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1. Introduction and definitions

Let Ap denote the class of functionsf normalizedby

f (z) = zp +
∞∑

k=1

ak+pzk+p (p ∈ N := {1,2,3, . . .}), (1.1)

which areanalyticandp-valentin theopenunit disk

U = {z: z ∈ C and|z| < 1}.
If f andg are analytic inU, we say thatf is subordinateto g, and write

f ≺ g or f (z) ≺ g(z) (z ∈ U),

if there exists a Schwarz functionw(z), analytic inU with

w(0) = 0 and |w(z)| < 1 (z ∈ U),

such that

f (z) = g
(
w(z)

)
(z ∈ U).

We denote byS∗
p(η) andCp(η) the subclasses ofAp consisting of all analytic function

which are, respectively,p-valent starlike of orderη (0 � η < p) in U andp-valent convex
of orderη (0 � η < p) in U (see, for details, the earlier work [27]).

LetN be the class of analytic functionsh with h(0) = 1, which areconvexandunivalent
in U and satisfy the following inequality:

R{h(z)} > 0 (z ∈ U).

Making use of the aforementioned principle of subordination between analytic
tions, we define each of the following subclasses ofAp :

S∗
p(η;h) :=

{
f : f ∈Ap and

1

p − η

(
zf ′(z)
f (z)

− η

)
≺ h(z)

}
(0 � η < p; z ∈ U; h ∈N ) (1.2)

and

Cp(η;h) :=
{
f : f ∈ Ap and

1

p − η

(
1+ zf ′′(z)

f ′(z)
− η

)
≺ h(z)

}
(0 � η < p; z ∈ U; h ∈N ). (1.3)

In particular, we set

S∗
p

(
η;

(
1+ z

1− z

)α)
=: S∗

p(η;hα)(
0 � η < p; 0< α � 1; z ∈ U; hα(z) :=

(
1+ z

1− z

)α

∈ N
)

(1.4)

and
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Cp

(
η;

(
1+ z

1− z

)α)
=: Cp(η;hα)(

0 � η < p; 0< α � 1; z ∈ U; hα(z) :=
(

1+ z

1− z

)α

∈ N
)

. (1.5)

We now define the functionφp(a, c; z) by

φp(a, c; z) :=
∞∑

k=0

(a)k

(c)k
zk+p

(
z ∈ U; a ∈ R; c ∈ R \ Z

−
0 ; Z

−
0 := {0,−1,−2, . . .}), (1.6)

where(λ)ν denotes the Pochhammer symbol (or theshiftedfactorial) defined (forλ, ν ∈ C

and in terms of the Gamma function) by

(λ)ν := �(λ + ν)

�(λ)
=

{
1 (ν = 0; λ ∈ C \ {0}),
λ(λ + 1) · · ·(λ + n − 1) (ν = n ∈ N; λ ∈ C).

(1.7)

It is easily seen from the above definitions that

f ∈ Cp(η;h) ⇐⇒ zf ′(z)
p

∈ S∗
p(η;h) (1.8)

and

S∗
p(η;h1) = S∗

p(η) and Cp(η;h1) = Cp(η). (1.9)

The classesS∗
p(η;h) and Cp(η;h) were studied by Kim et al. [6] and Ma an

Minda [10]. Furthermore, thespecialclassesS∗
1(0;hα) and C1(0;hα) of strongly star-

like functions of orderα in U andstrongly convex functions of orderα in U, respectively,
were investigated extensively by Mocanu [12] and Nunokawa [17].

Corresponding to the functionφp(a, c; z) defined by (1.6), we introduce the followin
family of linear operators:

Lp(a, c) :Ap →Ap

by

Lp(a, c)f (z) := φp(a, c; z) ∗ f (z) (z ∈ U; f ∈ Ap), (1.10)

in terms of the Hadamard product (or convolution). Then it is easily observed from
definitions (1.6) and (1.10) that

Lp(p + 1,p)f (z) = zf ′(z)
p

and Lp(n + p,1)f (z) =Dn+p−1f (z) (n > −p),

(1.11)

where, in thespecialcase whenn ∈ N0 := N ∪ {0}, Dn denotes the familiar Ruschewe
derivative of ordern ([21]; see also [5] and Eq. (1.21) below).

