
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 146, 259-270 (1990) 

Theorems on Closed Coverings of a Simplex and 
Their Applications to Cooperative Game Theory* 

TATSURO ICHIISHI 

Department of Economics, Ohio State University, 
Columbus, Ohio 43210-l I72 

AND 

ADAM IDZIK 

Institute of Computer Science, Polish Academy of Sciences, 
Warsaw, 00-901 PWN. Poland 

Submitted by KY Fan 

Received July 31, 1988 
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they extend the related results of Scarf and Shapley. Applications to cooperative 
game theory are also given. :e 1990 Academic Press, Inc 

1. INTRODUCTION 

Let N be a nonempty finite set, and let { ej} je N be the unit vectors of the 
( # N)-dimensional Euclidean space RN; e<=l and ej=O for every i#j’. 
Denote by M the family of nonempty subsets of N (i.e., A’” := 2N\ { fa}). 
Given a subset X of RN, denote the convex hull of X by co X, the interior 
of X by $ the relative interior of X by ri X, and the afline hull of X by 
aff X. The faces of the unit simplex are then given by As := co{e’l ie S} for 
every SE .Af. The simplex A N is endowed with the relativized Euclidean 
topology. For each SE .Af, its characteristic vector is given by xs := 
ciss ei. Given two vectors x and y in RN, x. 4’ denotes the Euclidean inner 
product, and the closed line segment joining the two (i.e., co(x, J?}) is 
denoted by [x, y]. 

It was sixty years ago when Sperner [25] published the following: 

* This paper was completed while Adam Idzik was visiting the Department of Economics, 
The Ohio State University, Columbus, Ohio, during the July Activities on Economics and 
Game Theory, July 6-29, 1988. 
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THEOREM 1.1 (Sperner [25]). Let ( C’Ji, N be a closed covering of A R, 
such that A N’, iil A C” = @ ,for every i E N. Then fi ,E N C’ # @. 

A year later, Knaster, Kuratowski, and Mazurkiewicz [ 171 published 
the following generalization of Theorem 1.1: 

THEOREM 1.2 (Knaster et al. [ 171). Let {Cl jit N be a fumifv qf closed 
subsetsofANsuch that AScU,,,C’for every SE,V”. Then nlSNCi#@. 

Actually, each of Theorems 1.1 and 1.2 is easily shown to be equivalent 
to Brouwer’s fixed-point theorem, by using Browder’s [4] technique which 
involves a partition of unity (see the independent work of Border [3] and 
Dugundji and Granas [5] for the equivalence of Theorem 1.2 and the 
Brouwer theorem). Fan [6] pointed out that Theorem 1.1 can be 
re-formulated as: 

THEOREM 1.3 (Sperner [25]). Let { Ci)it N be a closed covering of AN 
such that AN’,lil c C’for ever), ie N. Then nrGN C’# @. 

(To show the equivalence of Theorems 1.1 and 1.3, use the Lebesgue 
number.) 

Let K be a finite set such that KIN, and let A := ((a,)),, N,itK and c := 
(c~)!~ N be a (#N) x ( #K) real matrix and a ( #N) x 1 real matrix, respec- 
tively, such that 

1 if i=jEN; 
aii = 

0 if i,jENbut i#j; 

ciao for every i E N; 

c;>o for some i E N. 

Notice that {X E R; 1 Ax = c} # @. Theorem 1.3 is a special case of Scarf’s 
theorem [ 203 : 

THEOREM 1.4 (Scarf [20] ). Let { Ci} j6 K be a closed covering of A N such 
that AN\(j) c Ci for every Jo N. Assume that the set {x E RT ) Ax = c} is 
bounded. Then there exists x E RK, such that Ax = c and n{ CJ 1 jE K, 
x,>O}#O. 

Scarf [ 19, 203 used the “path-following technique” of Lemke and 
Howson [18] to establish a theorem on primitive sets (Theorem 4.6 of this 
paper), and then used the latter theorem to prove Theorem 1.4. An alter- 
native proof of Theorem 1.4 was made by Kannai [ 151; he used the 
Brouwer fixed-point theorem only. 
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A generalization of Theorem 1.2 was made by Shapley [21]. To for- 
mulate Shapley’s result we need the following: 

DEFINITION 1.5. A subfamily PJ of ,Y’ is called balanced, if there exists 
{is}s,JcR+ such that CsEd:s3iis= 1 for every HEN. 

