Piercing Balls Sitting on a Table by a Vertical Line

HIROSHI MAEHARA AND AI OSHIRO

Let F_n be a family of disjoint n balls all sitting on a fixed horizontal table T. Let ℓ denote a vertical line that meets T. We prove that if ℓ meets $2k + 1$ balls in F_n, then the radius of the smallest ball among the $2k + 1$ balls is at most $(2 - \sqrt{3})^k$ times the radius of the biggest ball among the $2k + 1$ balls. Using this result we prove that for any F_n the average number of balls an ℓ meets is at most $\log n + o(1)$. A similar result for a two-dimensional version is also given together with a lower bound of the least upper bound.

© 2000 Academic Press

1. Introduction

By a table T we mean a region in the xy-plane in R^3 bounded by a simple closed curve. A ball B is said to be sitting on a table T if B is contained in the upper half-space $z \geq 0$ and B is tangent to the xy-plane at a point on T. A line parallel to the z-axis is called a vertical line.

Theorem 1. Suppose that a vertical line ℓ meets $2k + 1$ balls that are mutually nonoverlapping and all sitting on a table T. Then the radius of the smallest ball among the $2k + 1$ balls is less than or equal to $(2 - \sqrt{3})^k$ times the radius of the biggest ball among them. This bound is sharp.

Let F be a family of mutually nonoverlapping n balls all sitting on a fixed table T. A vertical line that passes through $p \in T$ is denoted by ℓ_p. The number of balls in F that ℓ_p meets is called the piercing number of F at p, and denoted by $h(p, F)$. The average piercing number $\overline{h}(F)$ is defined by

$$\overline{h}(F) = \frac{1}{\text{area}(T)} \int_T h(p, F) dp,$$

where $\text{area}(T)$ denotes the area of T.

Theorem 2. Let F be a set of mutually nonoverlapping n balls all sitting on a fixed table T. Then $\overline{h}(F) < \log n + o(1)$.

This result is applied in [6] to estimate the number of balls sitting on a table forming a certain configuration.

How about a two-dimensional version of this theorem? A family \mathcal{D} of nonoverlapping disks in R^2 is simply called a family of coins in R^2. A support L is a line-segment on the x-axis. A coin D is said to be sitting on a support L if D is contained in the ‘upper’ half-plane $y \geq 0$ and tangent to the x-axis at a point on L. For an $x \in L$, let ℓ_x denote the line through x and parallel to the y-axis. Let $h(x, \mathcal{D})$ denote the number of coins ℓ_x meets. Then the average piercing number $\overline{h}(\mathcal{D})$ is defined by

$$\overline{h}(\mathcal{D}) = \frac{1}{|L|} \int_L h(x, \mathcal{D}) dx,$$

where $|L|$ denotes the length of L. Then, we prove the following.

Theorem 3. Let \mathcal{D} be a family of n coins in R^2 sitting on a fixed support L. Then $\overline{h}(\mathcal{D}) < 2 \log n + o(1)$.
Theorem 4. For any n, there is a family \mathcal{D} of n coins sitting on a fixed support L such that

$$
\frac{c \log n}{\log \log n} < \bar{h}(\mathcal{D}),
$$

where c is a positive constant.

Problem 1. Improve the bounds in Theorems 2–4.

Problem 2. In the three-dimensional version, find a result like Theorem 4.

In view of a set of coins (not necessarily sitting on a support), the following result is proved by Alon et al. [1]. For any set of n unit coins in the plane, there is a direction α such that every line with direction α intersects at most $O(\sqrt{n \log n})$ coins. They also show that this bound is sharp. On the other hand, there is a family of n coins (of different sizes) such that for any direction α in the plane, there is a line with this direction that intersects at least $n - 1$ coins (see Theorem 1 of [5]).

2. Proof of Theorem 1

Lemma 1. Suppose that a vertical line ℓ meets three balls that are mutually nonoverlapping and sitting on a horizontal table T. Then the radius of the smallest ball among the three is at most $(2 - \sqrt{3})$ times the radius of the biggest ball.

