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Abstract
We consider the Cauchy problem for the damped wave equation with absorption
uir — Au+ur 4w’ lu=0, (@t x)eRy xRN,
The behavior ofi asr — oo is expected to be the same as that for the corresponding heat equation
¢ —Ap+1IP 19 =0, (1, x)eRy xR,

which has the similarity solutiorw, (z,x) with the form (=Y (=D r(x/\/7) depending ona =
lim |y o0 1¥1% P~ £(x) > 0 provided thatp is less than the Fuijita exponept(N) := 1+ 2/N. In
this paper, as a first step, ifd p < p.(N) and the datdug, u1)(x) decays exponentially ds| — oo
without smallness condition, the solution is shown to decay with rates-aso,

NI

w0 s, [Vuo)] 2) = 0("FTHE TP I T

N
(Ju®)] - 9, (%)

those of which seem to be reasonable, because the similarity soluienx) has the same decay rates

as &). For the proof, the weighteH2-energy method will be employed with suitable weight, similar to that

in Todorova and Yordanov [Y. Todorova, B. Yordanov, Critical exponent for a nonlinear wave equation with
damping, J. Differential Equations 174 (2001) 464—489].
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1. Introduction

We consider the Cauchy problem for the semilinear damped wave equation with absorption:

uy — Au+ur + ulPtu=0, (t,x)e 0, 00) xRY, (1.1)
(u,u:)(0, x) = (uo, u1)(x), xeRY, (1.2)
wherep > 1. When(ug, u1) € H! x L? and
N+2
1<p<N+2 (N =23, l<p<oo (N=1,2), (1.3)

there exists a unique solutiane C ([0, o0); HY) N C([0, 00); L?) (Strauss [31], Ginibre and

Velo [9], Brenner [1], Matsumura [24], Kawashima et al. [21], etc.). In [21] it is shown that, for

1< N3 if
4

14 N
— < <
N -P=NC

then the solutiom (¢, x) decays as

4
(N =3, 1~|—N<p<oo (N=1,2),

Jutt, )] =0 2G=2),  when(uo,up) € (H N L")(RY) x (L2n L") (RY)
1<r<2)

(for more details refer to [21]), whose rate is the same as that of solutions to the linear heat
equation. Based on [21], Karch [20] showed that the Gauss kernel is an asymptotic profile when
p>1+4/N with 1 < N < 3. Very recently, in Hayashi et al. [11] the asymptotic profile:of
for p > 14+ 2/N with N = 1 has been shown to be the Gauss kernel.

On the other hand, the global existence and blow-up of small weak solutions to the damped
wave equation with the forcing term

Uy — Au+u; = |ul? (1.4)
with (1.2) have been also investigated. Todorova and Yordanov [32] have shown that

2
pe(N) =1+ — (1.5)

is the critical exponent, which is called the Fujita exponent named after Fujita [6], in any dimen-
sional space satisfying <14+ 2/N (N > 3) andp < oo (N =1, 2). Refer to Zhang [33] for the
blow-up in the critical case, and Li and Zhou [22], Nishihara [27] for the blow-up time. See also
Ikehata et al. [18], Ikehata and Tanizawa [17], Ono [29,30], Gallay and Raugel [7,8], Karch [20],
and references therein for the global existence and its profile. Recently, the first author has shown
in [26] that the linear damped wave equation is approximated by the corresponding heat equation
in 3-dimensional space. He has precisely derivedithelL? estimate on the difference of each
solution. See also Marcati and Nishihara [23] in 1-dimensional space, Hosono and Ogawa [15] in
2-dimensional space and Narazaki [25] in general space dimension and Ikehata [16], Ikehata and
Nishihara [19], Chill and Haraux [3] in the abstract setting. These are applied to the semilinear
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problem (1.4) with (1.2). Note that the basic estimates on the solution to the linear damped wave
equation were obtained by Matsumura [24].

