metadata, citation and similar papers at core.ac.uk

doi:10.1006/jabr.2001.9056, available online at http://www.idealibrary.com on

Presentations of Trivial Extensions of Finite
Dimensional Algebras and a Theorem of
Sheila Brenner

Elsa A. Fernandez

Facultad de Ingenieria, Universidad Nacional de la Patagonia San Juan Bosco,
9120 Puerto Madryn, Argentina

and

Maria Inés Platzeck?

Departamento de Matemadtica, Universidad Nacional Del Sur,
8000 Bahia Blanca, Argentina

Communicated by Kent R. Fuller

Received May 29, 2000

DEDICATED TO IDUN REITEN ON HER 60TH BIRTHDAY

Let A be a finite dimensional algebra over an algebraically closed field such that
any oriented cycle in the ordinary quiver of A is zero in A. We describe the ordinary
quiver and relations for T(A) = A X D(A), the trivial extension of A by its minimal
injective cogenerator D(A), and also for the repetitive algebra A of A. Associated
with this description we give an application of a theorem of Sheila Brenner. 0 2002
Elsevier Science (USA)

INTRODUCTION

A finite dimensional k-algebra A (associative, with identity) over an alge-
braically closed field k is called self-injective if all projective A-modules
are injective. An important class of self-injective algebras is formed by the
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symmetric algebras. Recall that an algebra A is said to be symmetric if
A >~ D(A) as two sided A-modules.

Important and interesting examples of symmetric algebras are provided
by group algebras of finite groups over fields and trivial extensions of finite
dimensional algebras. Denote by T(A) = A x D(A) the trivial extension of
A by its minimal injective cogenerator D(A). We assume that A is basic
and indecomposable, so A is given as the path algebra of a connected finite
quiver Q modulo an ideal of relations I.

In this work we will describe the ordinary quiver and relations for T'(A),
under the assumption that any oriented cycle in the ordinary quiver of A
is zero in A. From this we deduce a description of the ordinary quiver and
relations for A, the repetitive algebra of A.

The key point in the study of the ordinary quiver of T(A) is showing
that Oz, is obtained from Q, by adding ¢ arrows, where the number ¢ is
equal to the dimension of soc(A), considered as module over the envelop-
ing algebra A°. We illustrate here the situation when A is schurian. In this
case we can choose a k-basis for the A¢-socle of A consisting of maximal
nonzero paths. For each of these we add an arrow to Q,, and in the oppo-
site direction. In this way, all arrows are in oriented cycles. The relations
are particularly interesting in the case when the ordinary quiver of A has
no oriented cycles and parallel paths in Q, are equal in A, because they
can be formulated directly in terms of the cycles in kQr(,), independently
of the relations for A. More precisely, the ideal I, of relations for T(A)
is generated by

(i) the paths consisting of n + 1 arrows in a cycle of length n,
(ii) the paths whose arrows do not belong to a single cycle, and

(iii) the difference g — g’ of paths g, ¢’ with the same origin and end-
point and having a common supplement in cycles of Q7). By asupplement
of g in the cycle C we mean the path consisting of the remaining arrows of C.

This particular case has been crucial for the classification of all trivial exten-
sions of finite representation type, and consequently for the study of iter-
ated tilted algebras of Dynkin type, as done in the first author’s doctoral
dissertation [F], which will be published elsewhere.

The general case considered in this paper is stated in Theorem 3.9.
Though technically more complicated, the essential ideas are contained in
the above description.

Finally, we give an application of a theorem of Sheila Brenner. More
precisely, Brenner shows in [B] how to determine the number of indecom-
posable direct summands of the middle term of an almost split sequence
starting with a simple module. As a consequence of this result she obtains,
for a self-injective artin algebra, the number of indecomposable direct
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summands of tP/soc P, where P is indecomposable projective. In general,
it is not easy to compute these numbers for a given algebra. We give here a
very simple interpretation of them in the particular case of the trivial exten-
sion T(A) = A x DA, where A is an algebra such that any oriented cycle
in O, is zero in A. Our description is given in terms of oriented cycles in
the quiver kQ7(y).

1. PRELIMINARIES

In this section we fix some notation and recall some relevant definitions
and results which will be needed in the next sections. For a general refer-
ence in representation theory, we refer the reader to [ARS].

Throughout this paper k will denote an algebraically closed field. By an
algebra we mean a finite dimensional k-algebra which we will also assume
to be basic and indecomposable. Thus A ~ kQ, /I, where Q, is a finite
connected quiver and the ideal [ is admissible.

We denote by mod A the category of finitely generated left A-modules,
and by D: mod A — mod A° the standard duality Hom,(-, k). Also, we
denote the Jacobson radical of A by rad A or simply by «.

For a given quiver Q, we will denote by Q, the set of vertices, and by
0, the set of arrows between vertices. For each arrow «, s(«) and e(«) will
denote the start and end vertices of «, respectively.

For each i in Q,, S; will be the simple A-module associated to i, and
P; and I; will denote the projective cover and injective envelope of S,
respectively. Thus, if e; is the idempotent element of A corresponding to
the vertex i of Q, then P; = Ae;.

