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Structural and Functional
Remodeling of the Left Atrium
Clinical and Therapeutic Implications for Atrial Fibrillation

Grace Casaclang-Verzosa, MD, FPCC, Bernard J. Gersh, MB, CHB, DPHIL, FACC,
Teresa S. M. Tsang, MD, FACC

Rochester, Minnesota

Left atrial (LA) structural and functional remodeling reflects a spectrum of pathophysiological changes that have
occurred in response to specific stressors. These changes include alterations at the levels of ionic channels, cel-
lular energy balance, neurohormonal expression, inflammatory response, and physiologic adaptations. There is
convincing evidence demonstrating an important pathophysiological association between LA remodeling and
atrial fibrillation (AF). Measures that will prevent, attenuate, or halt these processes of LA remodeling may have
a major public health impact with respect to the epidemic of AF. In this review, we describe the mechanisms
involved in LA remodeling and highlight the existing and potential therapeutic options for its reversal, and impli-
cations for AF development. (J Am Coll Cardiol 2008;51:1–11) © 2008 by the American College of Cardiology
Foundation

ublished by Elsevier Inc. doi:10.1016/j.jacc.2007.09.026
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he assessment of left atrial (LA) size and its clinical
mplications have been comprehensively reviewed (1). In
his paper, our aim is to review the recent advances in our
nderstanding of LA remodeling and the potential impact
f its reversal on the prevention of atrial fibrillation (AF).

echanisms of LA Remodeling

LA remodeling” refers to a time-dependent adaptive reg-
lation of cardiac myocytes in order to maintain homeosta-
is against external stressors (2). The type and extent of
emodeling depends on the strength and the duration of
xposure to the “stressors.” Adaptive responses may occur at
he ionic/genomic level over the short term (within 30 min
f exposure to stressor) (3), which can be reversible, or at the
ellular level (hibernation, usually reversible) in the mid-
erm (within 1 week) (4), and at the cellular/extracellular
atrix level (apoptosis and fibrosis, usually irreversible) over

he longer term (5 weeks or more) (5). The most common
stressors” of atrial myocytes include tachycardia with high
ates of cell depolarization, and volume/pressure overload
uch as in heart failure syndromes. Specific stressors, such as
iastolic dysfunction, ischemia, and valvular diseases impose
xcess pressure and/or volume load on the LA, which
esponds with a range of adaptive as well as maladaptive
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rocesses. These include myocyte growth, hypertrophy,
ecrosis, and apoptosis; alterations in the composition of
xtracellular matrix; recalibration of energy production and
xpenditure; changes in the expression of cellular ionic
hannels and atrial hormones; and reversal to a fetal gene
rogram (6). These changes promote a cascade of reactions,
hich lead to LA remodeling with structural, functional,

lectrical, metabolic, and neurohormonal consequences.
In experimental animal laboratories, heart failure-induced

A remodeling is usually achieved through rapid pacing of
he right ventricle or of the right atrium with a 1:1
onduction to the left ventricle (LV). Atrial tachycardia-
nduced remodeling can be induced by isolated rapid pacing
f the right atrium while the LV rate and pressure are kept
onstant. These mechanistic studies contributed substan-
ially to our understanding of the relationship between LA
emodeling and AF development.
tructural changes in LA remodeling. A hallmark of LA
tructural remodeling is atrial dilatation. This is often
ccompanied by a change in LA function with progressive
ncrease in interstitial fibrosis. Impaired atrial booster pump
nd reservoir function is compensated by increased conduit
unction (7,8). In normal persons, the LA is a highly
xpandable chamber with relatively low pressures. In the
resence of acute or chronic stress or injury, the LA
tretches and stiffens (8,9). Ultrastructural changes in heart-
ailure-induced remodeling are marked by extensive inter-
titial fibrosis and myocyte hypertrophy (5,9,10). Degener-
tive changes, including cellular edema, nuclear pyknosis,

nd contraction band necrosis leading to cell loss are
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observed (5). Impairment of LA
function from heart failure re-
sults from changes in structural
proteins and a shift from fast
alpha-myocyte heavy chain to
slow beta-myocyte heavy chain
isomer (7). The shift is an adap-
tation to chronic overload that
maximizes atrial work at the ex-
pense of contraction velocity (7).
Such changes are described to be
adaptive response of dedifferen-
tiation indicative of fetal-like
phenotype (4,11,12). In contrast,
myolysis and glycogen deposi-
tion are prominent findings in
tachycardia-induced LA remod-
eling (4,11). Early changes in
cellular ultrastructure begin to
appear within 1 week of atrial-
tachycardia-induced remodeling
(4). The mitochondria increase