Summing up these results, the solution to the damped wave equation (1.4) is expected to have
similar behavior ag — oo as that to the corresponding heat equation

¢ — Ap = |$|”. (1.6)
In this paper, we consider decay properties of solutioinsx) to (1.1)—(1.2) when

2
1<p<pc(N)=1+N, (1.7)
whose decay rates should be related to the Cauchy problem for the semilinear heat equation
¢ — Ad +1pl"Tp =0, (1,x) € (0,00) x RY, (1.8)
$(0,x) =o(x), xeRN. (1.9)

For anyp > 1, (1.8) has a solutiow* (¢, x) := ((p — 1)r)~Y®=D_ For p satisfying (1.7), it
was proved by Brezis et al. [2] that there exists a family of positive self-similar solutigrs x)
such that

lim |x[%P Dy, t,x)=1a>0

|x]—00

exists. The solutiom, (z, x) has the form

Wwat, x) =t_1711f(%) (1.10)
with
ar =2 ety = oy (111)
p—1

We recall some results on the asymptotic behavior of solutions to (1.8)—(1.9) with (1.7). Gmira
and Véron [10] showed that ifg > 0, ¢o € LY(RY) and lim, | « |x|% P Dgo(x) = 400, then

lim 71 (¢(t,) —w*(t,-)) =0, uniformly on{x e RY; |x| < Cv/1}.
t—00
Escobedo and Kavian [4] proved that if

b0#0, 0<dox)<Ce P forsomes >0, C >0, (1.12)
then

lim ¢7T g (t, ) — wolt, )| oo =O. (1.13)
—00
Note thatwg(z, x) decays exponentially as| — +oo. When
. 2
doe LY(RY), ¢o#0, | |||m x| 7 Z¢o(x) =:a >0, (1.14)
X|—>00

it has been proved by Escobedo et al. [5] that, depending®0, the positive similarity solution
wy (¢, x) is uniquely determined and

tin;ozﬁ”(p(t,.)—wa(t,.)HLw =0. (1.15)
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From the observation in the above, our conjecture is that the solutiom) to (1.1)—(1.2) also
satisfies (1.15) if the dat@o, u1) satisfy the condition corresponding to (1.14).

In this paper, corresponding to Escobedo and Kavian [4], we show the decay properties of the
solutionu to (1.1)—(1.2), provided that

<Ce PP forp>0, C >0, (1.16)

but no smallness condition is assumed. To apply the weighfednergy method, we assume
that
12:= / PP (u2 4 |Vuol? + u3) (x) dx < +oo  for somep > 0 (1.17)
RN
in stead of (1.16). Denoting the solution spae@, T') by
X(0,7)=C([0,7); H*(RV)) n c*([0, T); L*(RY)),
we have our main theorem.
Theorem 1.1. Assume thal < p <1+ 2/(N—-2) (N >3),1 < p <oo (N =1,2) and that

(uo, u1) € HYRY) x LZ(RY) with (1.17) Then the solutiom(z, x) € X (0, c0) to (1.1)—(1.2)
uniquely exists, which satisfies fop 0,

Jut. 9] 2 < Clo@+0" 7144, Jut, )]y < Clo@+n 71T, (1.18)
IVue, | o+ a2 < <Clo(l+1) 717274 (1.19)

for some positive constant provided thatl < p <1+ 4/N.

Remark 1.1. In the supercritical case > p.(N), the asymptotic profile of the solutian is
expected to be the Gauss kergals, x), whoseL"-norm (1< r < oo0) decays agG(t, )||.r =

O(f%(lf%)). Hence, the decay rates (1.18)—(1.19) are less sharp, and so the subcritical case
(1.7) is mainly kept in mind.

Remark 1.2. The L"-norm (1< r < 00) of the similarity solutionw, decays as

_1 x \|" dx \¥" _ 1N
=t pl(/tN/z f<—) —) :C[ P*l+2’. (120)
LV
RN Vi

tN/2
Hence, in the subcritical case the decay rates (1.18)—(1.19) are sharplif-siemse. However,
compared to our goal (1.15), the results are dissatisfactory. We have