THEOREM 1.6 (Shapley [21]). Let {Csjst.,- be a family of closed 
subsets of AN such that A ‘c USi T Cs for every TE .V. Then there exists a 
balanced family B such that 0 SE .a Cs # a. 

To see the relationship between the conclusions of Theorem 1.4 and of 
Theorem 1.6, let A” be the (#N) x (#A’) matrix whose rows (columns, 
resp.) are indexed by i E N (by SE J+‘, resp.) such that column S is precisely 
xs. The set {x E R-:’ 1 A”x = xN} is nonempty and bounded. Then the conclu- 
sion of Theorem 1.6 is re-formulated as: There exists x E R-l’ such that 

and 

Actually, motivated by Billera’s generalization [ 1, 21 of Scarf’s theorem 
[ 191 for nonemptiness of the core (Theorem 4.4 in this paper), Shapley 
[21] established a more general theorem (Theorem 1.6’ below). Define 
17 := XSEb(. As. 

DEFINITION 1.5’. Choose any rc := (r~~)~~.,. E l7. A subfamily $3 of JV is 
called z-balanced, if nN ECO{~~~ SE a}. 

THEOREM 1.6’ (Shapley [21]). Let { CS} SE .,,. be a family of closed 
subsets of AN such that AT c USC T Cs for every T E M. Choose any rc E Il. 
Then there exsts a z-balanced family 93 such that n SE B Cs # 0. 

The additional assumption in Shapley [21] that rc E ri 17 is nonessential: 
For an arbitrary rr E Z7, choose a sequence in ri 17 which converges to 71. 
Theorem 1.6 is a special case of Theorem 1.6’ in which II~= xs/( # S). 
Shapley [21] proved Theorem 1.6’ by using the “path-following technique” 
of Lemke and Howson [18]. Todd [26,27] has a proof of Theorem 1.6 
which makes use of the Brouwer fixed-point theorem and a sequence of 
simplicial partitions. Shapley [22] has a shorter proof of Theorem 1.6 
using Kakutani’s fixed-point theorem. Ichiishi [ 121 has a yet shorter proof 
of Theorem 1.6 using Fan’s [7] coincidence theorem (see also Ichiishi 
C131). 
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Recently Ichiishi [14] established the following theorem, which is dual 
to Theorem 1.6 just as Theorem 1.3 is dual to Theorem 1.2, and which is 
also a generalization of Theorem 1.3: 

THEOREM 1.7 (Ichiishi [ 141). Let {C”},,., be a family of closed subsets 
of AN such that Arc IJ S3N,, T Cs for every TE -4”. Then there exists a 
balanced family B such that nsE d Cs # @. 

It was pointed out by David Schmeidler that Theorems 1.6 and 1.7 are 
equivalent; Schmeidler’s argument is reproduced in Ichiishi [ 141. Neither 
of Theorems 1.4 and 1.7 includes the other. 

The first purpose of the present paper is to establish general theorems on 
closed coverings of a simplex in order to give a unified treatment of the 
above theorems. We prove these general theorems by using a certain 
geometric lemma and the following special case of Fan’s [7, 91 coincidence 
theorem: 

THEOREM 1.8 (Fan [9]). Let X be a nonempty, compact, and convex 
subset of RN, and let F and G be upper semicontinuous correspondences from 
X to the subsets of RN, such that both F(x) and G(x) are nonempty, compact, 
and convex for each x E X, and such that 

Then there exists x* E X such that F(x*) n G(x*) # 0. 

Other covering properties of convex sets were given, e.g., by Fan [6, 8, 
10, 111 and Shih and Tan [23,24]. 

The second purpose of the present paper is to clarify relationships 
between the above theorems on closed coverings of a simplex and certain 
theorems related to the core of a cooperative game without side-payments. 

2. MAIN RESULTS 

Let K, A, c be given as in the paragraph that precedes the statement of 
Theorem 1.4. Denote columnj of the matrix A by aj. 

THEOREM 2.1. Assume that c E AN and aJ E aff A N for every j E K. Let 
{Cl} js K be a closed covering of AN such that 

Thentheree.uistsasubsetIofKsuchthatcEco{a’IjEZ}andr),.,C’#(2(. 
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Proof of Theorem 2.1. For each XE AN define I(x) := {~EKIC’SX}, 
F(x) := {c}, and G(x) := co{&1 je Z(x)}. Then the correspondences F and 
G from AN to the subsets of aff AN are upper semicontinuous with non- 
empty compact and convex values. Choose XE AN and p E RN such that 
p. x = min p . AN. There exists a unique S c N such that x E ri As. Thus we 
have p . .v = min p . AN for all y E As. If S = N, then for all u E F(x) and all 
u~G(x), p .u= p. u. If S# N, then by the assumption of the present 
theorem there exists je K such that a-’ E As and x E C”. For this j, sic G(x) 
and p. ui = min p AN d p c. All the assumptions of Theorem 1.8 are now 
satisfied, so there exists X* E AN such that F(x*)nG(x*)# 0. The set 
Z(x*) is the required set I. Q.E.D. 