n length and in number. The number of myocytes and
onnective tissue content do not change significantly (4,11).
igns of cellular degeneration, apoptosis, and fibrosis are
enerally not observed (4,11). The intra- and extracellular
hanges contribute to modification in electrical make-up
endering the LA more vulnerable to AF development.
lectrical disturbances in LA remodeling. Whereas atrial
ilatation is the hallmark of structural remodeling, atrial
rrhythmias, especially AF, are the most common manifes-
ations of LA electrical remodeling. Electrophysiological
tudies comparing heart failure-induced LA remodeling
ith atrial tachycardia-induced LA remodeling have shown

ignificant differences in electrophysiological properties (13)
Table 1). Effective refractory period is shortened in atrial

Abbreviations
and Acronyms

ACE � angiotensin-
converting enzyme

AF � atrial fibrillation

ALT-711 � alagebrium
chloride

Ang-II � angiotensin II

ANP � atrial natriuretic
peptide

BNP � brain natriuretic
peptide

CRP � C-reactive protein

LA � left atrium/atrial

LV � left
ventricle/ventricular

MMP � matrix
metalloproteinase

TIMP � tissue inhibitor of
metalloproteinase

Ionic Changes in Atrial Tachycardia- and Heart F

Table 1 Ionic Changes in Atrial Tachycardia

Atrial

Ionic changes (13,17)

Ito

IKr

ICa

NCX

Na

Electrophysiological changes (16,17,19)

Wavelength

Absolute or effective refractory period

Action potential duration

Conduction velocity

Membrane diastolic potential (16,21)

Mechanism of AF Multiple wav

Prominent structural change Myolysis (11
AF � atrial fibrillation; ICa � L-type calcium current; IKr � rapid delayed potass
channel; NCX � sodium/calcium exchanger;1 � increase;2 � decrease; ¡
achycardia. The action potential duration is also reduced.
trial fibrillation is promoted through formation of multi-
le wavelets, which favor re-entry (14,15). However, heart
ailure does not shorten effective refractory period (16), or
ction potential duration (17). The proposed mechanisms
y which AF is sustained in this situation include triggered
ctivity and delayed afterdepolarization (16). The differ-
nces in electrophysiological properties between atrial
achycardia and heart failure LA remodeling lie within the
hanges in the ionic channels during the remodeling process
Table 1). Cytosolic calcium overload with inefficient cal-
ium handling is the main mechanism for the shortened
ffective refractory period (increased refractoriness) in atrial-
achycardia-induced remodeling (3). This has been attrib-
ted to a marked reduction of L-type calcium channels (17).
n contrast, L-type calcium channels are only mildly re-
uced in heart failure-induced LA remodeling (17), and the
eduction is offset by decrease in potassium currents and
ncrease in sodium-calcium exchange currents, with no net
hange in action potential duration.

Aside from ionic channel alterations, electrophysiological
hanges are also contributed by cellular and extracellular
odifications during the remodeling process. Some inves-

igators have shown that LA dilatation increases electrical
nstability with shortening of effective refractory period and
trial conduction (18,19). Left atrial dilation reflects in-
reased fibrosis, which provides circuits for re-entry (20).
atients with markedly dilated atria have reduced maximum
iastolic potential (21). Increase in LA pressure, which
ypically accompanies heart failure, may also contribute to
F promotion and perpetuation (17,20). With increase in

trial pressure and volume, the myocytes are more readily
epolarized with greater vulnerability for the development
f atrial arrhythmia (21). Left atrial ischemia slows down
mpulse conduction favoring re-entry (22). In atrial tachy-
ardia models, LA pressure is generally not elevated (3,17),

e-Induced Electrical Remodeling

Heart Failure-Induced Electrical Remodeling

cardia Heart Failure

2

2

2

1

?

1

¡ or1

¡ (slow rates);1(fast rates)

2

2

re-entry (15) Delayed afterdepolarization-dependent
triggered activity (16)

Fibrosis (9)
ailur

- and

Tachy

2

¡

22

¡

2

2

2

2

1

?