Proof. Let B_0, B_1, B_2 be three balls mutually nonoverlapping of radii r_0, r_1, r_2 ($r_0 \geq r_1 \geq r_2$), respectively, all sitting on the table T. Let p_i be the contact point of B_i with the table T, and D_i be the disk obtained by projecting B_i orthogonally into T. Then D_i has the center p_i and has the same radius as B_i. Notice that since the vertical line ℓ meets all $B_0, B_1, B_2, D_0 \cap D_1 \cap D_2$ is nonempty, and p_0, p_1 lie outside D_2, p_0 lies outside D_1. Note that, if $D_0 \cap D_1 \cap D_2$ contains more than one point, then B_1 is bigger than B_2. Let us shrink B_1 by keeping the contact point p_1 fixed on T until $D_0 \cap D_1 \cap D_2$ becomes a single point q. (This is indeed possible.) Denote the radius of the new B_1 by the same symbol r_1. Then $r_2 \leq r_1 \leq r_0$. When B_i, B_j are tangent to each other, the distance between their centers is equal to $r_i + r_j$, and the difference in ‘heights’ is equal to $|r_i - r_j|$. Hence, generally, we have

$$
\frac{p_i p_j}{p_i p_j} \geq (r_i + r_j)^2 - (r_i - r_j)^2 = 4r_i r_j,
$$

and hence $p_i p_j$ is greater than or equal to $2\sqrt{r_i r_j}$.

Let $\alpha = \angle p_0 q p_1, \beta = \angle p_1 q p_2, \gamma = \angle p_2 q p_0$. First, suppose that one of α, β, γ, say γ, is less than $\pi/2$. Then we have

$$
r_2^2 + r_0^2 \geq p_0 q^2 + q p_0^2 > p_0 p_2^2 \geq 4r_0 r_2.
$$

Hence $r_2^2 - 4r_0 r_2 + r_0^2 > 0$, and hence $r_2 < 2r_0 - \sqrt{4r_0^2 - r_0^2} = (2 - \sqrt{3})r_0$. Similarly, if $\alpha < \pi/2$ or $\beta < \pi/2$, then we have $r_2 \leq r_1 < (2 - \sqrt{3})r_0$ or $r_2 < (2 - \sqrt{3})r_0$.

Now, suppose that all α, β, γ are greater than or equal to $\pi/2$. Then $\alpha + \beta + \gamma = 2\pi$, and since $q p_i \leq r_i, i = 0, 1, 2$, we have

$$
r_0^2 + r_1^2 - 2r_0 r_1 \cos \alpha \geq p_0 p_1^2 \geq 4r_0 r_1,
$$

$$
r_1^2 + r_2^2 - 2r_1 r_2 \cos \beta \geq p_1 p_2^2 \geq 4r_1 r_2.
$$
Therefore following way:

Then, by Lemma 1, Hence we have the lemma.

\[
\begin{align*}
 r_1^2 - 2r_0(2 + \cos \alpha)r_1 + r_0^2 & \geq 0, \\
 r_2^2 - 2r_1(2 + \cos \beta)r_2 + r_1^2 & \geq 0.
\end{align*}
\]

Thus \(r_2 \) is less than or equal to

\[
 r_0(2 + \cos \alpha - \sqrt{(2 + \cos \alpha)^2 - 1}) (2 + \cos \beta - \sqrt{(2 + \cos \beta)^2 - 1})
\]

where \(\pi/2 \leq \alpha, \pi/2 \leq \beta, \alpha + \beta = 2\pi - \gamma \leq 3\pi/2 \). When does \((1) \) take its maximum value? Since \(g(\beta) := 2 + \cos \beta - \sqrt{(2 + \cos \beta)^2 - 1} \) is monotone increasing (because \(g'(\beta) > 0 \) for \(\pi/2 < \beta < \pi \)), \((1) \) takes its maximum value when \(\beta = 3\pi/2 - \alpha \). In this case, \(\cos \beta = -\sin \alpha \), and hence it is enough to consider the maximum value of

\[
 f(\alpha) := r_0(2 + \cos \alpha - \sqrt{(2 + \cos \alpha)^2 - 1}) (2 - \sin \alpha - \sqrt{(2 - \sin \alpha)^2 - 1}).
\]

The graph of \(y = f(\alpha) \) for \(\pi/2 \leq \alpha \leq \pi \) is given in Figure 1. Hence, the maximum value of \(f(\alpha) \) is attained when \(\alpha = \pi/2 \) or \(\alpha = \pi \), and the maximum value is

\[
 f(\pi/2) = f(\pi) = r_0(2 - \sqrt{3}).
\]

Hence we have the lemma.