The operatorLp(a, c) was introduced and studied by Saitoh [22]. This operator i
extension of the Carlson–Shaffer operatorL1(a, c) and the familiar fractional derivative
operatorDλ

z , eachof which has been used widely and extensively on the space of analyt
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and univalent functions inU (see, for details, [2]; see also [26]). We recall here the
that, in their recent work, Liu and Srivastava [9] considered ameromorphicanalogue of
the linear operatorLp(a, c) for p ∈ N.

Corresponding to the functionφp(a, c; z) defined by (1.6), we also introduce a functi

φ
†
p(a, c; z) given by

φp(a, c; z) ∗ φ†
p(a, c; z) = zp

(1− z)λ+p
(λ > −p), (1.12)

which leads us to the following family of linear operatorsIλ
p(a, c) analogous toLp(a, c):

Iλ
p(a, c)f (z) := φ†

p(a, c; z) ∗ f (z)

(a, c ∈ R \ Z
−
0 ; λ > −p; z ∈ U; f ∈ Ap). (1.13)

It is readily verified from the definition (1.13) that

I1
p(p + 1,1)f (z) = f (z) and I1

p(p,1)f (z) = zf ′(z)
p

, (1.14)

z
(
Iλ

p(a + 1, c)f (z)
)′ = aIλ

p(a, c)f (z) − (a − p)Iλ
p(a + 1, c)f (z), (1.15)

and

z
(
Iλ

p(a, c)f (z)
)′ = (λ + p)Iλ+1

p (a, c)f (z) − λIλ
p(a, c)f (z). (1.16)

The operatorIλ
1 (µ+2,1) (λ > −1; µ > −2) was introduced recently by Choi et al. [3

who investigated (among other things) several inclusion relationships involving va
subclasses of analytic and univalent functions, which were defined by them in ter
the operatorIλ

1 (µ + 2,1). A further special case of the Choi–Saigo–Srivastava oper
Iλ

1 (µ + 2,1) was considered earlier by Noor et al. [14,16] and Liu [8].
By using thegenerallinear operatorIλ

p(a, c), we now define anewsubclass ofAp by

Sλ
a,c(η;p;h) :=

{
f : f ∈ Ap and

1

p − η

(
z
(
Iλ

p(a, c)f (z)
)′

Iλ
p(a, c)f (z)

− η

)
≺ h(z)

}

(0 � η < p; h ∈ N ; z ∈ U). (1.17)

We also set

Sλ
a,c

(
η;p; 1+ Az

1+ Bz

)
=: Sλ

a,c(η;p;A,B) (−1� B < A � 1; z ∈ U). (1.18)

Thus, for some suitably chosen parametersa, c,λ,p, andh, the classSλ
a,c(η;p;h) can be

reduced to several subclasses of analytic and multivalent functions mentioned abo
example, we have

S1
p+1,1(η;p;h) = S∗

p(η;h) and S1
p,1(η;p;h) = Cp(η;h). (1.19)

Finally, we put
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Kλ
a,c(γ, δ, η;p;A,B) :=

{
f : f ∈Ap and

∣∣∣∣∣arg

(
z
(
Iλ

p(a, c)f (z)
)′

Iλ
p(a, c)g(z)

− γ

)∣∣∣∣∣ <
π

2
δ

}

(0 � η,γ < p; 0< δ � 1; −1 � B < A � 1; z ∈ U; g ∈ Sλ
a,c(η;p;A,B)).

(1.20)

In particular,K1
1,1(γ,1, η;1;1,−1) andK1

2,1(γ,1, η;1;1,−1) are the classes ofquasi-
convex functions of orderγ and typeη in U and close-to-convex functions of orderγ

and typeη in U, respectively, introduced and studied by Noor and Alkhorasani [15]
Silverman [24]. Furthermore,K1

2,1(0, δ,0;1;1,−1) is the class ofstrongly close-to-conve
functions of orderδ in U in the sense of Pommerenke [20].