elets

)

ium current; Ito � transient outward potassium current; Na � sodium
� no change; ? � not known.
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ut varying degrees of interstitial fibrotic changes have been
escribed, which may play a significant role in perpetuating
F (20,23).
etabolic changes in LA remodeling. Profound meta-

olic changes also occur during the remodeling process,
hich may lead to inefficient bioenergetics (24). The main

ource of energy is shifted from beta oxidation of fatty acids
o fetal glycolysis (25). There is down-regulation of the gene
hat encodes medium-chain acyl-coenzyme A dehydroge-
ase, which is important for fatty acid oxidation (25). Even
ith switching to glycolysis, glucose is not optimally oxi-
ized as a source of energy production in the remodeling
yocardium (26). In chronic AF, reduced energy availabil-

ty is attributed to an increase in energy demand from active
yolysis or the remodeling process itself rather than a

eduction in energy production (27). Reduced energy avail-
bility leads to contractile failure (4,7) and switch in myosin
soform profile (7). Energy depletion also impairs calcium
ycling (28,29) and other adenosine triphosphate-
ependent ionic channels (2,24,30). In both heart failure-
nd atrial tachycardia-induced LA remodeling, insufficient
nergy availability promotes further heart failure and re-
odeling processes (25–27,31).
eurohormonal disturbances in LA remodeling. In-

reases in atrial natriuretic peptide (ANP) (32), brain
atriuretic peptide (BNP) (33), angiotensin II (Ang-II),
ldosterone, transforming growth factor-beta1 (34), and
ympathetic hyperinnervation (35) have been described in
ssociation with the remodeling process. Elevated plasma
evels of ANP and the N-terminal fragment of the ANP
rohormone are associated with decreased LV function and

ong-term survival after acute myocardial infarction (36,37).
trial natriuretic peptide is a direct vasodilator, which

owers systemic blood pressure and inhibits renin and
ndothelin secretion, myocyte hypertrophy, and fibroblast
ollagen synthesis (38,39). Mechanical stretching of the LA
s the strongest stimulus for ANP secretion, which is
ugmented by endothelin and inhibited by nitric oxide (32).
ome studies suggest that vasoconstrictor hormones such as
orepinephrine, epinephrine (32), Ang-II (40), and vaso-
ressin (32) can increase ANP secretion by indirect mech-
nisms related to vasoconstriction and increased atrial and
entricular stretch. Atrial fibrillation augments ANP levels
ia the hemodynamic effects of the arrhythmia itself (41,42).
owever, longstanding AF in severe LV dysfunction and

evelopment of LA fibrosis can cause depletion of ANP
tores (41,43). Thus, ANP secretion appears to be an
daptive response of the LA to correct the hemodynamic
mbalance and prevent further remodeling. However, the
ompensatory effect is limited by fibrosis (41), a sign of
hronic myocardial injury.

Cardiac BNP is another marker for LA and LV remod-
ling. In the case of LA remodeling, BNP is significantly
orrelated with indexed LA volume in patients with dia-
tolic heart failure (44), stable chronic heart failure (45),

ypertension (33), organic mitral regurgitation (46), idio- i
athic bilateral atrial dilatation (47), and in patients with
F with or without LV systolic dysfunction (48–51). The

ssociation between BNP and LA volume in predicting AF
as demonstrated in post-thoracotomy patients where pa-

ients with larger LA volume and higher BNP levels had
igher incidence of post-operative AF (52,53).
Angiotensin II (54,55), aldosterone (54,56), and trans-

orming growth factor-beta1 (57) contribute to the remod-
ling process through their proliferative, proinflammatory,
brotic, and prothrombotic actions. Angiotensin II is both

ocally and systemically secreted and exerts its actions
hrough angiotensin-I receptors. Renin, produced by the
idneys, converts angiotensinogen from the liver to angio-
ensin I. Angiotensin I is converted by angiotensin-
onverting enzyme (ACE) to Ang-II, which is a powerful
asoconstrictor that stimulates aldosterone secretion. An-
iotensin II, through its effects on angiotensin I receptors,
romotes cellular hypertrophy (40), apoptosis (58), fibrosis
54,55), neutrophil and monocyte infiltration (59,60), en-
othelial dysregulation with inhibition of nitric oxide for-
ation (60), and increased vasoconstriction and platelet

eactivity (61). Angiotensin II additionally mediates throm-
us formation through its interaction with thromboxane
eceptors (61) and nitric oxide/prostacyclin-dependent
echanisms (62,63). Angiotensin II plays a critical role in
A remodeling through its ability to promote interstitial
brosis. It binds with G protein and activates Erk1/Erk2,
hich are mitogen-activated protein kinases. The activated
rotein kinases stimulate transcription proteins, which trig-
er specific genes to encode contractile, structural, and
ell-cycle regulatory proteins that promote cellular growth,
roliferation, and differentiation (64). Angiotensin II up-
egulates transforming-growth factor beta1, which promotes
he expression of collagen type I and type III enhancing
brosis (65). Aldosterone further promotes fibrosis through