Proof of Theorem 1. Suppose that a vertical line \(\ell \) meets \((2k+1)\) balls \(B_i \) with radius \(r_i, i = 0, 1, 2, \ldots, 2k \), all sitting on \(T \). Suppose \(r_0 \geq r_1 \geq \cdots \geq r_{2k} \), and let \(\rho = 2 - \sqrt{3} \). Then, by Lemma 1,

\[
 r_{2k} \leq \rho r_{2k-2}, r_{2k-2} \leq \rho r_{2k-4}, \ldots, r_2 \leq \rho r_0.
\]

Hence \(r_{2k} \leq \rho^k r_0 \).

To see that the bound is sharp, now let \(B(i), i = 0, 1, 2, \ldots, 2k \), be the balls defined in the following way:

<table>
<thead>
<tr>
<th>Ball</th>
<th>Center</th>
<th>Radius</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B(4j))</td>
<td>((\rho^{2j}, 0, \rho^{2j}))</td>
<td>(\rho^{2j})</td>
</tr>
<tr>
<td>(B(4j + 1))</td>
<td>((-\rho^{2j}, 0, \rho^{2j}))</td>
<td>(\rho^{2j})</td>
</tr>
<tr>
<td>(B(4j + 2))</td>
<td>((0, \rho^{2j+1}, \rho^{2j+1}))</td>
<td>(\rho^{2j+1})</td>
</tr>
<tr>
<td>(B(4j + 3))</td>
<td>((0, -\rho^{2j+1}, \rho^{2j+1}))</td>
<td>(\rho^{2j+1})</td>
</tr>
</tbody>
</table>

\(\rho = 2 - \sqrt{3} \).
Then these \((2k + 1)\) balls are nonoverlapping, all tangent to the \(z\)-axis and the \(xy\)-plane. The radius of the smallest ball is \((2 - \sqrt{3})^k\) times the radius of the biggest ball. \(\square\)

3. Proof of Theorem 2

Let \(\varphi\) denote the orthogonal projection of \(\mathbb{R}^3\) into the \(xy\)-plane. For each \(B \in \mathcal{F}\), define \(\chi_B : T \to \{0, 1\}\) by

\[
\chi_B(p) = \begin{cases}
1 & \text{if } p \in \varphi(B) \\
0 & \text{if } p \notin \varphi(B).
\end{cases}
\]

Then

\[
h(p, \mathcal{F}) = \sum_{B \in \mathcal{F}} \chi_B(p).
\]

Let \(d\) be the diameter of \(T\). If the radius of \(B \in \mathcal{F}\) is greater than \(d\), then we can shrink the ball \(B\) without changing the values \(\chi_B(p)\) \((p \in T)\) until its radius becomes \(d\). Hence, we may assume that every ball in \(\mathcal{F}\) has radius \(\leq d\). Let \(\mathcal{F}_1\) be the subfamily of \(\mathcal{F}\) consisting of those balls whose radii are at most \(d/\sqrt{n}\). Then, for large \(n\),

\[
\int_T h(p, \mathcal{F}_1)dp \leq (\frac{1}{4} \log n) \text{area}(T) \quad (2)
\]

To see this, suppose that (2) does not hold. Then, since

\[
\int_T h(p, \mathcal{F}_1)dp = \int_T \sum_{B \in \mathcal{F}_1} \chi_B(p)dp = \sum_{B \in \mathcal{F}_1} \int_T \chi_B(p)dp
\]

\[
\leq \sum_{B \in \mathcal{F}_1} \pi \left(\frac{d}{\sqrt{n}}\right)^2 = (\#\mathcal{F}_1)\pi \frac{d^2}{n},
\]

where \(\#\mathcal{F}_1\) is the cardinality of \(\mathcal{F}_1\), we have

\[
\frac{\text{area}(T)}{5\pi d^2} n \log n < \#\mathcal{F}_1 \leq n,
\]

a contradiction since \(n\) is large. Hence (2) holds.