Recall that the trivial extension T(A) = A x D(A) of A by D(A) is the
algebra with underlying vector space A @ D(A), and the product is defined
by (A, f)(m, g) = (Ap, Ag + fu) for any A, € A.

We will need the following known facts, whose proof is straightforward.

PropoSITION 1.1.  Let A be an algebra. Then
(i) rad T(A) = (r, D(A)), where v denotes the radical of A.
(i) rad® T(A) = (2, tD(A) + D(A)r).

(iii) rad T(A)/rad* T(A) and (x/x%, D(A)/(xtD(A) 4+ D(A)r)) are iso-
morphic vector spaces.

2. THE ORDINARY QUIVER OF T(A)

In this section we describe the ordinary quiver of T(A) for any finite
dimensional k-algebra A.
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Let A = kQ, /I, be a fixed presentation for A. Given an element x in
kQ,, we will denote by ¥ the corresponding element in kQ,/1,.
For our purpose the following preliminary result will be useful.

LEMMA 2.1.  There is a short exact sequence of A-bimodules
0 — D(A)t+tD(A) - D(A) — D(socye A) — 0,

where A° is the enveloping algebra of A.

Proof.  Since D(socy. A) = top,.(D(A)), there is a short exact sequence

0 — radye D(A) — D(A) — D(socye A) — 0.
We only have to describe rad,. D(A). Since
rad(A) =t @ A? + A® 7,

we have rad,e D(A) ~ rad A®- D(A) >~ tD(A) + D(A)e. 1

PrOPOSITION 2.2. If A is an algebra with ordinary quiver Q,, then the
ordinary quiver of T(A) is given by

() (Qrayo = (On)os
(i) (Qrayr = Q)1 YUAB,,---, By}, where {py,...,p,} is a

k-basis for socy. A, and for each i, B, is an arrow from e(p;) to s(p;).

Proof. (i) Let Qg ={1,2,...,n} be the set of vertices of O, and let
{ej,...,e,} be the set of trivial paths in kQ,. It is easy to verify that
{(¢1,0),...,(e,,0)} is a complete set of primitive orthogonal idempo-
tents in T(A). So, Or(,) has n vertices in one-to-one correspondence with
(e1,0), ..., (e,,0).

(i) For each pair of integers i, j, with 1 < i, j < n, the number of
arrows from i to j is equal to dim((e;, 0) rad T(A)/rad’* T(A)(7;, 0)). By
Proposition 1.1, we have

dim, ((¢;, 0) rad T(A)/rad” T(A)(g;, 0))
= dimy(¢jt/v%€) + dim (€;(D(A)/(xD(A) + D(A)r))e;).

The first summand is equal to the number of arrows from i to j in Q,.

According to Lemma 2.1, the second summand is equal to the dimension
of the subspace of soc,. A generated by all elements p,, where p, is a
k-linear combination of paths starting at j and ending at i. 1§

Remark 2.3. We say that a path ¢ in Q, is maximal if § # 0 and aq =
0 = ga, for any arrow « in (Q,);. Note that if g is a maximal path, then
q € socye A.
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When A is a schurian algebra, which means dim;, Hom, (P, P’) < 1 for
every pair of indecomposable projective A-modules P, P’, we can also give

another description of D(A)/(tD(A) + D(A)r) >~ D(socye A). In this case
we have the following result:

LEMMA 2.4. Let A be a schurian algebra. Then soc . A is the subspace of
A generated by all g € A, with q a maximal path in Q,.

We now give some examples to illustrate the construction of Qr(,).

EXAMPLE 2.5. Let A be given by the quiver

ay a as

with the relation aza,a; = 0. Then {p; = @07, p, = a3, } is a k-basis for
soc A. So, according to Proposition 2.2, Qr(, is the quiver

1
3} a BPI
2 3
Bp, *
4

with relations aza; = a3, a0 = ;.



PRESENTATIONS OF TRIVIAL EXTENSIONS 331

In this case, {p; = oy — a,, p, = &z, p3 = oz} is a k-basis for soc A.
Then Oy, is the following quiver:

3. THE RELATIONS FOR T(A)

From now on we will assume that any oriented cycle in Q, is zero in A.
In particular, the class of schurian algebras has this property.

Notation. In all that follows, we fix a set M = {p,,..., p,} of ele-
ments in kQ, such that {p;,..., p,} is a basis for soc,. A. Moreover, let
{pi>--+> Py ---»> Py} be abasis of A. We will denote by {p1*, ..., p;*} the
dual basis in D(A).

Our next goal is to describe the ideal I7(, of relations for T(A). This
will require some preliminary definitions and remarks.

DerFINITION 3.1, Let C be an oriented cycle in Oz We say that C
is elementary if C = «;---a;8,0, - aj,, with a, ..., @, € (Q,); and
p € M and p*(a,aq) # 0. In thls case, the welght of Cis w(C) =
pr(a,oq) € k*.