ts action on cardiac fibroblasts (66) and matrix metallopro-
einases (MMPs) (67). Thus, the neurohormonal changes
re pivotal in the genesis and the progression of LA
emodeling (64,68,69), key to the development and perpet-
ation of AF (64,70–73).
ystemic inflammation and LA remodeling. The role of
ystemic inflammation in AF and heart failure development
as been more intensely studied in the recent years. Inflam-
atory cells have been demonstrated to infiltrate atrial

issue of patients with AF (74). Inflammatory markers such
s C-reactive protein (CRP), tumor necrosis factor, inter-
eukins, and cytokines have been shown to be elevated in AF
75–77). C-reactive protein predicted the risk of first AF in
ne study (78) and recurrent AF after initial successful
adiofrequency ablation in another (79). C-reactive protein
lso appeared to correlate well with LA volume in some
tudies, suggesting a relationship between inflammation and
A remodeling (75,80). However, the precise role of CRP

n LA remodeling and in AF remains poorly understood.
Several studies have suggested that inflammation exerts
ts remodeling effects through reactive oxygen species (81–
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3). In a study of patients with coronary artery disease,
alonaldehyde, an index of oxidative stress, correlates well
ith CRP (81). It has been shown that CRP may promote

he generation of reactive oxygen species by altering the
omeostatic balance of antioxidative enzymes in endothelial
rogenitor cells (82). Oxygen-free radicals can also activate
MPs resulting in an imbalance between accumulation and

reakdown of extracellular matrix enhancing LA fibrosis
ith consequent dilatation and loss of function (84–86).
own-regulation of tissue inhibitor of metalloproteinases

TIMPs) also promotes LA fibrosis. Deficiency in TIMP-3
as been shown to result in LV dilatation, cardiomyocyte
ypertrophy, and contractile dysfunction (87), while down-
egulation of TIMP-1 and -2 have been shown to correlate
ith LA and LV dilatation (88,89). Tissue inhibitor of
etalloproteinases and MMPs interact with tissue necrosis

actor, angiotensin, and other cytokines in the LA remod-
ling process.

C-reactive protein also enhances the expression of recep-
ors of advanced glycation end products (90) known to
romote arterial (91,92) and ventricular stiffness (93,94).
dvanced glycation end products result from the non-

nzymatic protein glycation to form irreversible crosslinks
etween long-lived proteins such as collagen and elastin
hrough a reaction called Maillard reaction (95). Pathophys-
ological effects of advanced glycation end products lead to
ecreased compliance in myocardial and vessel walls, endo-
helial dysfunction, and augmentation of stress signaling
nd inflammatory response (96,97).

A Remodeling in Aging and Disease

he endocardium of the LA undergoes physiological cellu-
ar transformation with aging. From birth to third decade,
here is proliferation of smooth muscle cells, elastic fibers,
nd collagen in the atrial endocardium (98). By the eighth
ecade, there is increased infiltration of fatty tissue, as well
s increased collagen and atrial amyloid deposition (98).
bservational studies have shown conflicting reports re-

arding the relationship between LA size and aging (98–
02). The data support that left atrial size does not change
s a function of chronologic aging alone. Rather, LA
nlargement and impairment of LA function reflect overt or
ubclinical cardiovascular conditions that frequently accom-
any aging (93,98–104). Development of LV diastolic
ysfunction with aging is initially accompanied by an

ncrease in LA contractility (104). Early on, this augments
V filling without an increase in LA size (99,100). With
rogressive abnormality in LV filling, LA size increases and
A function deteriorates (105). Electrophysiological studies
ave shown that atrial remodeling associated with aging is
haracterized by anatomical and structural changes, disper-
ion of atrial repolarization, reduction in atrial voltage with
iscrete areas of low voltage, widespread conduction slow-

ng, and sinus node dysfunction with an increased propen-

ity to atrial arrhythmias (106,107). t
Age-related LA dilatation may also be the consequence,
t least in part, of increased arterial stiffness (92). Arterial
tiffness exerts its deleterious effects through chronic in-
rease in LV afterload and aortic impedance and filling
ressure. When the arteries are compliant and pulse wave
elocity is relatively slow, reflected waves return to the
entral aorta in diastole and, therefore, augment coronary
lood flow. When arterial compliance is reduced and pulse
ave velocity is elevated, reflected waves arrive earlier and