Let \(\mathcal{F}_2 = \mathcal{F} - \mathcal{F}_1\). Then no vertical line meets more than \(\frac{4}{5} \log n\) balls in \(\mathcal{F}_2\). To see this, suppose that there is a vertical line \(\ell\) that meets more than \(\frac{4}{5} \log n\) balls of \(\mathcal{F}_2\). Then, by Theorem 1, the radius of the smallest ball the line \(\ell\) meets is at most

\[
d(2 - \sqrt{3})^{(2/5) \log n} = d(2 + \sqrt{3})^{-(2/5) \log n} = \frac{d}{n^{(2/5) \log(2 + \sqrt{3})}} < \frac{d}{\sqrt{n}}
\]

(because \(\frac{2}{5} \log(2 + \sqrt{3}) = 0.5267\ldots\)), a contradiction. Hence, no vertical line meets more than \(\frac{4}{5} \log n\) balls of \(\mathcal{F}_2\). Therefore,

\[
\int_T h(p, \mathcal{F}_2)dp < (\frac{1}{4} \log n) \text{area}(T) \quad (3)
\]

From (2) and (3), we have the theorem. \(\square\)
4. PROOF OF THEOREM 3

LEMMA 2. Suppose that y-axis meets $3k + 1$ coins sitting on a support L. Then the radius of the smallest coins is less than or equal to $(\sqrt{2} - 1)^{2k}$ times the radius of the biggest coin.

PROOF. First, consider the case $k = 1$. Suppose that the y-axis meets four coins D_0, D_1, D_2, D_3 of radii $r_0 \geq r_1 \geq r_2 \geq r_3$, sitting on a support L. How large r_3 can be for a fixed r_0? It is easy to see that r_3 becomes the largest when D_0, D_1 are of the same size, and D_2, D_3 are of the same size, all tangent to the y-axis as in Figure 2. In this case, it is not difficult to see that $r_2 = r_3 = (\sqrt{2} - 1)^2 r_0$. Hence $r_3 \leq (\sqrt{2} - 1)^2 r_0$.

Now the general case. Suppose that y-axis meets $3k + 1$ coins of radii $r_0 \geq r_1 \geq \cdots \geq r_{3k}$ all sitting on a support L, and let $\sigma = (\sqrt{2} - 1)^2$. Then

$$r_{3k} \leq \sigma r_{3k-3}, \; r_{3k-3} \leq \sigma r_{3k-6}, \ldots, \; r_3 \leq \sigma r_0.$$

Hence $r_{3k} \leq \sigma^k r_0 = (\sqrt{2} - 1)^{2k} r_0$. □

PROOF OF THEOREM 3. The proof is similar to that of Theorem 2. We may suppose that $|L| = 1$ and that every coin in D has radius ≤ 1. Let D_1 be the subfamily of D consisting of those coins with radii at most $1/n$. Then, for large n,

$$\int_L h(x, D_1)dx \leq 1.$$

Let $D_2 = D - D_1$. Then similarly to the proof of Theorem 2, it follows that no line parallel to the y-axis meets more than $(1.71) \log n$ coins in D_2, where $1.70 \approx 3/(2 \log(\sqrt{2} + 1))$. Hence

$$\int_L h(x, D_2)dx \leq (1.71) \log n.$$

Therefore we have Theorem 3. □

5. PROOF OF THEOREM 4

Let ψ denote the orthogonal projection of R^2 into the x-axis. The length of the line-segment $X = \overline{pq}$ is denoted by $|X|$, or by the same notation \overline{pq}.
LEMMA 3. Let \(D_0, D_1, D_2 \) be three coins with radius \(r_0, r_1, r_2 \) \((r_0 > r_1 > r_2)\), all sitting on a support \(L \). Let \(p_i \) be the contact point of \(D_i \) with \(L \). Suppose that \(D_0, D_1, D_2 \) are tangent to each other. Then

\[
\frac{1}{\sqrt{r_2}} = \frac{1}{\sqrt{r_1}} + \frac{1}{\sqrt{r_0}}
\]

and

\[
|\psi(D_1) \cap \psi(D_2)| = \frac{r_1 r_2}{r_0}.
\]