ExXAMPLE 3.2. Let A be the algebra given in Example 2.6 and consider
the following k-basis for A:

{P =01 =, pr =030y, p3 = aua;, Qy, 3, @y, €1, €, €3, €4}

Since pi*(a;) = @ — a;" (@) = 0, the oriented cycle B, @ is not an ele-
mentary cycle. Now, it is not difficult to check that the oriented cycles

Bp2a3a1, Bp3a4a1, sza3a2, Bp3a4a2, and Bplaz

are all the elementary cycles in Qr(,), up to cyclic permutations.
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In all that follows, when we say that a path g is contained in the path ¢/, it
will be understood that ¢' = y,qvy;, where vy, y, are paths with e(y;) = s(q)

and s(y,) = e(q)-

Remark 33. If 0 # v € A, then there are paths 6,6, in kO, and
pj € M such that p;*(6,v8,) # 0, and in particular, any nonzero path in
A is contained in an elementary cycle.

In fact, let 6,8, be paths in kQ, of maximal length such that z =
5,v5, # 0. Then z € soc A, so Z = Y_t_, b; p;, with b; € k and p; € M for all
i=1,...,t Since z # 0, there exists j such that b; # 0. Thus p;*(z) # 0.
From this it follows that if v is a path in Q, such that v # 0, then B8 p, 81082
is an elementary cycle containing v.

DEFINITION 3.4. Let g be a path in an elementary cycle C of length less
than or equal to the length of C. If s(q) = e(q), the supplement of g in C
is the trivial path e otherwise, it is the path formed by the remaining
arrows of C.

s(q)?

Consider the morphism of k-algebras ®: kQ7,) — T(A) defined on the
trivial paths and the arrows as follows:

d(e;) = (e;,0), fori=1,...,n,
d(a) =(a, 0), @(Bp) = (0, p), for « € (Q,); and p € M.
Then & is surjective. Associated with @ are the morphisms
¢ =mP: kQry > A and ¢, = m®: kQpn) — D(A),
where 7, m, are the projections induced by the decomposition T'(A) =
A ® D(A).

We now make some simple but important observations.
Throughout this section, (8,),cv denotes the ideal generated by the
elements B, in kQyp,)-

LEMMA 3.5. Let A = kQ, /I be an algebra such that any oriented cycle in
kQ, is zero in A and q, u be paths in KQr.

(@) Ifv=v;+ vy with v, € kQy, v € (B) pers> then P(v) = (¢1(vy),
@2(v2)).

(b)  ¢2(q) # 0 implies that q € (B,,) pem-

(©)  ®2(q) = 0if g contains two or more arrows B, p € M.

(d)  @,(q)(it) # 0 implies that u is a supplement of q.

‘o (©)  @2(v)(&) = @a(vu)(€;) = @x(uv)(€)) if u is a path from i to | in
A.



PRESENTATIONS OF TRIVIAL EXTENSIONS 333

® Ifv= Z§:1 ayq,, with q, different paths and ¢,(v) # 0, then there
exists a supplement u of one of the q;s such that ¢,(vu) # 0 and ¢,(uv) # 0.

(g) Let C be an elementary cycle with origin e. Then ¢,(C)(e) = w(C)
and ¢,(C)(2) = 0 for any path uin kQ,, u # e.

(h) If q has a supplement, then ®(q) # 0.

(i) Let v e ejkQrpye; and vy be a path from j to i. Then vy € Ker ®
if and only if yv € Ker ®.

Proof. (a), (b), and (e) follow directly from the definitions, while (g)
follows from the definitions together with the hypothesis over A.

We get (c) using that D(A)?> = 0 in T(A). Assume ¢,(q)(it) # 0. To
prove (d), we know by (b) and (c) that g = yB,6, with v, 6 paths in kQ,.
Then 0 # ¢,(q)(it) = p*(duy), and therefore u is a supplement of g in the
elementary cycle yB,6u.

Assume now v as in (f) and let u be such that ¢,(v)(it) # 0. Hence
©-(g,)(it) # 0 for some s; thus u is a supplement of g,, by (d). Now (f)
follows from (e).

Suppose now that u is a supplement for ¢ in C, C = qu. By (g),
@2(C) # 0; thus d(g) # 0.

Finally, let v € ¢;kQ7(,)e; and let y be a path from j to i. Then yv and vy
are linear combinations of cycles with origin i and j, respectively, which we
may assume are in (8,) because O, has no nonzero oriented cycles. Thus
®,(yv), ¢, (vy) vanish on all paths different from e; and e, respectively. By
(), we have @,(yv)(e;) = ¢,(vy)(€;), and the statement follows now from
(a), using the fact that yv and vy are in (B8,). 1

In order to describe the relations for T'(A), we have to find generators
for Ker ®.

PROPOSITION 3.6.  Let ® be as above. For each j € (Qr))o, let I} be the
ideal in kQr () generated by

(i) oriented cycles from j to j which are not elementary, and

(i) elements w(C")C — w(C)C', where C, C' are elementary cycles with
origin j.
Then Ker ® N e;kQrxye; generates Ij’-.

