172 and C6-2B, secreted NGF
Table 1. Biological Activities of Fellutamide B at Various Cell Lines

Cell Line Tissue Type

NGF secretion:

vehicle-treated

(0.1% DMSO)

NGF secretion: 10 mM

fellutamide B-treated

Growth Arrest

([3H]-thymidine) IC50

Cytotoxicity (MTS

conversion) IC50

S180 Sarcoma 1.1 ± 0.4 ng/ml 4.5 ± 1.5 ng/ml 3.39 ± 0.59 mM 4.12 ± 0.34 mM

NIH 3T3 Fibroblast 0.3 ± 0.2 ng/ml 4.7 ± 2.0 ng/ml 3.40 ± 0.79 mM 4.62 ± 0.44 mM

L-M Fibroblast 3.0 ± 1.6 ng/ml 50.3 ± 14.9 ng/ml 397 ± 44.9 nM 2.24 ± 0.28 mM

A172 Glioblastoma 19.4 ± 4.7 pg/ml 95.9 ± 35.8 pg/ml 347 ± 59.1 nM 852 ± 77.5 nM

C6-2B Glioma 9.4 ± 4.4 pg/ml 61.7 ± 29.1 pg/ml 473 ± 143 nM 1.52 ± 0.25 mM

KB Epidermoid carcinoma None detected None detected 257 ± 46.1 nM 342 ± 82.8 nM

P-388 Leukemia None detected None detected 4.26 ± 0.85 mM 7.80 ± 1.9 mM

PC12 Pheochromocytoma None detected None detected 403 ± 19.9 nM 565 ± 106 nM

Fellutamide B treatment was for 24 hr, and values reported are the mean ± standard error of at least three independent experimental determinations.
y 15, 501–512, May 2008 ª2008 Elsevier Ltd All rights reserved 503
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Figure 3. Treatment of L-M Cells with Fellutamide B or Other Proteasome Inhibitors Induces Secretion of NGF

(A) Fellutamide B treatment for 24 hr induces dose-dependent secretion of NGF from L-M cells.

(B) Cytotoxicity of 24 hr fellutamide B treatment against L-M cells.

(C) Effectiveness of short (‘‘pulse’’) fellutamide B treatments to induce NGF up-regulation in L-M cells.

(D) Cytotoxicity of short (‘‘pulse’’) fellutamide B treatments against L-M cells.

(E) Epoxomicin induces secretion of NGF from L-M cells.

(F) MG132 induces secretion of NGF from L-M cells. Data presented are the means ± standard deviation of three independent experiments.

(G) Conditioned medium from L-M cells treated with proteasome inhibitors causes differentiation of preneuronal PC12 cells. Representative images presented of

PC12 cells in conditioned medium from vehicle (0.1% DMSO)-treated L-M cells; from 10 mM fellutamide B-treated L-M cells; and from 250 nM epoxomicin-

treated L-M cells.
on a much smaller scale; however, both responded to felluta-

mide B by increasing their NGF production by 4.9-fold and 6.6-

fold, respectively. Not every cell type tested responded to fellu-

tamide B. KB epidermal carcinoma cells and P-388 leukemia

cells were used in the original report on the discovery of this

small molecule (Shigemori et al., 1991). Both failed to show a re-

sponse to the drug in terms of NGF secretion, despite their re-

ported sensitivity to the growth inhibitory effects of fellutamide

B. Likewise, the preneuronal cell line PC-12 (rat pheochromocy-

toma), which can differentiate into a neuronal phenotype in the

presence of NGF (Obin et al., 1999), also failed to show detect-

able NGF secretion in the presence of fellutamide B by either

ELISA (Table 1) or neurite outgrowth (unpublished data). Felluta-

mide B causes cell cycle arrest (measured by [3H]-thymidine in-

corporation into cellular DNA) in all the cell lines on which it was
504 Chemistry & Biology 15, 501–512, May 2008 ª2008 Elsevier Ltd
tested (Table 1). In most cell lines, this growth arrest resulted

from the cytoxicity of fellutamide B (measured by MTS conver-

sion by active mitochondria in Table 1), although in a few in-

stances—L-M cells and, to a lesser extent, C6-2B and A172

cells—the IC50 for growth arrest was lower than that observed

for cytotoxicity. Thus, although the growth inhibitory/cytotoxic

activity of fellutamide B appears to affect all cells, its activity to

elicit NGF up-regulation is restricted to a subset of cell types.