A generalization of Theorem 2.1 is given by: 

THEOREM 2.2. Assume that c E AN and that the set (x E RK 1 Ax = c} is 
tounded. Let { Cj) jt k he a closed covering of AN such that 

Then there exists x E R: such that Ax=c and n{CiIxj>O}#jZ(. 

We shall provide two proofs of this theorem. Both proofs make use of 
the following claim: 

Claim 2.3. Let n < k, let A be an n x k matrix whose first n columns 
constitute the unit matrix, and let c be an n x 1 nonnegative matrix. Then the 
following two conditions (i) and (ii) are equivalent. 

(i) Set {x E R: 1 Ax = c} is bounded; and 

(ii) 13x~R:\{O}: Ax=O. 

Moreover, for any n x 1 nonnegative, nonzero matrix d, any of the conditions 
(i) and (ii) implies the following condition (iii). 

(iii) 13x E Rk, : Ax = -d. 

Proof of Theorem 2.2, Using Theorem 2.1. Define D := {Ax 1 x E R; , 

c. JE K xj= 1); it is a convex compact subset of RN. By Claim 2.3(ii) and 
(iii), D n (-RN, ) = 0. There exists, therefore, a hyperplane H which 
strictly separates D and -RN,, in particular 0 4 H. Then for each y E D 
there exists a unique vector j E [0, y] n H. Notice that c E D, and a’~ D, 
for every j (in particular, AN c D). Define JS := {j 1 ye A’}, and pi := 
{ $1 .v E Cl}. Under the assumption of Theorem 2.2, 
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By Theorem 2.1 applied to (a”, {tiAj],EK, ?, (Ci) ,E’K), there exists Zc K 
such that e~co{cijJj~Z} and n{C’Ij~l]#@. We can now choose a 
suitable x E Rr such that xi = 0 for j E K\Z, AX = U, and n { CjJ X, > 0 } # 0. 

Q.E.D. 

Proof of Theorem 2.2, Using Theorem 1.8. Define 

Then, dig aff d N for every j E K, and ~9 = a’ if u’ E aff d N. Define for each 
XEA~, 

F(x) := {c), 

G(x) :=co{ci’I jE K, C’~S]. 

As in the proof of Theorem 2.1, one can show that all the assumptions of 
Theorem 1.8 are satisfied, so there exists x* E AN such that F(x*)n 
G(x*)#@. Define I:= {jEKJCi3x*). Then there exists {:jljE,~R+ 
such that c=C~~,-~ 6’. By substituting the definition of cij’s and by setting 
t, := 1 -C,, N LZ,,, one obtains 

c = ;, Zj(UJ + fjC). 

To sum up, there exist zj E R + , je Z, not all zero, such that 

By Claim 2.3, 

1- 1 ,-jti>O; 
jel 

thus there exists z* E RT such that 

n jc/lz,*>Oj 3 f-j cjz0. 
jcl 

Q.E.D. 

Now we generalize Theorem 1.7. We need the following geometric 
lemma: 
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LEMMA 2.4. Let C be a compact, convex subset of RN, and let F be a 
finite subset of X, the relative boundary of C. Choose any c E ri co F. For 
each XE F choose x’ E aC so that c E [x, xl], and deJine F’ := (~‘1 x E F}. 
Then c E co F’. 

Proof of Lemma 2.4. There exists {c~.~);~~-cR+, CrEFcx,= 1, such 
that c = C.VtF~,~. For each x E F there exists p,, 0 <flI < 1, such 
that c = fl,x + (1 - fl,) x’. Then c = CxtF N.,(c - (1 - fi,) x’)/B,., so 
(EyEF~.,/P,) - 1 k = LEfi-(~,/Pr- a,) x’; therefore C-E co F’. Q.E.D. 

THEOREM 2.5. Assume that CE ri AN and a’E aff AN for every jE K. 
Assume also that for every j E K for which ai E aAN, there exists j’ E K such 
that a” E aAN and c E [a’, a”]. Let { Cj} iE K be a closed covering of AN such 
that 

VTEJ$‘\{N}: ATc u (C’j’l jE K, a’E AT}. 