In the present paper, we investigate some inclusion relationships and argument
ties associated with such multivalent functions in the classAp as those belonging to th
subclassesSλ

a,c(η;p;h) andKλ
a,c(γ, δ, η;p;A,B) defined by (1.17) and (1.20), respe

tively. The class-preserving properties involving several families of linear operators
as the convolution operatorIλ

p(a, c) defined by (1.13) and the integral operatorFµ defined
by (2.7) below, are also considered. Many of the earlier results given by (among o
Bernardi [1], Choi et al. [3], Libera [7], Liu [8], Noor [13], Noor and Alkhorasani [15], a
Sakaguchi [23] are shown here to follow as special cases of the results presented in
per. Thus the various inclusion relationships and argument properties associated w
function classesSλ

a,c(η;p;h) andKλ
a,c(γ, δ, η;p;A,B) introduced here can be viewe

as extensions and generalizations of numerous previously-obtained results in Geo
Function Theory. Moreover, since each of these general function classes is introduced
this paper by means of the convolution operatorIλ

p(a, c) which, in turn, stems eventuall
from such familiar operators as the Carlson–Shaffer operatorL1(a, c) and the Ruschewey
derivative operatorDλ :A1 →A1 defined by (cf. [21]; see also Eq. (1.11) above)

Dλf (z) := z

(1− z)λ+1 ∗ f (z) = L1(λ + 1,1)f (z) (f ∈ A1; λ > −1), (1.21)

some of our results might be simplified, in these and other special cases, to resul
possible geometric interpretations.

2. The main inclusion relationships

In proving our main results, we need the following lemmas.

Lemma 1 (Eenigenburg et al. [4]).Leth be convex univalent inU with h(0) = 1 and

R{κh(z) + ν} > 0 (κ, ν ∈ C; z ∈ U).

If q is analytic inU with q(0) = 1, then the subordination

q(z) + zq ′(z)
κq(z) + ν

≺ h(z) (z ∈ U)

implies that

q(z) ≺ h(z) (z ∈ U).
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Lemma 2 (Miller and Mocanu [11]).Let h be convex univalent inU andω be analytic in
U with

R{ω(z)} � 0 (z ∈ U).

If q is analytic inU andq(0) = h(0), then the subordination

q(z) + ω(z)zq ′(z) ≺ h(z) (z ∈ U)

implies that

q(z) ≺ h(z) (z ∈ U).

Lemma 3 (Nunokawa et al. [18]).Let q be analytic inU with q(0) = 1 andq(z) 
= 0 for
all z ∈ U. If there exist two pointsz1, z2 ∈ U such that

−π

2
α1 = arg{q(z1)} < arg{q(z)} < arg{q(z2)} = π

2
α2 (2.1)

for someα1 andα2 (α1, α2 > 0) and for all z (|z| < |z1| = |z2|), then

z1q
′(z1)

q(z1)
= −i

(
α1 + α2

2

)
m and

z2q
′(z2)

q(z2)
= i

(
α1 + α2

2

)
m, (2.2)

where

m � 1− |b|
1+ |b| and b = i tan

π

4

(
α2 − α1

α1 + α2

)
. (2.3)

With the help of Lemma 1, we begin by proving an inclusion relationship for the c
Sλ

a.c(η;p;h) given by Proposition 1 below.

Proposition 1. Leta � p andλ � 0. Then

Sλ+1
a,c (η;p;h) ⊂ Sλ

a,c(η;p;h) ⊂ Sλ
a+1,c(η;p;h) (h ∈N ).

Proof. First of all, we show that

Sλ+1
a,c (η;p;h) ⊂ Sλ

a,c(η;p;h) (h ∈N ; λ � 0; a � p).

Let f ∈ Sλ+1
a,c (η;p;h) and set

q(z) = 1

p − η

(
z
(
Iλ

p(a, c)f (z)
)′

Iλ
p(a, c)f (z)

− η

)
, (2.4)

whereq is analytic inU with q(0) = 1 andq(z) 
= 0 for all z ∈ U. Applying (1.16) and
(2.4), we obtain

(λ + p)
Iλ+1

p (a, c)f (z)

Iλ
p(a, c)f (z)

= (p − η)q(z) + λ + η. (2.5)

By logarithmically differentiating both sides of (2.5) and multiplying the resulting equa
by z, we have

1

p − η

(
z
(
Iλ+1

p (a, c)f (z)
)′

Iλ+1(a, c)f (z)
− η

)
= q(z) + zq ′(z)

(p − η)q(z) + λ + η
(z ∈ U). (2.6)
p
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,

the
By applying Lemma 1 to (2.6), it follows thatq ≺ h in U, that is, that

f ∈ Sλ
a,c(η;p;h).