Because L-M cells displayed the most robust NGF response,

this cell line was selected for further analysis of fellutamide B

activities: as shown in Figure 3A, the potency with which felluta-

mide B induces NGF in L-M cells is similar to its cytotoxicity in

MTS conversion assay (Figure 3B). The bond formed between

proteasome catalytic subunits and peptide aldehyde inhibitors

such as fellutamide B is reversible. Thus, it was hypothesized
All rights reserved
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that a brief administration of fellutamide B for a few hours

(a ‘‘pulse’’) followed by a drug-free ‘‘recovery’’ interval—rather

than a continuous 24 hr fellutamide B treatment—might result

in significant NGF induction with reduced cytotoxicity, com-

pared with continuous drug treatment. It was found that 7 hr

pulse of 10 mM fellutamide B was sufficient to elicit 90% of the

maximal NGF up-regulation that had been induced by 24 hr of

continuous treatment (Figure 3C). However, the reduction in

cell viability (Figure 3D) associated with the 7 hr pulse was only

35.0%, which was markedly reduced, compared with the

60.0% reduction seen with the continuous 24 hr treatment.

Thus, although an exclusively neurotrophic and nontoxic con-

centration of fellutamide B was not apparent, the two activities

of fellutamide B can yet be largely dissociated from each other

by the proper duration of treatment.

Having now confirmed the NGF-inducing activity of felluta-

mide B and having also shown it to be a proteasome inhibitor,

we tested whether this NGF-inducing activity could be general-

ized to other proteasome inhibitors. Similar to fellutamide B,

the established proteasome inhibitors epoxomicin and MG132

triggered NGF up-regulation in the L-M cells with EC50 values

of 127 ± 13.4 nM and 11.8 ± 3.7 mM, respectively (Figures 3E

and 3F). This finding confirms that proteasome inhibition is the

key activity of fellutamide B, because epoxomicin is a highly spe-

cific inhibitor of the proteasome that does not inhibit other prote-

ases. Although we observed that fellutamide B and the other pro-

teasome inhibitors induced up-regulation of NGF less potently

than they inhibited the purified proteasomes, this finding is likely

the result of the inherent differences between the two assays. In-

tact cells were required in the NGF secretion assay and in the

anti-ubiquitin Western blots in Figure 1D; thus, such factors as

membrane permeation, drug-efflux pumps (e.g., P-glycopro-

tein), and deubiquitinases that often reduce the apparent

potency of these drugs would have attenuating effects. Such

factors are absent from our measurements on the purified

proteasome activity, which cannot be accurately, specifically

made in intact cells because of the interfering presence of free

proteases. Nevertheless, the rank order potency with which

these compounds induce NGF secretion corresponds to their

rank order potency for inhibiting the proteasomal chymotryp-

tic-like activity. The biological activity of the secreted NGF was

confirmed by incubating undifferentiated PC12 cells in medium

that had been conditioned by fellutamide B- or epoxomicin-

treated L-M cells. PC12 neurite outgrowth was readily observ-

able after incubation for only 24 hr (data not shown) and was

pronounced after incubation for 48 hr in conditioned medium

(Figure 3G).

Given the cytotoxicity accompanying fellutamide B treatment,

the question remained whether NGF induction was a conse-

quence of proteasome inhibition specifically or rather a response

to general cytotoxic insult. To answer this question, L-M cells

were separately exposed (Figure 4A) to three different toxic

treatments: (1) a combination of veratridine and ouabain, to col-

lapse the membrane potential; (2) a combination of cytochalasin

D and myoseverin, to destroy the cytoskeleton; and (3) epoxomi-

cin, a structurally dissimilar proteasome inhibitor. In the case of

fellutamide B and epoxomicin, these agent(s) induced the forma-

tion of long cell processes that, in the past, had been misinter-

preted as neurites (Fenteany et al., 1994) when observed on
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neuronal cell lines. All treatments were comparably cytotoxic,

as measured by MTS conversion assay (Figure 4C), which West-

ern blotting for cleavage of the caspase 3 substrate PARP (Fig-

ure 4B) showed was due to apoptotic cell death. However,

only fellutamide B and epoxomicin triggered up-regulation of

NGF (Figure 4D). Thus, the neurotrophic effects of fellutamide

B appear to be a specific consequence of proteasome inhibition

rather than a cellular response to general cytotoxicity.

Up-Regulation of NGF Occurs by Induction of Gene
Transcription from both NGF Promoters
To provide further mechanistic insight into proteasome inhibitor-

induced NGF up-regulation, we next examined the effect of

fellutamide B on NGF gene transcription. Specifically, the levels

of NGF mRNA from fellutamide B- versus vehicle-treated cells

were measured using RT-PCR. These results (Figure 5A)

showed a robust up-regulation of NGF mRNA in response to

the proteasome inhibitor, whereas measurements of the house-

keeping transcript GAPDH showed no drug-associated changes.