PROOF. Regarding the \(x \)-axis as a circle of infinite radius, the first equality follows easily from the so-called Soddy’s formula (see, e.g., Coxeter [3]). This equality is also presented in [4]. We show the second equality.

\[
|\psi(D_1) \cap \psi(D_2)| = r_1 + r_2 - \frac{p_1 p_2}{r_1 r_2} = r_1 + r_2 - 2\sqrt{r_1 r_2} = (\sqrt{r_1} - \sqrt{r_2})^2 = \left(\sqrt{\frac{1}{r_1}} - \frac{1}{\sqrt{r_0} + 1/\sqrt{r_1}}\right)^2 = \left(\frac{\sqrt{r_1}}{\sqrt{r_0} + 1/\sqrt{r_1}}\right)^2 = \frac{r_1 r_2}{r_0}.
\]

Let us denote by \(r(D) \) the radius of a coin \(D \). A chain is a sequence \(D_1 D_2 \ldots D_n \) of coins such that each consecutive coins are tangent to each other.

LEMMA 4. Let \(D_0, D_1 \) be two coins tangent to each other, both sitting on a support \(L \), and \(r(D_0) > r(D_1) \). Let \(D_1 D_2 \ldots D_n \) be a chain with \(r(D_1) > r(D_2) > \cdots > r(D_n) \) such that each \(D_i \) is tangent to both \(D_0, L \). Let \(p_i \) be the contact point of \(D_i \) with \(L \). Then

\[
\frac{2 r(D_0)}{n} < \frac{2 r(D_0)}{n}.
\]

PROOF. We may suppose that \(r(D_0) = 1 \). First consider the special case when the contact point \(p_1 \) is an endpoint of the line-segment \(\psi(D_0) \). Then it follows easily that \(r(D_1) = \frac{1}{2} \). Then, by applying Lemma 3, we have \(r(D_k) = 1/(k+1)^2 \) \(k = 2, \ldots, n \). Since \(|\psi(D_k) \cap \psi(D_{k+1})| = r(D_k)r(D_{k+1}) \) by Lemma 3, we have

\[
\frac{p_k p_{k+1}}{r_k r_{k+1}} = r(D_k) + r(D_{k+1}) - |\psi(D_k) \cap \psi(D_{k+1})| = \frac{1}{(k+1)^2} + \frac{1}{(k+2)^2} = \frac{2}{(k+1)(k+2)} - \frac{1}{k+1} = \frac{1}{k+1} - \frac{2}{k+2}.
\]

Hence

\[
\frac{p_1 p_n}{r_1 r_n} = \sum_{k=1}^{n-1} \frac{p_k p_{k+1}}{r_k r_{k+1}} = \sum_{k=1}^{n-1} \left(2 \frac{2}{k+1} - \frac{2}{k+2}\right) = 1 - \frac{2}{n+1}.
\]

Thus, if \(p_1 \) is an endpoint of \(\psi(D_0) \), then

\[
\frac{p_n p_0}{r_n r_0} = \frac{p_1 p_0}{r_1 r_0} = \frac{2}{n+1}.
\]

If \(p_1 \) is interior to \(\psi(D_0) \), then clearly \(\frac{p_n p_0}{r_n r_0} < 2/(n+1) \). If \(p_1 \) is exterior to \(\psi(D_0) \), then considering the subchain \(D_2 D_3 \ldots D_n \) of \(n-1 \) coins, we can see that \(\frac{p_n p_0}{r_n r_0} < 2/n \). \(\square \)
Let A, B be two coins tangent to each other, both sitting on a support L. Then the curvilinear triangle formed by A, B, L is called the hole ABL. Let C be the largest coin that can be inscribed in the hole ABL. The two-tail-chain of order n inscribed in the hole ABL is a sequence of coins

$$
\Gamma(n) = A_n A_{n-1} \ldots A_1 C B_1 B_2 \ldots B_n
$$

such that each A_j is tangent to both A, L and each B_i is tangent to both B, L. Note that

$$
r(A_n) < r(A_{n-1}) < \cdots < r(A_1) < r(C) > r(B_1) > r(B_2) > \cdots > r(B_n).
$$

Let a_n, b_n be the contact points of A_n with L and B_n with L. Then the line-segment $a_n b_n$ is called the span of $\Gamma(n)$, and its length (also called the span of $\Gamma(n)$) is denoted by $\lambda(\Gamma(n))$. Let us say A covers the center of B if $\psi(A)$ contains the contact point of B, L.