Proof. That oriented cycles in kQ, lie in Ker ® is a direct consequence
of the definition of ® and the hypothesis on A. So let C be a cycle from j
to j in kQry), thatis, in (B8,). Then ®(C) = (0, ¢,(C)), by Lemma 3.5(a).
If C contains two or more arrows 8,, p € M, then ¢,(C) = 0 by (c)
of the same lemma, and therefore C lies in Ker ®. Suppose now that C
contains exactly one arrow B, for some p € M. Then C = yB,5, with
v, 6 paths in kQ,. If ¢,(C) # 0, there exists a path u in kQ, such that
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©,(C)(u) = p*(duy) # 0. Hence u is a path from j to j and & # 0. It
follows from the hypothesis on A that u = ¢;, so C is elementary. Thus
nonelementary cycles are in Ker ®.

Let now z = w(C')C — w(C)C’ be an element as defined in (ii). Then
®(2) = (0, ¢2(2)), and ¢3(2) = w(C)ps(C) — w(C)es(T).

Let u be a path in kQ,. By Lemma 3.5(g), we have that ¢,(z)(it) = 0 if
u# e, and @x(C)(@) = w(C), ¢2(C)() = w(C), 50 ¢2(2)()) = 0.

Thus [} is contained in the ideal generated by Ker ® Ne;kQr)e;. To
prove the other inclusion, let z € Ker ® Ne;kQpy)e;. We write z = z; + z,,
with z; = Y7, a,C;, z, = Yi_, ., a,C;, where Cy,...,C, are elementary
cycles and C, 4, ..., C, are cycles which are not elementary.

Then z, € [}, and we just proved that I; € Ker ®. So 0 = ®(z) = ®(z;).
Since C; is elementary, C; € (B8,), so ®(C;) = (0, 9,(C))), i = 1,...,r.
Thus 0 = ®(z;) = (0, X7, a;¢,(C;)), and we get from Lemma 3.5(g)

0= Xr:aiﬁﬁz((ci)(éj) = Xr:aiw(ci)'
i=1 i=1

So a; = —Xi,aw(C)/w(Cy), and z; = > ,(a,C; — ay(w(C;)/
w(Cp))Cy) = Xia(a;/w(C))(w(C)C; — w(C;)Cy)) € I}, since it is a
linear combination of elements of the type (ii). Thus the ideal generated
by Ker ® N e;kQr(ye; is contained in I}, and therefore coincides with I}.

Remark 3.7. As a direct consequence of the preceding proposition, we
know that the classes of oriented cycles with origin j in kQr(,) generate a
one-dimensional subspace of kQry /I}.

We have now the following consequence of Proposition 3.6.

COROLLARY 3.8. Let A be as in Lemma 3.5 and let C be an oriented cycle
in Qr(a)- Then the following conditions are equivalent:

(i) Cis an elementary cycle.
(ii) C is nonzero in T(A).

Proof. 1Tt follows from Lemma 3.5(g) that (i) implies (ii).
We get directly from Proposition 3.6 that (ii) implies (i), since nonele-
mentary cycles are in ]’-, which is contained in Ker®. 1

We can now prove the main result of this section.

THEOREM 3.9. Let A = kQ, /I be an algebra such that any oriented cycle
in Qy is zero in A. Let I' be the ideal in kQqy) generated by

@ 1,

(ii) the paths consisting of n + 1 arrows of an elementary cycle of length n,
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(iii) the paths whose arrows do not belong to a single elementary cycle,
and

(iv) the elements Zi,:l agpg, where a; € k* and g are different paths
fromito jin (B,),em for s=1,...,1, and such that

1 1
7(2%#;)64‘ or (Zasus)vel,’-,

s=1 s=1

where I is the ideal defined in Proposition 3.6, for each supplement vy of one
of the us.

Then I' is admissible and I' = I . That is, T(A) >~ kQpx /1.

Proof. 1t is sufficient to prove that I’ = Ker @, where ® is the morphism
defined above. First we show that I’ C Ker ®.

Let g be a path in kQr,), which is not in Ker ®. If ¢,(q) # 0, then
q = vB,9, with p € M and v, & paths in k0. Let u in kQ, be a path such
that @,(¢)(#1) # 0. Then we have 0 # 5*(3uy) = ¢(q)(@).

Since A has no nonzero oriented cycles, § and y contain no common
arrows. Thus g cannot consist of n 4+ 1 arrows in an elementary cycle of
length n. Moreover, q is in the elementary cycle C = qu.

If ¢;(q) # 0, then g is a path in kQ,, and clearly g ¢ I. We know that
q is contained in an elementary cycle, by Remark 3.3. So, if I” is the ideal
generated by the classes (i)—(iii) of kQr(x), then g ¢ I”, and so I” € Ker .

Assume now that v = le=1 a,q, ¢ Ker ®, where the g,s are different
paths in (8,) ,cap from i to j. Then ®(v) = (0, p,(v)) # 0.

Recall now that we know from Proposition 3.6 that [ ]/ C Ker @ for all j.
Then, if ¢,(v) # 0, Lemma 3.5(f) states precisely that v is not an element
in the class (iv).