There are, in fact, two known promoters for the NGF gene (Racke

et al., 1996): one upstream of the first exon, and another that

lies between exons 2 and 3, with the entire protein-coding region

located in exon 4. The mRNAs produced from the two NGF pro-

moters can be distinguished by their differentially retained

exons. Our RT-PCR results show that NGF mRNA transcripts

from both known promoters are strongly up-regulated following

fellutamide B treatment (Figure 5A); note that two mRNA tran-

scripts of slightly different sizes are detected from the upstream

promoter, as described elsewhere (Racke et al., 1996). The

magnitude of this increase in NGF mRNA following proteasome

inhibitor treatment may be sufficient to account for the increases

in NGF at the protein level. To confirm that the up-regulation of

NGF was due to NGF mRNA transcription, a time course of

fellutamide-triggered NGF induction in both the absence and

presence of the RNA polymerase II inhibitor, a-amanitin, was

performed. Following 12 hr of continuous fellutamide B treat-

ment, the levels of secreted NGF began to increase (Figure 5B);

this increase was completely blocked at all times by the pres-

ence of a-amanitin. This result is consistent with up-regulation

due to de novo NGF mRNA synthesis upon fellutamide B admin-

istration and rules out any independent role for posttranslational

up-regulation of NGF secretion. A parallel MTS assay showed

conclusively that the inhibition of NGF up-regulation by a-

amanitin cannot be attributed to additive cytotoxicity in combi-

nation with fellutamide B, because there was none (Figure 5C).

Furthermore, measurements of NGF mRNA stability in the

absence or presence of fellutamide B (Figure 5D) showed no

differences in rate of decay, demonstrating that up-regulation

of NGF mRNA in response to the small molecule was due only

to enhanced transcription and not to diminished transcript

degradation.

To focus on the region(s) of the NGF promoter mediating the

transcriptional activation response to proteasome inhibitors,

we subcloned the entire 5 kb mouse NGF promoter (D’Mello

and Heinrich, 1991), including the first 120 bp downstream of

the transcription start site (defined as position +1) into a promo-

terless firefly luciferase plasmid for gene reporter assays.

Upstream regions of the NGF promoter were progressively

removed to create plasmids (Figure 6A), which were stably
15, 501–512, May 2008 ª2008 Elsevier Ltd All rights reserved 505
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Figure 4. Secretion of NGF Is Not a Response to General Cytotoxicity

(A) Morphological changes to L-M cells in response to 24 hr treatment with depicted toxins (representative images presented).

(B) MTS conversion assay of L-M cells treated overnight with indicated toxins.

(C) Fellutamide B and other toxins trigger apoptotic cleavage of poly(ADP-ribose)polymerase (treatment for 24 hr).

(D) ELISA measurements of secreted NGF from L-M cells treated overnight with indicated toxins. Data presented are the means ± standard deviation of three

independent experiments.
transfected into cells, along with SV40 early promoter-driven re-

nilla luciferase coreporter, and were tested for the ability of fell-

utamide B to induce firefly luciferase activity (Figure 6B). To en-

sure that any effects on reporter expression or regulation arising

from differing genomic integration points would be balanced

among the different reporter transfectants, pools of stably trans-

fected clones for each reporter were used. The full 5 kb NGF pro-

moter (�5000 bp) was responsive to fellutamide B, showing

a nearly 6-fold induction of luciferase activity. Although trunca-

tion of the promoter down to 1.8 kb (�1800 bp) increased overall

luciferase transcription (basal and drug induced), the level of in-

duction by fellutamide B remained approximately the same. Fur-

ther truncation of the promoter down to 750 bp (�750 bp) and

then to 250 bp (�250 bp) continued the trend of increasing over-
506 Chemistry & Biology 15, 501–512, May 2008 ª2008 Elsevier Ltd
all luciferase transcription, indicating the removal of postulated

gene suppressive elements from the promoter (D’Mello and

Heinrich, 1991). However, these reporters were still responsive

to fellutamide B and showed increased luciferase activity in its

presence. Given the importance of the AP-1 site at position

+35 in mediating the stimulatory effects of phorbol esters

(Omae et al., 1994) and dihydroxyvitamin D3 (Veenstra et al.,

1998) on NGF synthesis, and the fact that fellutamide B treat-

ment causes the stabilization and activation of c-Jun (authors’

unpublished data), we tested whether this AP-1 site is also cru-

cial for the effects of proteasome inhibitors. Reporter vectors

were constructed lacking the AP-1 site (�1800 w/o AP-1;

�750 w/o AP-1; and �250 w/o AP-1), but assays on cells trans-

fected with these constructs continued to show increased
All rights reserved
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Figure 5. Proteasome Inhibition Causes Up-Regulation of NGF Gene Transcription

(A) RT-PCR for NGF and GAPDH transcripts from extracted mRNA from 24 hr fellutamide B-treated and untreated cells: total NGF mRNA (top left), GAPDH (bot-

tom left), NGF mRNA transcribed from upstream promoter (top, right), and NGF mRNA transcribed from downstream promoter (bottom, right). Representative

results shown.