To prove the second part of Proposition 1, letf ∈ Sλ
a,c(η;p;h) and put

s(z) = 1

p − η

(
z
(
Iλ

p(a + 1, c)f (z)
)′

Iλ
p(a + 1, c)f (z)

− η

)
,

wheres is an analytic function inU with s(0) = 1 ands(z) 
= 0 for all z ∈ U. Then, by
using (1.15)and the arguments similar to those detailed above, it follows thats ≺ h in U,
which implies thatf ∈ Sλ

a+1,c(η;p;h). The proof of Proposition 1 is thus completed.�
By setting

h(z) = 1+ Az

1+ Bz
(−1 � B < A � 1)

in Proposition 1, we have the following corollary.

Corollary 1. Let a � p, λ � 0, and−1 � B < A � 1. Then

Sλ+1
a,c (η;p;A,B) ⊂ Sλ

a,c(η;p;A,B) ⊂ Sλ
a+1,c(η;p;A,B).

Proposition 2. If f ∈ Sλ
a,c(η;p;h), thenFµ(f ) ∈ Sλ

a,c(η;p;h), whereFµ is the integral
operator defined by

Fµ(f ) = Fµ(f )(z) := µ + p

zµ

z∫
0

tµ−1f (t) dt (µ � 0). (2.7)

Proof. Let f ∈ Sλ+1
a,c (η;p;h) and set

q(z) = 1

p − η

(
z
(
Iλ

p(a, c)Fµ(f )(z)
)′

Iλ
p(a, c)Fµ(f )(z)

− η

)
, (2.8)

whereq is analytic inU with q(0) = 1 andq(z) 
= 0 for all z ∈ U. From (2.7) and (1.15)
we have

z
(
Iλ

p(a, c)Fµ(f )(z)
)′ = (µ + p)Iλ

p(a, c)f (z) − µIλ
p(a, c)Fµ(f )(z). (2.9)

Then, by applying (2.9) to (2.8), we get

(µ + p)
Iλ

p(a, c)f (z)

Iλ
p(a, c)Fµ(f )(z)

= (p − η)q(z) + µ + η. (2.10)

Making use of the logarithmic differentiation on both sides of (2.10) and multiplying
resulting equation byz, we have

1

p − η

(
z
(
Iλ

p(a, c)f (z)
)′

Iλ(a, c)f (z)
− η

)
= q(z) + zq ′(z)

(p − η)q(z) + µ + η
(z ∈ U).
p
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e

Hence, by virtue of Lemma 1, we conclude thatq ≺ h in U, which implies the desire
assertion thatFµ(f ) ∈ Sλ

a,c(η;p;h). �
By setting

h(z) = 1+ Az

1+ Bz
(−1 � B < A � 1)

in Proposition 2, we immediately get the following result.

Corollary 2. If f ∈ Sλ
a,c(η;p;A,B), thenFµ(f ) ∈ Sλ

a,c(η;p;A,B), whereFµ is the in-
tegral operator defined by(2.7).

Remark 1. If we takea = µ + 1 (µ > −2) andc = p = 1 in Propositions 1 and 2, w
obtain the corresponding results given recently by Choi et al. [3]. Moreover, for

a = n + 1 (n ∈ N0), c = λ = p = 1, and h(z) =
(

1+ z

1− z

)α

(0< α � 1),

Propositions 1 and 2 would reduce to the corresponding results given earlier by Liu [8].