Thus we have shown that g ¢ Ker @ implies g ¢ I’. This completes the
proof that I’ C Ker ®.

Since ®: kQry) — T(A) is surjective and I’ C Ker @, to prove that the
equality holds it is enough to prove that dim; kQy,)/I" = dim T(A) =
2dim,, A.

The image of an element y € kQr(,) under the canonical epimorphism
kQ7rny = kQreny/I' is denoted by y.

Since I < Ker®, we have the canonical epimorphism kQg,)/I" —
kQrcx)/Ker® = T(A). The inclusion of A in T(A) factors through
kQ7py/I’" because I € I'. Thus the map v: A — kQp(,)/I’ induced by the
embedding of kQ, in kQr,) is a monomorphism.

We have that kQpny = kQx + (B,)pem- Therefore, e;kQOrnye; =
eikQxe; + e;(B))peme;, for each i and j in (Qra))o- Let 7 kQpny —
kQr(ay/1" be the canonical epimorphism.
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We define in kQqp,)/I’ the subspaces &%; = w(ejkQpe;) and F;; =
m(e;(B,)peme;)- Then P = u(ejAe;) = e;Ae;, so 3, ; dimy & = dimy A.

We will prove that dim,(%;) > dimy(Fj;). Though these dimensions
depend on i and j, to simplify notation we will denote them by n and
m, respectively.

We observe first that a path g in kQr(y) is not in I” if and only if there
is a supplement for g in some elementary cycle C. In fact, we know by
Corollary 3.8 that elementary cycles are nonzero in 7(A) and therefore are
not in I’, because I’ C Ker ®. On the other hand, if g ¢ I’, then all arrows
of g belong to a single elementary cycle C since g does not belong to the
class (iii) of I’. Moreover, using the fact that ¢ is not in the class (ii) of I,
we deduce that g is contained in C.

As a first consequence, we find that F; # 0 if and only if %; # 0. So

we assume that both are nonzero and choose paths vy, ..., v, in kQA and
Kis-evs B 10 (B))pent> SO that {¥,...,7,} and {uy, ..., &, } are bases
for #;; and F;, respectively.

Now we will show that m < n. Suppose on the contrary that m > n. We
will find a nonzero element w in F;; such that wy = 0 for each supplement
v of any of the u,. This will contradict that w does not belong to the class
(iv) of I'. Clearly, it is enough to find w # 0 in F}; such that wy, = 0 for
each ¢. So we start looking for relations among the w,vy,s.

Let 1 < ¢t < n. We prove first that not all u,y,, k =1,..., m, are zero.
In fact, y, ¢ I, so, as we observed above, it has a supplement, say §,, in
an elementary cycle (C Using again the above observation, we get that

m ¢ I'. Now, &, € F;; because ¥, € Fij» SO 5, is a linear combination of
Hiseens o and therefore for every ¢ with 1 < ¢ < n, there exists an index
r, such that M,{y, # 0 and 1 < r, < m. Now we know from Remark 3.7
that the cycles w7y, k = 1,...,m, generate a subspace of kQr(,/I" of
dimension 1, because all these cycles have origin i. We conclude that w7y, =

by, y, for some ay, € k and forall k =1,...,m.
Now, (X0L; Xkl )Y = 2i—1 Xk @xty, Y, The system 770 ap, X = 0,
with t =1, ..., n, has a nontrivial solution because m > n, say (x, ..., X,,)-

Then the element w = Y_}"_, x; a;, satisfies the required conditions: w # 0
and wy, = 0 for all ¢, ending the proof that m < n.

We are now in a position to prove that dimy kQp)/I" = dim; T(A).
Since kQyy)/I’ maps onto T(A), we get that dimy kQp()/I" > dim; T(A).
On the other hand, dimy kQp)/I' < 3, (dim, P + dim; F;) <
>, j(dimy & + dimy ;) = 2dim A = dim T(A). This ends the proof
of the theorem.

As an immediate consequence, we get that any nonzero path in 7'(A) is
in a nonzero oriented cycle.
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We will see next that the hypothesis that u, € (8,) ey in (iv) of the
preceding theorem can be omitted.

COROLLARY 3.10. Let v=Y"_, a,q,, where a, € k* and the q, are pair-

wise different paths from i to j in kQr. Suppose that either yv = 0 or
vy = 0in T(A) for every supplement vy of any of the q,s. Then v = 0.

Proof.  Suppose first that v = Y\_, a,q, satisfies v = 0 for a supplement
v of some ¢g,s. Then, for some 0 < r </, we may suppose that g, ..., g, €
kQy, ri15---541 € (Bp)peM' Let v, = Z;:l asqs, Uy = Zé=r+1 asqs-.

Assume that vy is a supplement of g;, with j > r. Then y € kQ,, and
therefore yv; = 0 because oriented cycles are zero in A. Thus yv, = 0 and
we conclude from the preceding theorem that v, = 0.