(B) Blockade of RNA polymerase II with a-amanitin (20 mg/ml) abolishes up-regulation of NGF secretion by fellutamide B (10 mM). White bars correspond to control

cells, black bars to fellutamide B-treated cells, and gray bars to fellutamide B plus a-amanitin-treated cells. Data presented are the means ± standard deviation of

three independent experiments.

(C) a-Amanitin and fellutamide B cotreatment does not result in additive cytotoxicity to L-M cells. Colored bars represent the same drug treatment as in (B). Data

presented are the means ± standard deviation of three independent experiments.

(D) Up-regulation of NGF mRNA levels by fellutamide B does not involve enhanced stabilization of NGF mRNA transcripts. RT-PCR was performed on mRNA

isolated from L-M cells treated with a-amanitin (20 mg/ml) and maintained with or without 10 mM fellutamide B for the times indicated. A representative time-

dependent decay of NGF mRNA from vehicle-treated (top panel) and fellutamide B-treated (bottom panel) cells is shown.
luciferase activity in response to fellutamide B, although removal

of the AP-1 site had a diminishing effect on overall luciferase

transcription. Truncation of the promoter down to 150 bp re-

tained fellutamide B responsiveness, indicating that the cis-act-

ing element or elements lie close to the transcription start site.

Epoxomicin, MG 132, and clasto-lactacystin b-lactone all in-

duced luciferase (Figure 6C) from this minimal reporter plasmid,

verifying that this region of the NGF promoter was responsive to

proteasome inhibitors other than fellutamide B.

DISCUSSION

Our finding that proteasome inhibition leads to the production

and secretion of NGF reveals another potential therapeutic utility

of this class of small molecules. Proteasome inhibitors have
Chemistry & Biology
already been identified as candidate anti-inflammatory (Meng

et al., 1999b) and antitumor drugs (Meng et al., 1999a). They

have also been implicated in stimulating bone formation (Garrett

et al., 2003), the treatment of stroke (Phillips et al., 2000), and as

antiparasitic agents (Lindenthal et al., 2005). Although protea-

some inhibition can lead to cytotoxicity, therapeutic windows

have been established that nonetheless permit their use clini-

cally. Indeed, although continuous 24 hr treatment of the cells

with fellutamide B resulted in maximum NGF up-regulation and

toxicity, pulse treatment with fellutamide B for only 7 hr followed

by a 17 hr recovery interval resulted in a nearly equivalent induc-

tion of NGF with markedly reduced toxicity. The separation of

these two activities of fellutamide B—and, by extension, other

reversible proteasome inhibitors—is an important step in their

development as potential neurotrophic therapeutics. This is
15, 501–512, May 2008 ª2008 Elsevier Ltd All rights reserved 507
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Figure 6. A cis-Acting Element Within the NGF Promoter Is Induced by Proteasome Inhibitors

(A) Schematic of NGF promoter-driven luciferase reporters. White regions represent the NGF promoter and black regions represents firefly luciferase gene (not

to scale).

(B) Fellutamide activates a cis-acting element adjacent to the transcription start site. Data presented are NGF promoter-driven firefly luciferase reporter activity

normalized to SV40 early promoter-driven renilla luciferase coreporter. Results are the mean ± standard error of 3 to 5 independent experiments.

(C) Proteasome inhibitors other than fellutamide B induce via the same cis-acting element in the NGF promoter. Cells were stably transfected with the luciferase

reporter driven by the 150 bp upstream of the transcription start site in the NGF promoter (i.e., ‘‘�150 bp w/o AP1’’). Results are the mean ± standard error of 3 to 5

independent experiments.
less of a concern with fellutamide B than it will be with other pro-

teasome inhibitors: epoxomicin was the most potent inducer of

NGF but was also the most potently cytotoxic. This greater tox-

icity is almost certainly attributable to the fact that epoxomicin,

unlike fellutamide B and MG132, irreversibly inhibits the protea-

some, which placed an upper limit on the epoxomicin concentra-

tions that could be used on whole cells (e.g., Figures 1D and 3E)

and still produce the biological effect without killing them first.

This irreversible inhibition by epoxomicin ultimately makes it un-

suitable for the same pulse treatments that reduced the toxicity

of fellutamide B.

Application of such proteasome inhibitors as MG132 to trans-

ected axons significantly delays the onset of Wallerian degener-

ation (Zhai et al., 2003), both in vitro and in vivo. Given that per-

sistent activation of erk1/2 (MacInnis and Campenot, 2005),

a known downstream effector of NGF receptors, was also ob-

served in these studies, it is possible that the degeneration

was delayed by proteasome inhibitor-triggered up-regulation
508 Chemistry & Biology 15, 501–512, May 2008 ª2008 Elsevier Ltd
of NGF. The ability of some proteasome inhibitors to spur ‘‘neu-

rite outgrowth’’ from preneuronal cells has been reported many

times (Fenteany et al., 1994; Inoue et al., 2004); however, this ef-

fect is not specific to preneuronal cells and has been shown to

also occur in endothelial cells (Meng et al., 1999a) and, in the

present study, in L-M fibroblasts (Figure 4A). Straight et al.