I<s< if N=1,

” wa(ts )

u, ')Hu = 0(;‘1%1*%) I1<s<oo fN=2, (1.21)
1<s< 2 ifN>3,

applying the Sobolev inequalityM = 1) and the Gagliardo and Nirenberg inequality £ 2) to
(1.18)—(1.19) and (2.9) in the next section, which will be derived after stating Theorem 2.1. Note
that Hayashi et al. [13] have recently obtained (1.15)fdatN) — ¢ < p < p.(N) (¢ is a small
positive constant) wittv = 1 and the small data with suitable positivity (see Hayashi et al. [12]
in the critical case). See also their quite recent paper [14] for large data.
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Notations. By C;,¢; (i =0,1,2,...) or simplyC we denote several generic constants. The con-
stant depending am, b, . . . is denoted byC (a, b, . ..). The Lebesgue spade (R") (respectively
Sobolev spacé&/” (R")) were already used with its norm

1q m 1/2
1/ 1l aqrry = ( / |f<x>|"dx) (respectivewum = (ZH o f| LZ(RN)> )
RN k=0

In particular, || f]| := || fl| .2~y = || fllo- The spaceR” of L4(RY) or the integrandR”™ will
be often abbreviated. For brevity (¢, -)||e = ([ |f(t, x)|9 dx)*4 will be written simply by
ILf@lLe, ete.

2. Proof of Theorem 1.1

In this section we shall prove Theorem 1.1 applying the weigtitténergy method. The
weight function is chosen as

2

W (t,x) . _ alxl
e ., withy (s, x) = O<a<lin>1 2.1
Y, x) n to)( 0 ) (2.1)

(latera is determined as/8), which is a modification of the weight introduced in Todorova and
Yordanov [32]. See also lkehata and Tanizawa [17]. The weight fungtieatisfies

__ _ax 2 _ a?)x|?
Vlﬂ_mv |V1ﬁ| _4(t+t0)2’

___alx]? V2 _
¥ = A(t+10)2 <0, Ak

For the intervall = [z, T + 1], 11 > 0, and any fixed” > 0, we adopt the solution space

(2.2)

ueC; HYyncl(i; L?), e ") (u;, Vu,u)(t, ) € L?
Xu={" " 12 : (2.3)
with supe; Ey (1; u)“< <M
where
Ew(t;u)z/e2w<t’x)(|ut|2+|Vu|2+u2)(l,x)dx. (2.4)
Also, denote
By (viugut) = [ e (uf*+ Vg + g o) . (25)

Clearly, Ey (0; ug, u1) < M for suitabler; > 1 andM > 0 by (1.17). The global existence the-
orem for (1.1)—(1.2) is well known. However, we need that the solutiormains inX (1)
provided thatEy, (0; uo, u1) < M. Hence we prepare the local existence theoreii(I) for

—A P~y =0, t>1, xeRV,
{u” u+u; + |u u >T, X 2.6,

(u,up)(t,x) = i, ui)(x), xeRVN,

Proposition 2.1. LetN >1andl<p<N/(N—-2) (N 23),1< p <oco (N =1,2). Forany
M > 0 and some constar®ty > 0, if (ul, u]) € H! x L? satisfiesEy (t; uf, uj)¥2 < M, then
there exists a time; = 11 (M) depending only o such that the Cauchy proble(2.6), has
a unique solution:(z, x) in Xoc,m (T, T + 11).
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The sketch of the proof will be given in Appendix A. The local solutidin, x) € X, ([0, T'])
satisfies the following a priori estimates.

Proposition 2.2. Let p satisfy the conditions in Propositich1 and

1 N
== —>0, 2.7
a(p) o1 4 0 2.7)

Then the solutiom (¢, x) € X/ ([0, T]) to (1.1)—(1.2)satisfies the estimates

/ezllf(t,x)(|ut|2+|VM|2+MZ+|u|p+l)(t’x)dx
RN

t
+//e2*”<fvx>(|u,|2+|vu|2+|vzp|2u2+|u|l’+1)(r,x)dxdr
0 RN
< Co f e O (|ug)? + |Vuol? + ug + luolP ) (x) dx =: CoEy (0; uo, u1),  (2.8)
RN
(t + tg)%*P) / VD (g 12 4+ 1 Vul? + u? + [uP ) (2, x) dx
RN

t
+(+10)° / (T +1)2*(P)Fe f 2T (Jug 2+ |Vul? + |uPT) (1, x) dx dT
0 RN
< Ce(14 Ey(0; uo, u1)) (2.9)
and

(110027 [ 20 (24 94 ) )

RN

t
+(t+10) ¢ /(r + tg) 2 (P)H1te [ eV @O 1y, 131, x) dx dt
0 RN
< Co(1+ Ey(0;uo, u1)) (2.10)
for somerg > 1 and any fixed > 0 with C, — oo ast — oo.
Propositions 2.1 and 2.2 imply the global existence theoremyji0, co). In particular, the

estimate (2.8) and the Gagliardo and Nirenberg inequality play a role to extend the local solution
to the global one.