So v =v; € kQ,. If v; # 0, then we know by Remark 3.3 that there
exist 8;, 6, € kQ, and p € M so that p*(6,v8,) # 0, and thus, for some
s, p*(81956;) # 0, so C = B,8,4,6, is an elementary cycle. Then y =
8,8 ,0; is a supplement of g,. Moreover,

02(Y)() = (8,58,)(D) = p*(8,v8,) # 0.

We conclude from Lemma 3.5(e) that ¢,(yv) # 0. So ®(yv) # 0, con-
tradicting the assumption that yv = 0 in kQp(,). Thus we have v = 0,
as desired. This ends the proof of the corollary, since we know by
Lemma 3.5(i) that vy = 0 if and only if yv = 0. 1

When the algebra A is schurian, the description of the ideal I’ is easier,
as we state in the following corollary.

COROLLARY 3.11. Let A = kQ,/I be a schurian algebra. The ideal 1"
generated by

(a) the paths consisting of n+ 1 arrows of an elementary cycle of
length n,

(b) the paths whose arrows do not belong to a single elementary cycle,
and

(c) the elements a'q — aq', where q, q' are paths from i to j admitting
a common supplement y € kQ, in elementary cycles,

By, ---ay and Bp/a;nu-o/l,

respectively, with o, -0y = ap and o, ---oy = ad'p’, a,d € k*,

is admissible and 1" = I y). That is, T(A) = kQp(xy/1".

Proof.  First we observe, for a path y € kQ, and p € M, that y = ap
with a € k if and only if w(B,y) = a. So the elements w(C')C — (C)C’
with C, C’ cycles with the same origin are in the class (c) of 1”.
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Assume now that v = Y\_ a,u, is an element in the class (iv) of I’ =
I7(p), where ag € k* and u, are different paths from i to j in (B8)) ,ems
for s =1,...,1. That is, yv € I; for any supplement y of one of the ws.
We may assume that u, ..., u; are not in the class (b) of I”. Since A is
schurian, they have the same supplements. Let v be one of them.

Then yu; = (w(ywr;)/w(yy)) vy, by Proposition 3.6. So

0

1
Y= <a1 +2 aiw(V_M)/w(V_M))V_M~
i=2
Thus a;, = —Y.'_, a;0(7i&;)/ o(¥@;). By replacing this expression in v,
we obtain that
I

v=2 (i — (o(yi;)/ o(Yir))ir)
i=2
belongs to the class (c) of I”.

Now we will prove that I C [”. If a path vy is in I, then v is in the class
(b) of I”. If vy, v’ are paths in kQ, such that ¥,y #20in A and y—ay €1,
then they have the same supplements, and we know by Corollary 3.8 that
they have at least one. Let u be one of them, and C = uy and C' = uy'.
Then ®(C) = a®(C'), so w(C) = aw(C’) and thus y — ay’ is in the class
(iv) of I’ and therefore in I”. So I € I".

Since the classes (a), (b) of I” coincide with the classes (ii), (iii) of I’, we
have that I’ € I”.

On the other hand, the previous corollary shows that the class (c) of 1”
is contained in I’, proving that I” € I’. 1

Suppose A is a schurian algebra such that the ordinary quiver of A has no
oriented cycles. Then all oriented cycles in kQy(,) not passing through any
vertex more than once are nonzero in 7(A). So we can replace “elementary
cycle” by “cycle” in the statement of Corollary 3.11.

Schurian algebras have the property that if y and 5 are paths in £Q,
from i to j and y, 7 # 0 in A, then ¥y = an, with a € k. Sometimes the
presentation for A can be chosen so that always a = 1, and we say then that
parallel paths are equal in A. In this case, the class (c) in Corollary 3.11 can
be described in a simpler way, and if we further assume that the ordinary
quiver of A has no oriented cycles, then the situation is particularly nice,
because the relations can be formulated directly in terms of the cycles in
kQz(y), independently of the relations for A, as we state in the following
corollary.

COROLLARY 3.12. Let A = kQ,/I be a schurian algebra such that the
ordinary quiver of A has no oriented cycles and parallel paths in Q, are equal
in A. Then the ideal Iy of relations for T(A) is generated by

(i) the paths consisting of n+ 1 arrows in a cycle of length n,
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(ii) the paths whose arrows do not belong to a single cycle, and

(iii) the difference q — q' of paths q, q' with the same origin and end-
point and having a common supplement in cycles of Qr(y)-

We observe here that the hypothesis of Corollary 3.12 holds for any alge-
bra A such that T'(A) is of finite representation type [Y].
Now we give two examples.

ExAMPLE 3.13. Let A be as in Example 2.5. Using the description of
kQr(xy given there and Corollary 3.12, we find that T(A) is the algebra
given by kQr,, with the relations

=0,
alﬁpl = 'sza3’

azapey = B, aB, =0.

ExAMPLE 3.14. Let A be as in Example 2.6. This algebra is not schurian.
In this case we find that T(A) is the algebra given by O, with the rela-
tions

Q30 =Q30; 00 =00y,
aprzafaal:aSaIBpZaSZBPZaSalﬁPZZOz
aga B, oy =B, aya B, =0,
B, a=B, P, =0,
azaB,,=0; B, =a;8,=0; B,apB, =0,
a1 B, =0; B, ap, =0,

Bp,as=Bpas; aiBp, =B, B, =aB,; Bpoa=pB,a30.