(2003) have reported that proteasome inhibitors arrest dividing

cells in cytokinesis, which may be the basis for the spindle-like

morphology seen in treated cells. Thus, it is perhaps more accu-

rate to describe this proteasome inhibitor effect as a general

induction of a bipolar cellular elongation, which, in preneuronal

cells, was misinterpreted as ‘‘neurites.’’ However, NGF induction

by proteasome inhibition is a process that should elicit neuronal

differentiation, maintenance, and neuroprotection, because it

up-regulates the natural neurotrophin. Further evidence for the

independence of proteasome inhibitor-triggered process exten-

sion from NGF secretion is that fellutamide B failed to trigger the

latter in PC12 cells (data not shown), a system in which neurite
All rights reserved
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extension following proteasome inhibition has been studied

extensively.

The structural data from the cocrystallization of fellutamide B

with the 20S proteasome reveal some interesting and unex-

pected insights into how inhibition is achieved. The data illustrate

the possibility of two different hemiacetal adduct enantiomers

(R,S) formed by peptide aldehyde inhibitors: (1) the customary

adduct with the planar aldehyde group oxygen atom pointing

into the oxyanion hole formed by Gly47-N, or, as now seen

with fellutamide B, (2) an alternative orientation of the aldehyde

group oxygen toward Thr1-NH. Although hydrogen bonding be-

tween the Thr1-N terminus and the active group of a small mol-

ecule inhibitor has been observed for other classes of inhibitors

(e.g., b-lactones; Borissenko and Groll, 2007), it is nonetheless

an unexpected finding for a peptide aldehyde proteasomal inhib-

itor that either orientiation can and will stabilize the hemiacetal

oxygen atom and thereby block catalytic activity (Borissenko

and Groll, 2007; Groll et al., 1997; Löwe et al., 1995). In addition

to the binding of fellutamide B’s P1 and P3 side chains to the

cognate S1 and S3 specificity pockets, the structural basis for

its preferential blockade of the chymotryptic-like active site

may also reside in the interaction of its distinctive aliphatic tail

with several residues in an adjacent hydrophobic groove. The al-

iphatic tail adopts dissimilar conformations when bound to the

tryptic-like and caspase-like active sites, such that the stabiliza-

tion of the aliphatic tail to the hydrophobic groove is peculiar to

the chymotryptic-like active site. This may contribute signifi-

cantly to the tighter binding of fellutamide B to that subunit,

translating into the observed 200- to 400-fold greater potency

to inhibit this activity (Figure 1B).

An earlier study (Yamaguchi et al., 1993) had shown decreas-

ing NGF secretion triggered by a maximum dose of fellutamide in

the presence of ever-increasing concentrations of actinomycin

D. This finding raised two possibilities: either the increasing,

combined cytotoxicity from blockade of both the proteasome

and transcription killed the cells before NGF could be produced,

or de novo NGF mRNA transcription is a necessary element in

the mechanism of fellutamide. We have, in fact, observed that

fellutamide B and other proteasome inhibitors exert a biphasic

effect on NGF secretion, increasing it until a critical concentra-

tion of proteasome inhibitor is reached, after which further in-

creases become overwhelmingly toxic and NGF secretion dimin-

ishes. Thus, a more rigorous examination of the involvement of

mRNA up-regulation in the effect of fellutamide B seemed partic-

ularly compelling. The data here show conclusively that in-

creased transcription of NGF mRNA is, indeed, necessary; in

fact, the increase in NGF mRNA following fellutamide B treat-

ment was so dramatic that it recommended that up-regulation

occurs exclusively at the mRNA level. This increase in NGF

mRNA involves activation of both known promoter regions for

the NGF gene, which is consistent with an earlier report implying

coordinate regulation of these two promoters (Racke et al.,

1996). Because the ultimate NGF protein products from these

two promoters are believed to be biologically equivalent, the

combined effect of proteasome inhibition would be that much

greater.

Although our own RT-PCR results clearly showed that NGF

mRNA was being up-regulated by fellutamide B, it was possible

that either degradation of the transcripts had been attenuated or
Chemistry & Biology
their synthesis had been stimulated, or some combination of

both. The blockade of the neurotrophic response to fellutamide

B by a-amanitin suggested transcriptional activation of the

NGF gene and ruled out the possibility that increased NGF se-

cretion could be largely posttranslational (i.e., NGF protein traf-

ficking). Still, it did not eliminate the possibility that stabilization

of NGF mRNA contributed to the transcript up-regulation. Only

after showing that the decay of NGF mRNA remains the same

in the presence or absence of fellutamide B could we unambig-

uously conclude that transcriptional activation of the NGF gene

is the sole mechanism for increased production of the protein.