Lemma 5. Let A, B be two tangent coins sitting on a support L with $r(A) \geq r(B)$. Let $\Gamma(n)$ be the two-tail-chain of order n inscribed in the hole ABL. Suppose that A does not cover the center of B. Then, no coin in $\Gamma(n)$ covers the center of other coin in $\Gamma(n)$, and

$$
\lambda(\Gamma) > \frac{ab}{n} \left(1 - \frac{4}{n}\right),
$$

where a, b are the contact points of A, L and of B, L, respectively.

Proof. Let $\Gamma(n) = A_n \ldots A_1 C B_1 \ldots B_n$. Suppose that, a coin in $\Gamma(n)$, say A_j, covers the center of A_{j+1}. Then $r(A_{j+1}) \leq r(A_j)/4$, which implies that $r(A) \leq r(A_j)$, a contradiction. Hence, no coin in $\Gamma(n)$ can cover the center of another coin in $\Gamma(n)$. Now, applying the above lemma to the chain $C A_1 \ldots A_n$ of $n+1$ coins and to the chain $C B_1 \ldots B_n$ of $n+1$ coins, we have

$$
\frac{2r(A)}{n} < \frac{2ab}{n}, \quad \frac{2r(B)}{n} < \frac{2ab}{n}.
$$

Hence $\lambda(\Gamma(n)) = \frac{ab}{n} - \frac{2ab}{n} > \frac{ab}{n} \left(1 - \frac{4}{n}\right).$ \hfill \Box

Proof of Theorem 4. Let $L = p \overline{p}$ be a support of unit length. Let $k \geq 6$ be a fixed integer. For a positive integer m, let us construct a family D of coins all sitting on L in the following way.

1. Let A, B be two tangent coins of the same radius, sitting on L at p and at q, respectively.
2. Inscribe in the hole ABL the two-tail-chain $\Gamma_1(k)$ of order k.
3. Under the chain $\Gamma_1(k)$, $2k$ holes appear. In these $2k$ holes, inscribe the two-tail-chains $\Gamma_1(2^2k), \ldots, \Gamma_{2k}(2^2k)$ of order 2^2k.
4. Under each chain of order 2^2k, $2 \cdot 2^2k$ holes appear. In each of these holes, inscribe the two-tail-chain of order 3^2k.
5. Repeat the same process till the two-tail-chains of order m^2k are inscribed.

Let D be the family of coins obtained in this way. How many coins does D have? Let us make a table:

<table>
<thead>
<tr>
<th>Order of two-tail-chains</th>
<th>Number of chains</th>
<th>Number of holes under a chain</th>
</tr>
</thead>
<tbody>
<tr>
<td>2^k</td>
<td>1</td>
<td>2^k</td>
</tr>
<tr>
<td>2^2k</td>
<td>2^k</td>
<td>$2 \cdot 2^2k$</td>
</tr>
<tr>
<td>3^2k</td>
<td>$2 \cdot 2^2k$</td>
<td>$2 \cdot 3^2k$</td>
</tr>
<tr>
<td>4^2k</td>
<td>$2 \cdot 3^2k$</td>
<td>$2 \cdot 4^2k$</td>
</tr>
<tr>
<td>5^2k</td>
<td>$2 \cdot 4^2k$</td>
<td>$2 \cdot 5^2k$</td>
</tr>
<tr>
<td>\cdots</td>
<td>\cdots</td>
<td>\cdots</td>
</tr>
<tr>
<td>m^2k</td>
<td>$2^{m-1}(m-1)!2^{m-1}$</td>
<td>$2 \cdot m^2k$</td>
</tr>
</tbody>
</table>
Denote by N the number of coins in D. Then

$$N = 2 + (2k + 1) + 2(2 \cdot 2^2 k + 1) + \cdots + 2^{m-1}((m - 1)!2^{m-1}(2 \cdot m^2k + 1),$$

and it is not difficult to see that N is less than the double of the last term of the right-hand side. Hence,

$$2^{m-1}((m - 1)!2^{m-1}(2 \cdot m^2k + 1) < N < 2 \cdot 2^{m-1}((m - 1)!2^{m-1}(2 \cdot m^2k + 1).$$