We go on now to study the ordinary quiver and relations for the repetitive
algebra A of A, as defined by Hughes and Waschbusch in [HW],

Amfl mel
Ap  On

Am—&-l

=)
Il

0
where A,, = A, Q,, = D(A) for all m € Z.
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The vertices of Q3 are pairs (m, i) with m € Z,i € (Q, ), and the set of
arrows is

(O ={a™: (m, i) = (m, j)}a i—je(0y),
U{By: (m,e(p)) = (m+1,5(p))}pemt

forme Z. _

It is well known that A is a Galois covering of T(A). f y =« -, isa
path in kQ,, we will denote by y” the path «}" - -- o} in kQ3.

The relations are obtained by lifting the relations in kQy,). We have to
replace the notions of elementary cycle, weight of an elementary cycle, and
supplement of a path by the following notions.

DEFINITION 3.15. A path C in kQj; is called elementary if C =
&+ gmy™, with 8,y paths in kQ,, p € M, such that p*(y8) # 0. In this
case the weight of C is w(C) = p*(y8). A path ¢ in kQ; has a supplement
if there is a path ¢’ in kQ5 such that gq’ is an elementary path.

We are now in a position to describe the relations in kQ5; generalizing a
result by Asashiba for triangular schurian algebras such that parallel paths
in O, are equal in A [A]. We start with the ideal I3, M of relations from
(m, ) to (m+1, j). This ideal is generated by

(a) paths from (m, j) to (m + 1, j) which are not elementary,
(b) elements w(C")C — w(C)C’, where C, C' are elementary paths
from (m, j) to (m + 1, j).

THEOREM 3.16. Let A = kQ, /I be an algebra such that any oriented cycle
in Qy is zero in A. Let I' be the ideal in kQy generated by

(a) the sets I = {>"a;y!", such that Y a;y;el}, me Z,
(b) the paths not contained in an elementary path, and

(c) the elements x = Z§:1 a.q,, where a, € k* and q, are different
paths from (m, i) to (m', j) in (B}) ez, pews for s =1,..., 1, and such that

VX € IX(m,i) and xvy € IK(m’,j)
for each supplement vy of one of the q.s and I3 i) the above defined ideal.
Then I is admissible and I' = I5. That is, A ~ kQz/I".

Remark 3.17. We observe that the elements corresponding to the class
(ii) of Theorem 3.9 belong to the class (b).
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Proof. Let 17} be the element of A which has 1 A as its mth diagonal
entry and all other entries zero, and let ¢, ;) = 1{¢; be the idempotent
of A corresponding to the vertex (m, i) of Q3. We define ¥: kO3 — A
by ‘lf&m, D) = €, j, ¥(@") = a1y, and W(B)) = p*(y, ms1), the matrix
with p* in the (m, m 4+ 1) entry and zero elsewhere, for p € M, m € Z.

Then W is surjective and I’ C Ker V. This can be proven with a straight-
forward adaptation of the arguments used in the proof of Theorem 3.9 (see
also [R]). The other inclusion follows from the fact that

dimy e, i)(kQK/I’)e(m,j) + dimy e(,,,, ,-)(kQX/I/)e(mH’j)
= dimy e;(kQr(n)/I1(n))e;-
Summing up over i and j, we see that
dimy 17.kQz/I' = dim; T(A) = dim, A 4 dim; D(A) = dim 1A,

and this ends the proof of the theorem. I

4. AN APPLICATION OF A THEOREM OF S. BRENNER

This section is devoted to a very simple interpretation of the results estab-
lished in [B] in the particular case of the trivial extension T(A) = A x D(A),
where A is an algebra such that any oriented cycle in Q, is zero in A.

We start by recalling Brenner’s results.

Let A be an artin algebra. An element of A of the form a = fag, where f
and g are primitive idempotents of A and a € t\t?, will be called an arrow.

Let e be a primitive idempotent of A. A set 4 of arrows will be called a
complete set of arrows for ve if

(1) it generates te (as a A-module).
(2) no proper subset of 4 generates te.

A complete set of arrows for ev is defined similarly.

Let e be a primitive idempotent and let & be the set of pairs (N, n) of
integers such that there exist sets of arrows A4; and B;, 0 < i < n, of which
only 4, and B, can be empty, satisfying the following conditions:

(1) i+ jimplies 4,NA; =T =B;NB,.

(2) UL, A; is a complete set of arrows for er.

(3) UL, B; is a complete set of arrows for te.

4) Ifti#j,ori=0 orj=0,then @ € A; and B € B; implies
Ba = 0.

(5) N =n+card A,,.
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Let N, = max{N: there exists n with (N, n) € ¥/} and n, = min{n: (N,,
n) € N}

THEOREM 4.1 (Brenner). Let S be a noninjective simple A-module, and
let e be a primitive idempotent of A such that S >~ Ae/ve. The middle term
of the almost split sequence starting at S has exactly N, indecomposable direct
summands. Furthermore, the number of indecomposable projective direct sum-
mands is equal to N, — n,.