Furthermore, we were able to narrow the region of the NGF pro-

moter crucial for transcriptional activation down to within 150 bp

of the transcription start site and rule out participation of an

important AP-1 site at position +35.

Changes in levels of other proteins besides NGF are to be ex-

pected following treatment with proteasome inhibitors, which is

why these small molecules have therapeutic value for treating

many disease states. However, the broad effects of these small

molecules can also lead to potential limitations on their useful-

ness. For example, some uncertainty exists regarding the stabi-

lizing effect of proteasome inhibition on cytoplasmic levels of the

noninfectious form of the prion protein, PrPC. Although transmis-

sion of prion disease states depends on the presence of the mis-

folded ‘‘scrapie’’ form of the protein (PrPSc), Ma and Lindquist

(2001) reported that accumulation of PrPC following proteasome

inhibition can itself result in neuronal toxicity. Although subse-

quent reports (Fioriti et al., 2005; Kristiansen et al., 2005; Roucou

et al., 2003) strongly dispute the neurotoxic effect of elevated cy-

toplasmic PrPC, the effects of proteasome inhibitors on protein

levels other than NGF need to be carefully considered as their

potential for neuronal therapeutics is evaluated. Separating the

toxic effect of fellutamide B and other proteasome inhibitors

from their NGF-inducing properties is a crucial barrier toward

their ultimate development for any clinical use, neurotrophic or

otherwise. Although it was demonstrated that toxicity is not

a precondition for up-regulating NGF from the cell types tested,

toxicity is a side effect of proteasome inhibitors. There are, how-

ever, reasons to believe that these two activities of fellutamide B

are independent. For instance, not every cell tested herein re-

sponded to fellutamide B by up-regulating NGF, but all the cells

tested were sensitive to the cytotoxic effect of the proteasome

inhibitor. In addition, the aforementioned pulse-recovery strat-

egy of administering fellutamide B produced nearly maximum

NGF up-regulation with attenuated toxicity. Moreover, the

dose-response relationship of fellutamide B cytotoxicity clearly

differs from that of NGF induction in that the latter reaches max-

imum efficacy over a more narrow concentration range. As

shown in Figure 3B, the Hill slope for fellutamide B cytotoxicity

fits to unity, whereas that for its NGF induction (as well as

MG132 and epoxomicin) is 3.5 (as shown in Figures 3A, 3E,

and 3F). Although the molecular basis for this pharmacodynamic

difference is not known, it suggests the possibilities of positive

cooperativity or other positive feedback mechanism in the up-

regulation of NGF by fellutamide B or the activation of multiple

cis-elements over a narrow concentration range of fellutamide

B (non-first order induction); this is not seen with cytotoxicity.

Because the blockade of the proteasome affects the levels of

multiple proteins within the cell, it is reasonable to hypothesize
15, 501–512, May 2008 ª2008 Elsevier Ltd All rights reserved 509
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that the protein(s) that cause up-regulation of NGF production

will be different from those that mediate the toxic effect. Thus,

maximum NGF induction can be achieved at proteasome inhib-

itor conditions that do not elicit maximum toxicity.

It is encouraging that fellutamide B exerts its effects on both

glial and fibroblast cells. In terms of therapeutic potential,

a broader tissue effect would enable proteasomal inhibition to

treat both peripheral nerve injury, where fibroblasts would be

the predominant cell type to secrete the trophic factors, as well

as neurodegeneration in the brain, where glial cells are more

plentiful. Moreover, because many neurotrophins appear to be

coordinately regulated in the CNS (Maisonpierre et al., 1990;

Takeda et al., 1993), the possibility that proteasome inhibition

might have a similar trophic effect on other neurotrophins (e.g.,

NT-3 or BDNF) is an interesting possibility that remains to be

investigated.

SIGNIFICANCE

There is great interest in the fields of neuroscience and

chemical biology to identify compounds that either trigger

neuronal differentiation and survival or induce neurotrophin

expression. Such compounds would have great therapeutic

potential for the treatment of neuronal injury or neurodegen-

erative diseases. Although reports that identify such com-

pounds from library screens or natural sources are increas-

ing in frequency, none of these emerging studies has

identified a protein receptor or mechanism of action to

which the neurotrophic activity can be ascribed. We report

here that fellutamide B, one of the earliest compounds iden-

tified to have neurotrophin-inducing activity, does so by

binding to and inhibiting the 20S proteasome. Although the

manner in which fellutamide B binds to the proteasome is

distinct from other peptide aldehyde inhibitors, its ability to

up-regulate NGF is shared not only by other peptide alde-

hydes, but also by other mechanistically different classes

of proteasome inhibitors. Proteasome inhibitors and NGF

administration are known to attenuate Wallerian axonal de-

generation, and our results now suggest a direct connection

between these two neuroprotective approaches.