Lemma 2.1. Let the exponents ¢, r (1< s,q,r < o0) ando € [0, 1] satisfy

! 1 1 +1 )1
- =0l - - — —0)—
s r N q’

with r < N except for the case, r) = (co, N) whenN > 2. Then it holds that
lullzs < Cllullf° IVul§,, uelL? Vuel,

forC=C(s,q,r, N).
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Applying Lemma 2.1 to the local solution ¢, 7], we have

</ ezwt'x)|u(t,x)|p+ldx
o

1.(1-0)
2 2
<c</ew‘”(”x)u(r,x)2dx) </ e2¢<f»x>(|w|2+u2)(t,x)dx> (2.11)

foro = N(1/2—-1/(p+1) (<1 whenp <1+ 4/(N —2). In fact, sincef := e?¥/(PTDy
satisfies

1 X

¥

\Y —ep+1 Vu+ —— ,
f ( p+1t+to>

)l/(P+1)

Nl=

the inequality

I fller < CILIT NV EI®
implies (2.11). From (2.12) and (2.8),

- — p+1
Ey (t; 1) < By (t; 1) < C2Ey (0; g, u1) < C2(Ey (0; o, u1) + CEy (O; ug, u1) %),

where

Ey(t;u) = / eV (w24 |Vul + u? + |ul P (2, x) dx. (2.12)
Hence, for a given daté:g, u1) take M > 0 so that

C2(Ey (0 ug, u1) + CEy (0; o, up) % ) < M2,
thenEy (T u) < M?2, which allows the local solution to extend beyond the tifhe

Theorem 2.1. Let p satisfy the condition in PropositioR.2 If Ey (0; ug, u1) < 400, then the
Cauchy problenl.1)—(1.2)has a unique global solution satisfyii§@.8)—(2.10)or anyt > 0.

Theorem 1.1 is a direct consequence of Theorem 2.1 and (1.21) is derived as follows. By (2.9)
the L1-norm ofu(z, x) is estimated as

12 12 1
Hu(t)“Ll < (/ e~ 2V dX) (/ ez'p("x)u(t,x)zdx) <CQA41) 71t

Also, the L°°-norm for N = 1 follows from the Sobolev inequality and (1.18)—(1.19):

Nz

lutt, )| oo < Jutt, )| Y2 < C(t +10) 71

InLemma 2.1, if(s,q,r, N) = (5,2,2,2),2< s <00, thenoc =1—2/s <1 and

V2|V, )|

H

1 . Ny2 S :
et EH et =C(t+10) 71

fute. |, <C(t +10) :

If (¢,r) =(2,2) ands < % for N > 3, theno < 1 and the same estimate as above holds. Thus
(1.21) is completed.
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Proof of Proposition 2.2. Multiplying (1.1) by e?¥ u, ande? u, we have
0= ez‘pu,(u,, — Au+u; + |u|P71u)

d 1 l

2
(o) e

1
— V- (¥ u,Vu) + —wezww,vu - u,v¢|2, (2.13)
— ¥t

and

0: ezwu(u” — Au + Uy + |M|p_lu)
= %[ezw (”” " %“Zﬂ + [ 1Vl = yu? + )P +)]
+ [ (~2ynus — i + 20V - V)| = V- (R uva). (214)