Then there exists a subset I of Ksuch that c~co(ajI jEZ} and fljE, C’# 0. 

Proof of Theorem 2.5. Define DJ := Cj’ for every j for which aiE aAN, 
and Dj := Cj for all other j. All the assumptions of Theorem 2.1 are 
satisfied for (AN, {a.i}jEK, c, {DiJjEK}, so there exists a subset Z of K 
such that cEco{ajIjEI} and nj.,Di#@. Define I’:= {j’IjEZ}. By 
Lemma 2.4, cEco(a’I jcZ’}. Moreover, nj,,, Cj= nJE, Dj#@. Q.E.D. 

Using the same method and Theorem 2.2, we can prove: 

THEOREM 2.6. Assume that c E ri AN and that the set (x E RK 1 Ax = c} is 
bounded. Assume also that for every jE K for which ai E ad”, there exists 
j’ E K such that aj’ E aAN and c E [a’, a”]. Let { CJ} jt K be a closed covering 
of AN such that 

VTEJ’\{N}: ATc u {Cj’I jE K, ajed”). 

Then there exists x E R: such that Ax = c and n { C’I xj > 0} # 0. 

3. REMARKS 

The K-K-M theorem (Theorem 1.2) follows from Theorem 2.1 if we take 
K = N and c E ri AN. Scarf’s theorem (Theorem 1.4) for the case c E ri AN 
follows from Theorem 2.6 if we take Cj’ = Cj for each j E N (Theorem 1.4 
would be trivial if c E aAN). Shapley’s theorem (Theorem 1.6’) follows from 
Theorem 2.2 if we take K = N, as (:= column S of the matrix A) = 7cS E As, 
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and c = rcN. Ichiishi’s theorem (Theorem 1.7) follows from Theorem 2.6 if 
we take K = ,+-, as = xs, and c = xN. 

All the results in Section 2 are valid for an arbitrary real matrix A of 
dimension ( #N) x ( #K), Nc K, in which there are #N linearly inde- 
pendent columns, and c ( #O) is a nonnegative linear combination of those 
columns. 

Theorems similar to those of Section 2 can be proved for a compact 
polyhedron instead of a simplex. 

4. CORE 

The finite set N is now interpreted as the set of pla.yers, and ,+’ as the 
family of nonempty coalitions. 

DEFINITION 4.1. A nonside-payment game is a function V from -4“ to the 
subsets of RN such that for every SE JV, V(S) is a cylinder; i.e., [u, v E RN, 
ViES: ui=ui] implies [ue V(S) iff DE V(S)]. 

The set V(S), or rather its projection to RS, is interpreted as the set of 
utility allocations within S; each is made feasible by some coordination of 
strategies of the members of S. 

DEFINITION 4.2. The core of a nonside-payment game V is the set C( V) 
of all UE RN such that (a) u E I’(N) and (b) it is not true that there exist 
SE Jr and U’ E I’(S) such that ui < u: for every in S. 

The core is a typical solution concept; condition (a) says that the utility 
allocation u is feasible within the grand coalition N, and condition (b) says 
that no coalition can improve upon U. 

DEFINITION 4.3. A nonside-payment game V is called balanced if for 
every balanced subfamily g of .J“, nStd V(S) c V(N). 

See, e.g., Ichiishi [ 13, Chap. 51 for further discussions of Definitions 4.1, 
4.2, and 4.3. Scarf’s [ 191 fundamental theorem for nonemptiness of the 
core: 

THEOREM 4.4 (Scarf [ 191). Let V: .& -+ 2RN he a nonside-payment game, 
anddefineb~RNbybi:=sup(uj~R~u~V({i})}foreachi~N. Thecoreof 
V is nonempty if (i) V(S) - RN, = V(S) for every SE -4’; (ii) there exists 
MeR such thatfor every SE,K, [UE V(S)n [{b) +RN,]] implies [u,<M 
for every iES]; (iii) V(S) is closed in RN for every SEA?; and (iv) V is 
balanced. 
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Scarf [ 19) established the following Theorem 4.6, and then derived from 
it Theorem 4.4. Let K, A, c be given as in the paragraph that precedes the 
statement of Theorem 1.4. Choose vectors P := (7~~)~~~ in RN such that 

xi= (Ri,..., Ri, . . . . Ri) if iEN; 

7C’E (AN -Ry)nRy if jEK\N, 

where Ri > 1 for each ie N. 