The proteasome has previously been targeted in the treat-

ment of cancer, inflammation, and stroke. Here, we have

identified another potential medical application for protea-

some inhibitors, some of which are already in clinical trials.

With the demonstrated efficacy of neurotrophins to alleviate

symptoms of neurodegenerative diseases, fellutamide B

and other proteasome inhibitors deserve further attention

as potential neuronal therapeutics.

EXPERIMENTAL PROCEDURES

Reagents

Fellutamide B (Schneekloth et al., 2006) and epoxomicin (Sin et al., 1999) were

synthesized as described elsewhere. MG 132, myoseverin, cytochalasin D,

clasto-lactacystin b-lactone, and a-amanitin were purchased from Calbio-

chem (La Jolla, CA). Veratridine and ouabain were obtained from Sigma

(St. Louis, MO). Fluorogenic substrate peptides for proteasome activity assay

were from Bachem Bioscience (King of Prussia, PA). Purified human 20S

proteasome were purchased from Boston Biochemical (Cambridge, MA).
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Cell Culture

C6-2B cells were a generous gift from Satya Kunapuli (Temple University, Phil-

adelphia, PA), and PC12 cells were a gift from Randy Pittman (University of

Pennsylvania, Philadelphia, PA); all other cell lines were purchased from

ATCC (Manassas, VA). Undifferentiated PC12 cells were grown in RPMI

1640 medium supplemented with 10% heat-inactivated horse serum and

5% heat-inactivated fetal bovine serum. L-M mouse fibroblasts were cultured

in Medium 199 supplemented with 0.5% peptone. NIH 3T3, C6-2B, and A172

cells were grown in high-glucose Dulbecco’s Modified Eagle Medium supple-

mented with 10% heat-inactivated fetal bovine serum, and S-180 cells were

cultivated in minimal essential medium supplemented with Earle’s salts, 2 mM

glutamine, 1 mM sodium pyruvate, and 0.1 mM nonessential amino acids. All

culture media was supplemented with 100 units/ml penicillin G and 100 mg/ml

streptomycin sulfate.

Cytotoxicity Assay

Following drug treatment of cells as indicated, culture medium was supple-

mented with 330 mg/ml MTS (Promega Corp., Madison, WI) and 25 mM phen-

azine methosulfate and was incubated at 37�C. Mitochondrial reduction of

MTS to the formazan derivative was monitored by measuring the medium’s

absorbance at 490 nm.

Proliferation Assay

The proliferation assay was performed as described elsewhere (Yeh et al.,

2000). [3H]-thymidine was purchased from Perkin-Elmer Life Sciences

(Boston, MA).

Neurite Outgrowth Assay

L-M cells were treated with either 10 mM fellutamide B, 250 nM epoxomicin, or

vehicle control (0.1% DMSO) for 24 hr. Afterward, conditioned medium was

collected and dialyzed (MWCO = 10 kDa) against RPMI 1640 for 24 hr at

4�C. The dialyzed, conditioned medium was then supplemented with 2%

heat-inactivated horse serum and 1% heat-inactivated fetal bovine serum

and was applied to undifferentiated PC12 cells growing on collagen-covered

60 mm dishes. The development of neurites was monitored over the following

48 hr.

NGF ELISA

ELISA for NGF was performed in accordance with the kit manufacturer’s rec-

ommended instructions (Promega Corp., Madison, WI). Data were analyzed

using PRISM software (GraphPad Software, San Diego, CA).

Western Blotting

Western blotting was performed as described elsewhere (Meng et al., 1999a).

Protein samples were resolved by 8% SDS-PAGE, were transferred to nitro-

cellulose, and were probed with antibodies to ubiquitin (Cell Signaling Tech.,

Danvers, MA), a-tubulin (Sigma, St. Louis, MO), or PARP (Zymed Labs, San

Francisco, CA).

Proteasome Activity Assay

The proteasome activity assay was performed according to a method

described in detail elsewhere (Kim et al., 2005).

RT-PCR

mRNA was extracted from fellutamide B-treated and vehicle-treated L-M cells

using Trizol reagent. First-strand synthesis of cDNA was performed using Su-

perScript III first-strand synthesis kit (Invitrogen, Carlsbad, CA). PCR measure-

ments of NGF and GAPDH were performed using the following primers:

total NGF forward primer (50-GCAGTGAGGTGCATAGCGTA-30 );

upstream promoter-derived NGF forward primer (50-AGAGAGCGCCTGG

AGCCG-30);

downstream promoter-driven NGF forward primer (50-CTTCCTGGGCT

CTAATGATGC-30);

total NGF reverse primer (50-CACTGAGAACTCCCCCATGT-30);

GAPDH forward primer (50-AACTTTGGCATTGTGGAAGG-30 ); and

GAPDH reverse primer (50-ACACATTGGGGGTAGGAACA-30).
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PCRs were performed for 30 cycles using decreasing titrations of template

cDNA to verify changes (or lack thereof) in target abundance.