3. Argument properties and their consequences

Theorem 1. Letf ∈Ap , 0 < δ1, δ2 � 1, 0 � γ < p, andλ � 0. If

−π

2
δ1 < arg

(
z
(
Iλ+1

p (a, c)f (z)
)′

Iλ+1
p (a, c)g(z)

− γ

)
<

π

2
δ2

for someg ∈ Sλ+1
a,c (η;p;A,B), then

−π

2
α1 < arg

(
z
(
Iλ

p(a, c)f (z)
)′

Iλ
p(a, c)g(z)

− γ

)
<

π

2
α2,

whereα1 andα2 (0< α1, α2 � 1) are the solutions of the following equations:

δ1 =




α1 + 2
π

tan−1
(

(α1+α2)(1−|b|)cos
( π

2 t1
)

2
( (p−η)(1+A)

1+B +η+λ
)
(1+|b|)+(α1+α2)(1−|b|)sin

( π
2 t1

)
)

(B 
= −1),

α1 (B = −1)

(3.1)

and

δ2 =




α2 + 2
π

tan−1
(

(α1+α2)(1−|b|)cos
( π

2 t1
)

2
( (p−η)(1+A)

1+B
+η+λ

)
(1+|b|)+(α1+α2)(1−|b|)sin

( π
2 t1

)
)

(B 
= −1),

α2 (B = −1),

(3.2)

b is given by(2.3), and

t1 = t1(λ) := 2

π
sin−1

(
(p − η)(A − B)

(p − η)(1− AB) + (η + λ)(1− B2)

)
. (3.3)
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have
Proof. Let

q(z) = 1

p − γ

(
z
(
Iλ

p(a, c)f (z)
)′

Iλ
p(a, c)g(z)

− γ

)
.

Thenq is analytic inU with q(0) = 1. By using (1.16), we obtain[
(p − γ )q(z) + γ

]
Iλ

p(a, c)g(z) = (λ + p)Iλ+1
p (a, c)f (z) − λIλ

p(a, c)f (z). (3.4)

Differentiating both sides of (3.4) and multiplying the resulting equation byz, we find that

(p − γ )zq ′(z)Iλ
p(a, c)g(z) + [

(p − γ )q(z) + γ
]
z
(
Iλ

p(a, c)g(z)
)′

= (λ + p)z
(
Iλ+1

p (a, c)f (z)
)′ − λz

(
Iλ

p(a, c)f (z)
)′
. (3.5)

Sinceg ∈ Sλ+1
a,c (η;p;A,B), by Corollary 1, it follows thatg ∈ Sλ

a,c(η;p;A,B).
Next we let

r(z) = 1

p − η

(
z
(
Iλ

p(a, c)g(z)
)′

Iλ
p(a, c)g(z)

− η

)
.

Then, using (1.16) once again, we have

(λ + p)
Iλ+1

p (a, c)g(z)

Iλ
p(a, c)g(z)

= (p − η)r(z) + η + λ. (3.6)

From (3.5) and (3.6), we obtain

1

p − γ

(
z
(
Iλ+1

p (a, c)f (z)
)′

Iλ+1
p (a, c)g(z)

− γ

)
= q(z) + zq ′(z)

(p − η)r(z) + η + λ
.

Furthermore, by using a known result given earlier by Silverman and Silvia [25], we∣∣∣∣r(z) − 1− AB

1− B2

∣∣∣∣ <
A − B

1− B2 (z ∈ U; B 
= −1) (3.7)

and

R{r(z)} >
1− A

2
(z ∈ U; B = −1). (3.8)

Thus, from (3.7) and (3.8), we obtain

(p − η)r(z) + η + λ = ρ exp

(
iπφ

2

)
,

where, in terms oft1 given by (3.3),

(p − η)(1− A)

1− B
+ η + λ < ρ <

(p − η)(1+ A)

1+ B
+ η + λ and − t1 < φ < t1

(B 
= −1)

and
(p − η)(1− A) + η + λ < ρ < ∞ and − 1< φ < 1 (B = −1).
2
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(by

-

proof
Just as we observed above,q is analytic inU with q(0) = 1. We also have

R{q(z)} > 0 (z ∈ U),

by applying the assertion of Lemma 2with

ω(z) = 1

(p − η)r(z) + η + λ
.