ugment systolic blood pressure, rather than diastolic blood
ressure, increasing LV workload and compromising coro-
ary blood flow (108). The anatomical and hemodynamic
erturbations in the LV are transmitted to the LA, promot-
ng atrial stretch and dilatation. Advancing age has been
hown to be associated with increases in vascular and
entricular systolic and diastolic stiffness, even in the ab-
ence of cardiovascular disease (93). In the rat model of
ging, increased susceptibility to AF is due to heterogeneous
trial interstitial fibrosis and atrial cell hypertrophy contrib-
ting to the aging-related atrial conduction slowing, con-
uction block, and inducible AF (109). In disease processes,
uch as with hypertension (110), diabetes mellitus (111),
yperlipidemia (110), ischemic heart disease (110), and
besity (112), LA remodeling is accelerated. Mechanisms
or accelerated LA remodeling include earlier development
nd perhaps more severe diastolic dysfunction, deranged
lasma volume control, intensified neurohormonal activa-
ion, as well as development of an atrial myopathy secondary
o oxidative stress and lipoapoptosis (113).

eversal of LA Remodeling

eft atrial remodeling is reversible. This is particularly
onvincing in the earlier stages of LA structural and
unctional disturbances (16,23,114). Studies have shown,
or instance, that LA size and function can improve with
ertain medications (23,115,116), after restoration of sinus
hythm from AF (117–119), and after repair of the mitral
alve in the case of severe mitral regurgitation (120). Table 2
ists the studies that have demonstrated reversal of LA
tructural, functional, and/or electrical remodeling
23,115,116,121–127). The direct impact of reversing LA
emodeling on cardiovascular outcomes remains to be seen,
ut the evidence, at least indirectly, suggests that the risk of
ertain outcomes, such as AF, can be significantly reduced.
CE inhibitors and angiotensin receptor blockers. In

heory, any drug that reduces blood pressure, which can
low the progression of LV diastolic dysfunction or improve
iastolic function, can have beneficial effects on LA remod-
ling (110). However, drugs that modify the renin-
ngiotensin-aldosterone system appear to have particularly
otent effects on LA remodeling, beyond their beneficial
ffects on blood pressure regulation. In a double blinded
lacebo-controlled study, we found a significant relative
mprovement in LA volume of 9.7 ml/m2 over 1 year among

hose actively treated with quinapril (116). Additionally, LA
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unction improved in the quinapril group, and deteriorated
n the placebo group (115). Angiotensin-converting enzyme
nhibition has been shown to have important beneficial
ffects on atrial stretch (116,128), interstitial fibrosis
54,129,130), inflammation (131–133), bioenergetics (134),
nd electrical remodeling (23,114). In fact, ACE inhibition
as been shown to prevent first and recurrent AF in patients
ith hypertension (135), and LV dysfunction (135–140).
atients with persistent AF who were treated with angio-

ensin receptor blockers combined with amiodarone had
ower recurrence of AF, when compared with those treated
ith amiodarone alone (141). The beneficial impact of
CE inhibition on AF has been demonstrated indirectly in
number of large clinical trials, acknowledging that AF was
ot the primary end point in these studies (Table 3)
135,139,140,142–147). The meta-analysis of 11 random-
zed controlled trials (n � 56,309) showed that ACE
nhibitors and Ang-II blockers were both effective in pre-

herapeutic Studies Showing Reversal of LA Remodeling

Table 2 Therapeutic Studies Showing Reversal of LA Remodelin

Author (Ref. #) Drug/Procedure

Human studies

Tsang et al. (116) Quinapril 60 mg/day (n � 9) vs. placebo (n � 12)
for 6 months

Diastoli
LA v

Abhayaratna
et al. (115)

Quinapril 60 mg/day (n � 9) vs. placebo (n � 12)
for 6 months

Isolated
grad
�32

Tops et al. (127) Catheter ablation (n � 57) Patient
drug

Hornero et al. (122) Mitral valve surgery and LA reduction (n � 25)
versus mitral valve surgery alone (n � 25)

AF and
disea

Animal studies

Cha et al. (121) Omapatrilat 10 mg/kg 2�/day (n � 8) versus
placebo (n � 6)

Heart fa
right
5 we

Shi et al. (126) Enalapril 2 mg/kg/day (n � 10) versus placebo Heart fa
right
5 we

Milliez et al. (125) Spironolactone 10 mg/kg/day (n � 11) versus
lisinopril 1 mg/kg/day (n � 11) versus
atenolol 1 mg/kg/day (n � 11)

Myocar
in W

Lee et al. (123) Pirfenidone 800 mg 3�/day versus placebo
versus control group

Heart fa
right
3 we

Li et al. (124) Sham operated dogs (n � 7) versus control group
(n � 6) versus cilazapril 2 mg/kg/day (n � 6)