Cocrystallization of Fellutamide B and 20S Proteasome

Crystals of 20S proteasome from S. cerevisiae were grown in hanging drops at

24�C, as described elsewhere (Groll and Huber, 2005), and were incubated for

60 min with fellutamide B (10 mM in DMSO). The protein concentration used for

crystallization was 40 mg/ml in 10 mM Tris$HCl (pH 7.5) and 1 mM EDTA.

Drops contained 3 ml of protein and 2 ml of reservoir solution (30 mM magne-

sium acetate, 100 mM morpholino-ethane-sulphonic acid [MES] [pH 7.2],

and 10% 2-methyl-2,4-pentanediol [MPD]). The space group of proteasomal

complex crystals belongs to P21 with cell dimensions of a = 134.3 Å, b =

301.6 Å, c = 143.5 Å, and b = 112.7�. Data to 2.6 Å were collected using syn-

chrotron radiation with l = 1.05 Å at the X06SA-beamline at the Paul Scherrer

Institut, Swiss Light Source (Villingen, Switzerland). Crystals were soaked in

cryoprotecting buffer (30% MPD, 20 mM magnesium acetate, and 100 mM

MES [pH 6.9]) and were frozen in a stream of liquid nitrogen gas at 90 K (Oxford

Cryo Systems, Oxford, UK). X-ray intensities were evaluated using the DENZO

program package, and data reduction was performed with SCALEPACK (Ot-

winowski et al., 2003; Otwinowski and Minor, 1997). Anisotropy of diffraction

was corrected by an overall anisotropic temperature factor, comparing ob-

served and calculated structure amplitudes using the program CNS (Brünger

et al., 1998). A total of 796,875 reflections yielded 331,875 unique reflections

(98.7% completeness). The corresponding Rmerge was 6.6% at 2.6 Å resolution

(40.2% for the last resolution shell). Electron density was improved by averag-

ing and back-transforming reflections 10 times over the two-fold noncrystallo-

graphic symmetry axis using the program package MAIN (Turk, 1992). Con-

ventional crystallographic rigid body, positional, and temperature factor

refinements were performed with CNS using the yeast 20S proteasome struc-

ture as the starting model (Groll et al., 1997). For model building, the program

MAIN was used. The structure was refined to a crystallographic R factor of

24.0% (free R factor 26.5%; Brünger, 1993) with root-mean-square deviations

from target values of 0.007 Å for bonds and 1.37� for angles (Brünger, 1993).

Modeling experiments were performed using the coordinates of yeast 20S

proteasome (Groll et al., 1997) with the program MAIN.

Luciferase Reporter Promoter Activity Assay

Using primer-directed PCR, truncated versions of the previously cloned NGF

promoter were created and inserted into the promoterless luciferase expres-

sion vector pGL4 (Promega Corp.). Reporter constructs were then stably

transfected into NIH 3T3 cells using LipofecatAMINE 2000; pools of stably

transfected clones were used for the analysis of each reporter construct. The

stably transfected cells were tested for their ability to up-regulate luciferase ac-

tivity in response to proteasome inhibitors using the Dual Luciferase Reporter

Assay System (Promega Corp.). An SV40 early promoter-driven renilla lucifer-

ase construct (Promega Corp.) was used as a coreporter to normalize results.

ACCESSION NUMBERS

Atomic coordinates have been deposited in the RCSB Protein Data Bank

(http://www.rcsb.org/pdb) under the accession code 3D29 (yeast 20S protea-

some-fellutamide B complex).
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Kristiansen, M., Messenger, M.J., Klöhn, P.-C., Brandner, S., Wadsworth,

J.D.F., Collinge, J., and Tabrizi, S.J. (2005). Disease-related prion protein

forms aggresomes in neuronal cells leading to caspase activation and apopto-

sis. J. Biol. Chem. 280, 38851–38861.

Lapchak, P.A. (1993). Nerve growth factor pharmacology: application to the

treatment of choliergic neurodegeneration in Alzheimer’s disease. Exp. Neurol.

124, 16–20.

Liao, G.S., Li, X.B., Zhang, C.Y., Shu, Y.Y., and Tang, S.X. (2001). Pharmaco-

logical actions of nerve growth factor-transferrin conjugate on the central

nervous system. J. Nat. Toxins 10, 291–297.

Lindenthal, C., Weich, N., Chia, Y.S., Heussler, V., and Klinkert, M.Q. (2005).

The proteasome inhibitor MLN-273 blocks exoerythrocytic and erythrocytic

development of Plasmodium parasites. Parasitology 131, 37–44.

Loidl, G., Groll, M., Musiol, H.J., Huber, R., and Moroder, L. (1999). Bivalency

as a principle for proteasome inhibition. Proc. Natl. Acad. Sci. USA 96, 5418–

5422.
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