DEFINITION 4.5. A subset of P, 1~‘) it I, is called a primitive set, if there 
does not exist rc E P such that 

Vi~N:n~>rnin{rr(l jEZ}. 

THEOREM 4.6 (Scarf [ 19, 201). Zf the set {x E RK, 1 Ax = c > is bounded, 
then there exists XE RK, such that Ax=c and {z’ljeK, x,>O} is a 
primitive set. 

Remark that the vectors rcj, jE K\N, can actually be chosen arbitrarily 
from RN,, provided that the Ri, ie N, are suitably re-defined. Due to 
arbitrariness of the finite set K (provided that it contains N), and hence the 
generality of matrix A compared with A” (the matrix A” was introduced in 
a paragraph between the statement of Theorem 1.6 and Definition 1.5’) 
Theorem 4.6 together with a certain nondegeneracy assumption sum- 
marizes an analytical feature of Scarf’s algorithm to compute a member of 
the core. 

It was pointed out earlier that Scarf [20] derived Theorem 1.4 from 
Theorem 4.6. Conversely, Theorem 4.6 can be derived from Theorem 1.4; 
the proof is based on the idea in Vohra [28]: 

Derivation of Theorem 4.6 from Theorem 1.4. Define C{ := (rc’} - RT . 
Denote by F the boundary of U iG K C(, and define for each jE K, 

+EC{nF:z=y 

If X$ RT for any rt E P, then the assertion of Theorem 4.6 is trivial. Assume, 
therefore, that there exists n E P n a:. Then 0 is in the interior of tJ je K I?{, 
so CCiljcK is a closed covering of AN. Observe that 4’ E F, if 4’ E U je K C{ 
and yi > Ri for some ie N. By this observation, it is easy to check 
A”“(‘) c C’. Thus { CiljsK satisfies the assumption of Theorem 1.4, so 
there exists x* E RK, suchthatAx*=cand (J{CjljEK,x,+>O}#@.Set 
I:={j~K[x,*>0}, choose Z* E n , E I C’, and consider y* E F defined by 



268 ICHIISHI AND IDZIK 

z*=y*/CiGN JUT. Then n’3y* for all FEZ; so {r~j),,~, is the required 
primitive set. Q.E.D. 

Many alternative proofs of Theorem 4.4 have appeared in the literature: 
Shapley [21] derived Theorem 4.4 from Theorem 1.6. Keiding and 
Thorlund-Petersen [16] and Vohra [28] proved Theorem 4.4 using 
Theorem 1.2 and Kakutani’s fixed-point theorem, respectively. Ichiishi 
[14] pointed out that the geometric insights of Keiding and Thorlund- 
Petersen and of Vohra can be re-formulated as Theorem 1.7. It will be 
shown here that Theorem 4.4 follows simply from a theorem which is 
weaker than Theorem 1.4 and weaker than Theorem 1.7; the proof is based 
on the idea in Vohra [28]: 

Derivation of Theorem 4.4 either from Theorem 1.4 or from 
Theorem 1.7. The special case of Theorem 1.4 and of Theorem 1.7, in 
which K=L$‘, A=A”, and c=x,,,, will be used here. Assume without loss 
of generality that b = 0, and that 0 E @cS) for all SE ,h”. Choose two real 
numbers M, and M, such that M, > M, > M, and denote by F the boundary 
of the set, 

u (UE V(:i})lVk~N\(i):u,6M,} 
itN 

For each rc E d N, consider the unique point f(n) E Fn Ry defined by rc = 
f(~~)/C~,~A(i(7c). Define Cs:= {z~d~lf(z)~ v(S)} for every SE.+‘. The 
family VsL.l is a closed covering of dN, and it is easy to check 
AN‘. ijl c C (j: for every LIZ N. All the assumptions of Theorem 1.4 and of 
Theorem 1.7 are satisfied, so there exist x* E R-1’ and rc* E AN such that 
A”x*=xN and n*~n{C’lS~,t‘, xz>O). The pointf(rr*) will be shown 
to be a member of C(V). The family 93 := {SE J1” 1 .xz > 0) is balanced and 
f(n*)E nseA9 V(S). So by the balancedness assumption on V, f(z*) E V(N). 
Consequently, f( rr * ) E { u E PI Vi E N: ui < M}, which implies that the utility 
allocation f( rc* ) cannot be improved upon by any coalition. Q.E.D. 
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