Sustain
LA p
dogs

Kumagai et al. (23) Candesartan 10 mg/kg/day (n � 10) versus
placebo (n � 10)

Sustain
right
for 5

F � atrial fibrillation; LA � left atrium; RA � right atrium; TGF-B1 � transforming growth factor
enting new or recurrent AF by 28% but the benefit was p
reatest in patients with heart failure, LV dysfunction, and
rior AF (148).
The effectiveness of angiotensin blocker to reverse LA

emodeling and suppress AF lies in its ability to modulate
he Ang-II–activated Erk1/Erk2 proteins, thereby effec-
ively inhibiting interstitial fibrosis (64). Although Ang-
I blockade does not affect atrial myocytic refractoriness
23,114,126), it can reduce interstitial fibrosis that serves
s a substrate for the persistence and recurrence of AF.
nimal studies have confirmed that the use of angioten-

in blockers can mitigate increase in interstitial fibrosis
nd LA pressure; reduce myolysis, loss of contractile
roteins, and LA dysfunction; and shorten the duration
f AF (23,114,126).
In the case of lone AF, despite the theoretical absence of

ardiac structural abnormalities, atrial fibrosis (149) and
ven LV diastolic dysfunction (118,150) have been demon-
trated. Angiotensin I receptors are up-regulated in these

ulation Outcomes

tion grade �1 or
�32 ml/m2

Quinapril reduced LA volume by 9.7 ml/m2

lic dysfunction
r LA volume
2

Quinapril improved LA total emptying fraction (5.4% vs. �2.0%;
p � 0.006)

symptomatic
tory AF

After 3 months, patients who converted to sinus (n � 39)
had reduction in LA volume (59 � 12 ml vs. 50 � 11 ml,
p � 0.01)

d mitral valve At 3 months, 60% of those who had LA reduction converted to
sinus versus 21% in those with mitral valve surgery alone

nduced by rapid
cular pacing for
dogs

Omapatrilat reduced LA area index (0.71 � 0.04 mm2/kg vs.
0.91 � 0.06 mm2/kg, p � 0.05)

nduced by rapid
cular pacing for
dogs

At the end of the study, 42% of placebo group decreased
LA fractional area shortening versus 9% in the enalapril
group (p � 0.01); placebo group had longer duration of AF
(720 � 461 s vs. 138 � 83 s, p � 0.001)

arction induced
ts

Spironolactone reduced atrial fibrosis more than atenolol and
lisinopril (% fibrosis � 5.8 � 1.4 in untreated group vs.
4.1 � 1.2, 4.3 � 0.9, and 4.4 � 0.9 in spironolactone,
lisinopril, and atenolol groups, respectively; p � 0.05 for
all groups)

nduced by rapid
cular pacing for
dogs

Pirfenidone reduced vulnerability to AF; reduced LA fibrosis;
reduced expression of TGF-B1

induced by rapid
or 6 weeks in

Inducibility and duration of AF were lower in the cilazapril group
(AF inducibility, 65.7% vs. 95.7%, p � 0.05; AF duration,
531.5 � 301.2 s vs. 1,432.2 � 526.5 s, p � 0.01); LA
volume was significantly smaller; LA ejection fraction, higher
in the cilazapril group

induced by rapid
pacing in dogs
s

The mean AF duration in the control group was significantly
longer than in the candesartan group (1,333 � 725 s vs.
411 � 301 s, p � 0.01); candesartan group had a
significantly lesser interstitial fibrosis than the control group
(7 � 2% vs. 16 � 1% at the RA appendage, p � 0.001)
g

Pop

c func
olume

diasto
e �1 o
ml/m

s with
-refrac

isolate
se

ilure i
ventri
eks in

ilure i
ventri
eks in

dial inf
istar ra

ilure i
ventri
eks in

ed AF
acing f

ed AF
atrial
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A remodeling in lone AF and may, therefore, have the
otential in reducing AF recurrence after successful conver-
ion to sinus. The impact of angiotensin blockade on AF as
primary outcome in patients without LV systolic dysfunc-

ion requires further studies.
ntifibrotic drugs. Pharmacologic therapy targeted at the
brotic substrate itself may play an important role in the
anagement of AF. Aldosterone receptor antagonists, such