Since we choos# in (2.1) with (2.2), integrating (2.13) and (2.14) oY , we respectively get
d 1 1
* <§(|u,|2 +Vul?) + p—H|u|p+1) dx

dt
2y 1 2 2 2 2y 1p+l
+ e 1—a+ = |VV¥|° )lu|*+ —————|VY¥|7|ul? dx
a a(p+1)
<0 (2.15)

d 1
E'/ez‘/’ (uut—l—éuz) dx
1
+/62¢<|Vu|2+5|V¢|2u2+|u|p+1) dx—/ez””lbmzdx
2y 2 2
< |e ;IVWI luus| + 2|V ||ul|Vul | dx

4 3
< / e <;|le|2|u,|2 + 2a|Vu|? + EWWZMZ) dx. (2.16)
Here (2.16) is rewritten by

d 1 1
o ezw<uut+§u2)dx+fezw<(l—2a)|Vu|2+EIVWZMZ-HMIIH':L) dx

4
- f e <1+ —|V1//|2)|u,|2dx <O0. (2.17)
a
Adding (2.15) to (2.17) multiplied by (0 < v < 1), we get

d 1 1 1
E/ezw{§(|u[|2+2vuut + vuz) + §|Vu|2+ m|u|p+l} dx

and

1-4
+/62w{<1—a —v+ TU|V¢|2)|”t|2+V(1_2a)|V”|2
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Y 2,2 2 +1
—|V \Y Pt dx <0. 2.18
+ g VYU +<V+ e +1)I wl)lul } x (2.18)
We determine: = v = 1/4. Then, (2.18) yields

d -
d—Ew(t;u)Jer(t;u)

1d 1, 2
2dt/ 2‘”<|u,| +uu[+2u + | Vulf 4+ —— o1 |u|P+1>dx
1
+ Z/ez¢<2|u,|2+§|Vu|2+|V1//|2u2+|u|p+1> dx
<0, (2.19)

which is the key inequality in the proof. Note that
1 ~ _
SEy () > Ey(tu) > cEy (1), (2.20)

WhereEZp (t; u) is defined in (2.12). Integrating (2.19) o\ ¢] and using (2.20), we have (2.8).
Further, multiply (2.19) by(r + 19)2*("*¢ (0 < ¢ < 1), then

d - 2 -
—[(t + to)z‘)‘(”)“Ew(t; u)] + (t + 1g)?¥ (e [Hw(t; u) — MEx//(t; u)} <0.
dt t+to
(2.21)
Making use of (2.20), we have
200(p) +¢ -~
Hy(t;u) — ————FEy(1;
lﬁ( “) t+1o W( u)
1
> [éfezw(|u,|2+|vu|2+|u|1’+1)dx
2 1
_ 2+ /ezw(luzlz—l-|Vu|2+|u|p+l)dx:|
2t
1 5 22 1 20p)+1 [ 5y 2
= v Py ax — 2= e uldx . 2.22
+[8/e (l lu® + |ul ) x 20110 eVucdx ( )
Second to the last term in (2.22) is estimated from below by
1
I Ey(t;u) = 16/e2¢(|u,|2+|Vu|2+|u|1’+l)dx if 10 > 8(2(p) + 1). (2.23)
The last term is estimated from below by
p+l+
—C(t+1g) r 1Tz, (2.24)

In fact, by denoting

2 1
ﬁ eV uldx = / + / =h+1D

2(t +10)
klx|>ViFlo  klx|<ViFD
with k = 1/16{/(2x(p) + 1), each term is estimated as follows:
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21,12
2wl / KAXI" oy 2,
2(t 4 to) t+1o
Klx|> /i Fo
2 21,12
. 2%(2a(p) + 1) / a®|x| ezwuzdx:}/ezwwwzuzdx
a? A(1 + 10)2 8
RN RN
sincea =1/4 and
I < / Mezw'% .eZ'p'ﬁuzdx
2(t + to)
klxI<VIFTo
1 _pt Wl
< 3 / A uPldx + C / (t +10) 18D
RN k|x|</t+1g
1 _ptl N
=3 / 2V Pl dx £ C(t +10) 7112
RN
by the Young inequality with;;—} + 521 = 1. Combining (2.21) with (2.22)~(2.24), we get

d . 1 A
L+ 10)2*PITEE (1;u)] + s 10)2*PITEE (25 u)

1
_&J’_

<C(t+10)* P (1 +10)" 7172 = C(t + 1)1, (2.25)
Hence, integrating (2.25) ovéo, ¢), r < T, and using (2.20), we obtain