Since $m! = \sqrt{2\pi m}(m/e)^{m}e^{\theta/12m}$ ($0 < \theta < 1$) by Stirling’s formula (see, e.g., Artin [2, p. 24]),

$$2^{m-1}((m - 1)!2^{m-1}(2 \cdot m^2k + 1) = 2^{m}(m!)^2k^m \left(1 + \frac{1}{2m^2k}\right)$$

$$= 2\pi m(2k)\left(\frac{m}{e}\right)^{2m}e^{\theta/12m}\left(1 + \frac{1}{2m^2k}\right).$$

Hence

$$m^{2m} < N < 2 \cdot 2^{m}(m!)^2k^m \left(1 + \frac{1}{2m^2k}\right) < 5\pi m(2k)^m\left(\frac{m}{e}\right)^{2m}.$$

Thus, $m^{2m} < N < m^{3m}$ for $m \geq k$, and hence $2m \log m < \log N < 3m \log m$. Thus

$$2m < \frac{\log N}{\log m} < 3m,$$

and $m < \log N$. Since $\log N < 3m \log m < m^2$, we have $\log \log N < 2 \log m$. Therefore

$$\frac{\log N}{3 \log \log N} < m < \frac{\log N}{\log \log N}.$$

Next, let us consider the sum of the spans of the two-tail-chains of order m^2k. By Lemma 5, $\lambda(\Gamma_1(k)) > 1 - 4/k$. The span of $\Gamma_1(k)$ is divided into $2k$ intervals by $2k - 1$ contact points inside the span, and each $\Gamma_j(2^2k)$ covers more than $1 - 4/(2^2k)$ part of one interval. Hence the sum of the spans of the chains of order 2^2k is greater than $(1 - 4/(1^2k))(1 - 4/(2^2k))$. Similarly, it follows that the sum of the spans of chains of the order j^2k is greater than

$$s(j) := \left(1 - \frac{4}{1^2k}\right)\left(1 - \frac{4}{2^2k}\right)\cdots\left(1 - \frac{4}{j^2k}\right).$$

Since $k \geq 6$, using the inequality $\log(1 - t) > -t - t^2$ for $0 < t < 0.69$, we have

$$\log s(m) = \sum_{j=1}^{m} \log(1 - 4/(j^2k)) > -4 \sum_{j=1}^{\infty} (1/(j^2k)) - 16 \sum_{j=1}^{\infty} (1/(j^4k^2)).$$

Since $\sum_{j=1}^{\infty} (1/j^2) = \pi^2/6$, $\sum_{j=1}^{\infty} (1/j^4) = \pi^4/90$,

$$\log s(m) > -4\pi^2/6k + -16\pi^4/90k^2.$$

Thus, letting $k = 6$, we have $\log s(m) > -1.5777$, and hence $s(m) > e^{-1.5777} = 0.2064$. Note that if $x \in L$ is covered by a chain of order m^2k, then $h(x, D) = m + 1$. Hence $\bar{h}(D) > (m + 1)s(m) > (0.2064)m$.
Now, if \(n \) is sufficiently large, then, letting \(m = \lfloor (\log n)/(3 \log \log n) \rfloor \), and applying the above construction with \(k = 6 \), make a family \(D \). If the number of coins in \(D \) is less than \(n \), then add very tiny coins until the number of coins in \(D \) becomes \(n \). Then, we have

\[
\overline{h}(D) > (0.2064)m > (0.2064) \frac{\log N}{3 \log \log N} > \frac{(0.2064)m}{3} > \frac{c \log n}{\log \log n},
\]

for some constant \(c > 0 \).

REFERENCES

Received 26 March 1999 and accepted in revised form 14 October 1999

HIROSHI MAEHARA AND AI OSHIRO

College of Education,
Ryukyu University,
Okinawa,
Japan