Henceq(z) 
= 0 for all z ∈ U.
If there exist two pointsz1, z2 ∈ U such that the condition (2.1) is satisfied, then

Lemma 3) we obtain (2.2) under the constraint (2.3). For the first case whenB 
= −1, we
obtain

arg

(
q(z1) + z1q

′(z1)

(p − η)r(z1) + η + a − p

)

= −π

2
α1 + arg

(
1− i

(
α1 + α2

2

)
m

[
ρ exp

(
iπφ

2

)]−1)

� −π

2
α1 − tan−1

(
(α1 + α2)msin

[
π
2 (1− φ)

]
2ρ + (α1 + α2)mcos

[
π
2 (1− φ)

])

� −π

2
α1

− tan−1
(

(α1 + α2)(1− |b|)cos
(

π
2 t1

)
2
( (p−η)(1+A)

1+B
+ η + λ

)
(1+ |b|) + (α1 + α2)(1− |b|)sin

(
π
2 t1

)
)

= −π

2
δ1

and

arg

(
q(z2) + z2q

′(z2)

(p − η)r(z2) + η + a − p

)

� π

2
α2 + tan−1

(
(α1 + α2)(1− |b|)cos

(
π
2 t1

)
2
( (p−η)(1+A)

1+B
+ η + λ

)
(1+ |b|) + (α + β)(1− |b|)sin

(
π
2 t1

)
)

= π

2
δ2,

where we have used the inequality in (2.3);δ1, δ2 and t1 being given by (3.1)–(3.3), re
spectively. Similarly, for the second case whenB = −1, we have

arg

(
q(z1) + z1q

′(z1)

(p − η)r(z1) + η + λ

)
� −π

2
α1

and

arg

(
q(z2) + z1q

′(z2)

(p − η)r(z2) + η + λ

)
� π

2
α2,

which would obviously contradict the assertion of Theorem 1. We thus complete the
of Theorem 1. �
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etails

m 2 are

on-

]

g

Remark 2. The bounds asserted by Theorem 1 are not sharpin general. In fact, in a situa-
tion analogous to that of Theorem 1, Nunokawa et al. [19] chose to pose the corresp
generalsharpness question as anopenproblem.

The proof of Theorem 2 below is much akin to that of Theorem 1 and so the d
involved may be omitted.

Theorem 2. Letf ∈Ap, 0 < δ1, δ2 � 1, 0 � γ < p, anda � p. If

−π

2
δ1 < arg

(
z
(
Iλ

p(a, c)f (z)
)′

Iλ
p(a, c)g(z)

− γ

)
<

π

2
δ2

for someg ∈ Sλ
a,c(η;p;A,B), then

−π

2
α1 < arg

(
z
(
Iλ

p(a + 1, c)f (z)
)′

Iλ
p(a + 1, c)g(z)

− γ

)
<

π

2
α2,

whereα1 andα2 (0 < α1, α2 � 1) are the solutions of Eqs.(3.1)and(3.2)with λ = a − p.

Remark 3. Just as we observed in Remark 2 above, the bounds asserted by Theore
not sharpin general(cf. [19]).

Remark 4. If we let δ1 = δ2 in Theorems 1 and 2, we get the following inclusion relati
ship.

Corollary 3. Let a � p, λ � 0, and−1 � B < A � 1. Then

Kλ+1
a,c (γ, δ, η;p;A,B) ⊂Kλ

a,c(γ, δ, η;p;A,B) ⊂Ka+1,c(γ, δ, η;p;A,B).

Remark 5. If we put

a = c = λ = p = 1, A = 1, B = −1, and δ1 = δ2 = 1

in Theorem 1, we see that every quasi-convex function of orderγ and typeη in U is a
close-to-convex function of orderγ and typeη in U, just as proven earlier by Noor [13
and Sakaguchi [23].

Letting γ = 0, B �→ A (A < 1), andg(z) = zp in Theorem 2, we obtain the followin
result.

Corollary 4. Letf ∈Ap and0 < δ1, δ2 � 1. If

−π

2
δ1 < arg

(
z
(
Iλ

p(a, c)f (z)
)′

zp

)
<

π

2
δ2,

then

−π
α1 < arg

(
z
(
Iλ

p(a + 1, c)f (z)
)′

p

)
<

π
α2,
2 z 2
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whereα1 andα2 (0< α1, α2 � 1) are the solutions of the following equations:

δ1 = α1 + 2

π
tan−1

(
(α1 + α2)(1− |b|)

2(1+ |b|)
)

and

δ2 = α2 + 2

π
tan−1

(
(α1 + α2)(1− |b|)

2(1+ |b|)
)

.