s spironolactone and eplerenone, appear to have a benefi-
ial impact in modifying the extracellular matrix, especially
n terms of collagen deposition and fibrosis. Spironolactone
as been shown to reverse the effects of LA remodeling by
educing atrial hyperexcitability (71), inhibition of vascular
ng-I/Ang-II conversion (152), and attenuation of atrial
brosis (56,125,153). In animal models, Milliez et al. (125)
emonstrated that spironolactone attenuated atrial fibrosis
ore than did lisinopril and atenolol when given to heart

ailure rats though all 3 drugs reduced LV filling pressure
imilarly. Moreover, spironolactone given at 20 mg/kg/day
revented cardiac fibrosis without affecting blood pressure
nd LV hypertrophy (56). The role of spironolactone and
plerenone on arrhythmia prevention was inferred from the
ALES (Randomized ALdactone Evaluation Study) (154)

linical Trials Involving ACE Inhibitors or Angiotensin Receptor Blo

Table 3 Clinical Trials Involving ACE Inhibitors or Angiotensin R

Clinical Trial, n (Ref #) Study Design

Hypertension trials

CAPP, n � 10,985 (143) RCT (captopril vs. conventional therapy) primary
point—fatal and nonfatal MI, stroke, and othe
deaths; AF was secondary analysis

STOP-2, n � 6,614 (144) RCT (beta-blockers or hydrochlorothiazide with
amiloride vs. enalapril, captopril, or calcium-c
blockers) in older hypertensive patients; prima
points—fatal stroke, fatal MI, and other fatal
events; AF was a secondary analysis

LIFE, n � 9,193 (135) RCT (losartan vs. atenolol) in hypertensive patien
LVH; AF was a secondary end point

VALUE, n � 15,313 (145) RCT (valsartan vs. amlodipine) in hypertensive pa
at high risk of CV events; primary end points—
cardiac mortality and morbidity; AF was a sec
analysis

Pooled RR

Post-MI trials

GISSI-3, n � 17,748 (146) RCT (lisinopril vs. placebo); retrospective analysis
and atrial flutter incidence in hospital

TRACE, n � 1,749 (147) RCT (trandolapril vs. placebo) in post-MI CHF;
retrospective analysis of AF

Pooled RR

CHF trials

Val-HeFT, n � 5,000 (140) RCT (valsartan vs. placebo); retrospective analysi

SOLVD, n � 374 (142) Retrospective analysis (enalapril vs. placebo)

CHARM, n � 6,446 (139) RCT (candesartan vs. placebo)

Pooled RR

CE � angiotensin-converting enzyme; AF � atrial fibrillation; CAPP � Captopril Prevention Pro
HF � congestive heart failure; CI � confidence interval; CV � cardiovascular; GISSI-3 � Gruppo It
oint Reduction in Hypertension study; LVH � left ventricular hypertrophy; MI � myocardial infarctio
rial; STOP-2 � Swedish Trial in Old Patients with Hypertension-2 study; TRACE � Trandolapril C
ong-Term Use Evaluation trial.
nd EPHESUS (Eplerenone Post-AMI Heart Failure Ef- 1
cacy and Survival Study) (155) trials where patients treated
ith these drugs had lower rates of sudden cardiac deaths.
o studies have been done to assess the direct effects of

ldosterone antagonists on AF prevention and treatment.
rosslink breakers. Alagebrium chloride (ALT-711), or
,5-dimethyl-3-(2-oxo-2-phenylethyl)-thiazolium chloride,
s the most advanced agent in the new class of compounds
hat have been shown to chemically “break” advanced
lycation end product crosslinks. Conceptually, such effects
ay restore more normal function to organs and tissues that

ave lost flexibility as a result of the crosslinks or tissue
lterations induced by inflammation and scarring (92). In
ne study, 16 weeks of treatment with alagebrium resulted
n a decrease in LV mass and improvement in LV diastolic
lling and quality of life in patients with diastolic heart
ailure (92). Alagebrium improved total arterial compliance
n older humans with vascular stiffening (96,156). Whether
LT-711 has the potential of reversing LA remodeling and

educing vulnerability to AF induced by arterial stiffness
equires further investigation.

ther drugs. The effect of beta-blockers on LA remodel-
ng and AF suppression has not been well studied. Meto-
rolol and carvedilol can attenuate LV remodeling (157–

and Impact on AF

tor Blockers and Impact on AF

Mean Follow-Up Time,
Unless Otherwise Specified

Risk Ratio (95% CI)
for New AF

6.1 yrs 0.87 (0.68–1.11); significant decrease
of AF in captopril arm

33,249 patient-yrs 1.12 (0.95–1.32); no difference in AF
between 2 arms

4.8 yrs 0.66 (0.54–0.81); significant reduction
of new AF in losartan arm

4.2 yrs 1.20 (0.97–1.48); no difference
between 2 arms

0.94 (0.72–1.23)