Nz

t
_ 1 ~
(t +10)2*PYEE, (1;u) + 1—6f(r +10)2PFEE (v, u)dT
0

‘
< tga(p)+£E_,/,(O; u)+C /(t +10) M dr
0

< Cg* P E L (0 ug, up) + Colt + 10)°. (2.26)

Dividing (2.26) by(r + tp)?, we reach the second desired estimate (2.9). Concerning the weight
aboutr, we note that, if we take = 0, then the term lo¢f + 79) comes out and the result become
less sharp. The method to adept 0 instead ok < 0 is seen in Nishikawa [28].

To obtain the third estimate (2.10), multiplying (2.15) witk= 1/4 by (r + 10)*("+1+¢ we
have

d 1 1
Z[(’ + 1) 2 (P HLFe / e2¢{§(|ut|2+ IVul?) + Py l|u|P+1} dx]

3
+Z(t+to)2“(”)+l+8/ez"”luz|2dx

gc(cx(p)+1)(r+to)2“<l’>+8fe2‘/f(|ut|2+ IVul? + ulP ) dx. (2.27)

Integrating (2.27) ovej0, t] and using (2.9) just obtained, we easily show (2.10).
Thus we have completed the proof of Proposition 2.2.
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Appendix A

We sketch the proof of Proposition 2.1. The proof of similar local existence theorem is seen in
Ikehata and Tanizawa [17]. Singe(z, x) is decreasing im, it is enough to show the case= 0
in (2.6),. So, our problem is

{u,,—Au+ut=—|u|”_lu, (t,x) € [0, 00) x RV, L

(u, u;)(0, x) = (uo, ug)(x).
We show that, ity (0; ug, u1) < M?Z, then there existg = r1(M) > 0 such that (L) has a unique
solutionu(z, x) in Xoc, u ([0, 11]1), whereCy is some constant determined later. We construct an

approximate sequende ™ (z, x)} as follows:
The first functionu© (¢, x) is a solution to

— Au+u; =0,
{“” e (A1)
(u, ur)(0, x) = (uo, uz)(x),
and, iterativelyu ™+t (t,x),n =0, 1,2, ..., is a solution to
— = — (n) [7*1 (n)
{Mzt Au + u; 17204 uv’, (A.2)
(u, u1)(0, x) = (uo, u1)(x).

It is enough to assert the following three claims:

(i) Foranyt >0, Ey(t; u®Y2 < c1Mm.
(i) For somet =t1(M) > 0, if u™ € Xoc,m ([0, t1]), thenu ™D e Xoc, 1 ([0, 11]).
(i) For somety =11 (M) > 0 taken to be smaller if necessary,

1
sup Ey (t; u ) — u(")) < - sup E,/,(t; u™ — u("fl)).
Oy or<n

Since we have € C([0, c0); HY) N CL([0, co); L?), multiplying (A.1) bye?? (u, + (1/4)u), we
have

1d 1
EE/EZWX)(W"Z + uu, + Euz + |Vu|2> dx <0.

Hence, by

1 1

EEw(I; u) > /ez'/’(t’x) <|ut|2 + uu; + Euz + |Vu|2> dx > cEy(t;u),
for some constant; > 0,

Ey(t:u) < CZEy(0; up, u1) < (C1M)2,

which means (i). Next, multiplying (A.2) by (u, + %u), we have
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t
Ey(t;u) < (C1M)2+c//e2‘”|u<”>|”(|u|+|u,|)dxdz
0

t
< (ClM)2+//e2‘/f(]u(">\2”+u2+ us|%) dx dt
0

1 t

g(ClM)2+CfE¢(r;u("))pdr+C/E¢(r;u)dr, t <11,
0 0

since [ e |u™|?P dx < CEy (t; u™)P, which is obtained by similar way to (2.11). Hence the
Gronwall inequality implies

Ey (t;u) < ((C1M)? + C(2C1M)*17)e“™ < (2C1M)?

if 0 <11 <« 1, which gives (ii). The assertion (iii) follows in the similar way as (ii).
Thus we have completed the proof of Proposition 2.1.
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