COROLLARY 4.2 (Brenner). If A is self-injective, then the number of inde-
composable direct summands of tP/soc P, where P = Ae, is equal to n,.

In all that follows, let A be an algebra such that any oriented cycle in Q,
is zero in A.

For each h € (Qr))o, let €, be the set of oriented cycles C such that
C#0in T(A), and s(C) = ¢(C) = h. By Corollary 3.10, we have €, # .

We begin with the following definitions:

DEerINITION 4.3. Let C, C' be in €;,. We say that C and C’ are related,
and write CRC’, if there exists an arrow a belonging to C and C’ with
s(a) = h or e(a) = h.

On the other hand, we will define a relation SR’ on the set

Ap ={a € (Qryh: e(a) = h}.

DEFINITION 4.4. Let a, @ be in A4;,. We say that « and «' are related
and write aR'a’ if there exists an arrow B € (Qr(,)); such that fa # 0 and
B’ #0in T(A).

From now on, we denote by “=" and “~” the equivalence relations gen-
erated by R in €;, and by R’ in A4, respectively.

We next want to give the precise connection between these equivalence
relations. For this purpose, the following results will be useful.

LEMMA 4.5. Letay, ..., a, bearrowsin Ay,such that o\ R a,R' - - - R'a,,.
Then there exist cycles Cy,...,C,, in €, with a; € C;, foralli=1,...,m
and C; =C,,.

Proof. We prove this by induction on m. Our claim clearly holds if
m = 1. Assume now that a;R a,R ---R«,,, where m > 2. Then there
exists B € (Qr))1, such that Be,_; # 0 and Ba,, # 0. This implies that
the paths Ba,,_; and B, belong to cycles C, _, and C,, respectively.
Therefore, C,,_,RC,, and a,,,_; € C,,_,, @, € C,,.

By the induction assumption, we have cycles C,, ..., C,,_;, with «; € C;
fori=1,...,m—1,and C; =C,,_,. Since «,,_; is an arrow belonging to
C,,_, and C,,_;, we have that C,, {%RC,,_,. Then C; = C,, and this ends
the proof of the lemma. I
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LeEmmaA 4.6. Let Cy,...,C,, in €, such that CRC,R---RC,,. Then
there exist arrows ay,...,q,, in A, with a; € C;, for i = 1,...,m and
aq ~ .

Proof. This follows by induction on m, applying arguments similar to
those used in the proof of Lemma 4.5. |

We now give the desired connection between the equivalence relations
[13 »” 13 2»”
=" and “~.

PROPOSITION 4.7. Let o, € A,,C,C" € €, be such that « € C and
o € C'. Then we have a ~ o' if and only if C = C'.

Proof. The result is an immediate consequence of the previous lemmas.

1
This readily gives the following
COROLLARY 4.8. card(€,/=) = card(A4,/~).
We are now ready to describe the numbers N,, and n,, .

PROPOSITION 4.9.  Let h be a vertex in Oy, and let e, be the idempotent
element corresponding to h. If dimy A > 1, then N,, = card(€,/=) = n,, .

Proof. Consider the partition A, ..., A, induced by the relation “~”
on the set A4,. Define, for 1 < i < ¢, B; = {B: there exists @ € A; with
Ba # 0} and Ay = B, = &. Since dim; A > 1, it follows that B; # J, for
i=1,...,t By construction, the pair (¢, ¢) is in V.

We shall prove that if (N, n) € ¥, then N = n < t. In fact, let A}, B; be
sets of arrows satisfying Brenner’s condition, for 0 < i < n.

Using the above conditions and Corollary 3.10, we conclude that

(1) B;={pB: there exists « € A; with Ba #0} fori=1,...,n
(2) By=A4,=9.
It follows from (2) that N = n. On the other hand, it is easy to see
that if « &~ «/, then there exists j such that «, &' € A; Then, for 1 <i <

t,A; C A}, Wthh implies n < t. Therefore, N, = n, = card(4,/~), and
the proof is finished by applying Corollary 4.8. 1

Remark 4.10. If dim; A = 1, then dim;7T(A) = 2 and ¥ = {(1,0),
(1, )}, so N, =1and n, =0.

We are now in a position to restate Brenner’s results in the particular
case of a trivial extension 7(A).
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THEOREM 4.11. Let S;, be a simple T(A)-module corresponding to the
vertex h. The number of indecomposable direct summands of the middle term
of the almost split sequence

0—-S8,—-E->TrDS,—0

is equal to the number of equivalence classes in 6. Furthermore, the num-
ber of indecomposable projective summands of E is equal to zero, except if
dim;, A = 1.

COROLLARY 4.12. Let P, be the indecomposable projective T (A)-module
corresponding to the vertex h. If dim;, A > 1, then the number of indecom-
posable direct summands of tP,/soc P, is equal to the number of equivalence
classes in 6.
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