Finally, we prove an argument property asserted by Theorem 3 below.

Theorem 3. Letf ∈Ap , 0 < δ1, δ2 � 1, and0 � γ < p. If

−π

2
δ1 < arg

(
z
(
Iλ

p(a, c)f (z)
)′

Iλ
p(a, c)g(z)

− γ

)
<

π

2
δ2

for someg ∈ Sλ
a,c(η;p;A,B), then

−π

2
α1 < arg

(
z
(
Iλ

p(a, c)Fµ(f )(z)
)′

Iλ
p(a, c)Fµ(g)(z)

− γ

)
<

π

2
α2,

whereFµ is the integral operator defined by(2.7), andα1 andα2 (0 < α1, α1 � 1) are the
solutions of Eqs.(3.1)and(3.2)with λ = µ.

Proof. Let

q(z) = 1

p − γ

(
z
(
Iλ

p(a, c)Fµ(f )(z)
)′

Iλ
p(a, c)Fµ(g)(z)

− γ

)
.

Sinceg ∈ Sλ
a,c(η;p;A,B), we see from Corollary 2 thatFµ(g) ∈ Sλ

a,c(η;p;A,B). Using
(2.9), we also have[

(p − γ )q(z) + γ
]
Iλ

p(a, c)Fµ(g)(z) = (µ + p)Iλ
p(a, c)f (z) − µIλ

p(a, c)Fµ(f )(z).

Thus, by a simple calculation, we get

(µ + p)
z
(
Iλ

p(a, c)f (z)
)′

Iλ
p(a, c)Fµ(g)(z)

= (p − γ )zq ′(z) + [
(p − γ )q(z) + γ

][
(p − η)r(z) + η + µ

]
,

where

r(z) = 1

p − η

(
z
(
Iλ

p(a, c)Fµ(g)(z)
)′

Iλ
p(a, c)Fµ(g)(z)

− γ

)
.

Hence we have

1

p − γ

(
z
(
Iλ

p(a, c)f (z)
)′

Iλ(a, c)g(z)
− γ

)
= q(z) + zq ′(z)

(p − η)r(z) + η + µ
.

p
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o we

re, by

[7].

ity
The remaining part of the proof of Theorem 3 is similar to that of Theorem 1 and s
omit the details involved. �

Takingδ1 = δ2 in Theorem 3, we get the following special case.

Corollary 5. Letf ∈Ap , 0� γ < p, and0 < δ � 1. If∣∣∣∣∣arg

(
z
(
Iλ

p(a, c)f (z)
)′

Iλ
p(a, c)g(z)

− γ

)∣∣∣∣∣ <
π

2
δ

for someg ∈ Sλ
a,c(η;p;A,B), then∣∣∣∣∣arg

(
z
(
Iλ

p(a, c)Fµ(f )(z)
)′

Iλ
p(a, c)Fµ(g)(z)

− γ

)∣∣∣∣∣ <
π

2
α,

whereFµ is the integral operator defined by(2.7)andα (0 < α � 1) is the solution of the
following equation:

δ =
{

α + 2
π

tan−1
(

α cos
( π

2 t2
)

( (p−η)(1+A)
1+B +η+µ

)+α sin
( π

2 t2
)
)

(B 
= −1),

α (B = −1)

whent2 = t1(µ) given by(3.3)with λ = µ.

From Corollary 5, we easily derive the following result.

Corollary 6. If f ∈ Kλ
a,c(γ, δ, η;p;A,B), thenFµ(f ) ∈ Kλ

a,c(γ, δ, η;p;A,B), whereFµ

is the integral operator defined by(2.7).

Remark 6. Fora = 1 anda = 2, Corollary 6with

c = λ = p = 1, A = 1, B = −1, and δ = 1

yields the corresponding results obtained by Noor and Alkhorasani [15]. Furthermo
taking

a = 2, c = λ = p = 1, γ = 0, A = 1, B = −1, and δ = 1

in Corollary 6, we obtain the classical results given earlier by Bernardi [1] and Libera
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