0.5 yr 0.92 (0.83–1.01)

2–4 yrs 0.52 (0.31–0.87)

0.73 (0.43–1.26)

1.9 yrs 0.67 (0.54–0.83)

2.9 yrs 0.22 (0.12–0.43)

3.17 yrs 0.82 (0.68–1.00)

0.57 (0.37–0.89)

ARM � Candesartan in Heart failure Assessment of Reduction in Mortality and morbidity trial;
er lo Studio della Sopravvivenza nell’Infarto Miocardico trial; LIFE � Losartan Intervention for End
� randomized controlled trial; RR � relative risk; SOLVD � Studies Of Left Ventricular Dysfunction
Evaluation trial; Val-HeFT � Valsartan Heart Failure Trial; VALUE � Valsartan Antihypertensive
ckers
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59). Metoprolol, administered 100 to 200 mg daily, was
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seful in preventing AF recurrence in patients with persis-
ent AF who were successfully cardioverted to sinus rhythm
either by direct current cardioversion or with antiarrhyth-
ic drugs) (160). Simvastatin has also been shown to reduce

he propensity to AF in animal studies (161) and in human
tudies (162–164), possibly through its antioxidant effects
161,162). Omapatrilat, a vasopeptidase inhibitor, has been
hown to protect cellular bioenergetics during stress (121).
mapatrilat prevented derangement of energy-dependent

nzymatic and cellular reactions when given to animals
efore induction of experimental heart failure. The ability of
mapatrilat to maintain adenosine triphosphate levels and
hosphoryl transfer function of creatine kinase and adenyl-
te kinase in failing atria and ventricle appeared to be related
o the reduction of oxidative stress and high energy demand
hrough vasopeptidase inhibition (121).
lectrical cardioversion and radiofrequency ablation.
onversion of AF to sinus rhythm, whether by electrical

ardioversion or radiofrequency ablation, has been shown to
educe LA size (117,118,127,165) and improve LA func-
ion (166,167). In 57 consecutive patients with symptomatic
rug-refractory AF, radiofrequency ablation reverted 39
68%) to sinus (127). This was accompanied by a significant
eduction in LA antero-posterior dimension (4.5 � 0.3 cm
s. follow-up 4.2 � 0.2 cm, p � 0.01), and LA volume
59 � 12 ml vs. follow-up 50 � 11 ml, p � 0.01) at 3
onths follow-up. In contrast, patients who remained in
F after catheter ablation had increased LA size at 3
onths follow-up (4.5 � 0.3 cm to 4.8 � 0.3 cm, p � 0.05;

3 � 7 ml to 68 � 8 ml, p � 0.05). Reversal of electrical
emodeling can usually be rapidly achieved (168,169), but
ulnerability to the recurrence of AF depends on the
mount of atrial fibrosis and the size of the LA (117).
ormalization of atrial structure and function generally lags

ehind the reversal of electrical remodeling (169).
ardiac surgery and surgical ablation. Mitral valve sur-

ery for stenosis or regurgitation can relieve LA pressure
nd volume overload with reduction of LA size and im-
roved LA function (166). Atrial fibrillation patients who
nderwent LA reduction together with mitral valve surgery
ad lower AF recurrence after 3 months when compared to
hose who did not have LA reduction (122). Further
eduction in LA size was seen in those who remained in
inus rhythm when compared to those who had persistent or
ecurrent AF (122).

Successful surgical ablation of AF (Maze procedure) has
een shown to reduce neurohormonal activation as evi-
enced by a decrease in ANP, BNP, and angiotensin II
77,170). It has been demonstrated to reduce LA size and
mprove LA transport function and LV diastolic function
171).

onclusions

here have been considerable advances in our understand-

ng of the mechanisms of LA remodeling. The evidence for
tight relationship between LA remodeling and AF devel-
pment is highly compelling. We recognize that an associ-
tion cannot be regarded as causation, but the evidence to
ate is supportive of LA remodeling being an integral
ntermediate in the cascade of events that culminate in AF
evelopment. To what extent prevention and reversal of
trial remodeling will translate into a reduction in the
urden of AF and other adverse clinical outcomes remains
o be seen. We have now reached the stage where we should
est the efficacy of various strategies that can identify and
everse LA structural and electrical remodeling in its earlier
tages, and determine whether these strategies can effec-
ively lower the risk of first AF. If successful, these primary
revention strategies may exert a major impact on AF as a
ublic health problem.
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