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ABSTRACT An analytical electromechanical model of a spherical cell exposed to an alternating electric field was used to calculate
shear stress generated in the cellular membrane. Shape deformation of Neurospora crassa (slime) spheroplasts was measured.
Statistical analysis permitted empirical evaluation of creep of the cellular membrane within the range of infinitesimal stress. Final
results were discussed in terms of various rheological models.

INTRODUCTION

Early studies in cellular rheology have concentrated on

investigations of human red blood cells (RBC) which
owing to their specific morphology have been used as a

simplified cellular model. They respond to mechanical
stress in a rather uniform manner; their rheological
parameters allow for a distinction between young and
aged cells (Nash and Meiselman, 1983, Waugh, 1987).
Moreover, the mechanical behavior of RBC taken from
patients with certain diseases distinguishes them from
RBC of healthy donors (Waugh and Agre, 1988). Con-
trary to RBC, most of the eukaryotic cells have a more

complex internal structure manifested by the consider-
able dispersion in their rheological properties.
Modeling of cellular rheological phenomena calls for

simplified assumptions. For example, Skalak et al. (1984)
have treated the cell (leukocyte) as a homogeneous
viscoelastic sphere. Viscoelastic properties manifested
by a cell under specified experimental conditions can be
attributed as well to the cellular membrane, which can

be regarded as a thin spherical shell. This approach
overlooks the real sources of viscoelasticity arising not
only from the structural complexity of the membrane,
but also from membrane interactions with cellular struc-
tures such as the cytoskeleton, internal membranes and
organellae. This approach allows, however, for a descrip-
tion of a real object by the use of an effective model, and
discloses the macroscopic behavior of the cell under
stress.
There are many techniques for studying the mechani-

cal properties of cells and cellular membranes (Evans
and Skalak, 1980). More recently, a new procedure for
studies of cell deformation in an external alternating
electric field of high frequency has been developed
(Sackmann et al., 1984, Barnaby et al., 1988, Engelhardt

and Sackmann, 1988, Fikus, 1988, Pawlowski and Fikus,
1989, Fikus and Pawlowski, 1989).

In the present study, the previously established analy-
sis of shear stress in the viscoelastic shell surrounding
a nonviscous, noncompressible internal medium
(Pawlowski and Fikus, 1991) was applied in the case of a

cell exposed to periodic electric field. The choice of the
model, composed of three media with special emphasis
on the shell is supported by the physical mechanism of
stress generation by an alternating electric field on the
shell surface.
The experiments presented below were aimed at

determining the rheological parameters of the so-called
standard population.

Rheological studies of cellular populations can be
carried out in two ways:

(a) It is possible to fit a given rheological model to the
temporal trajectory of deformation of each individual
cell (Skalak et al., 1984) and then, by applying the x2 test
to accept or discard the postulated model. For each cell
a set of its rheological parameters is obtained. Because
the fitting parameters of the constitutive equations are

strongly correlated (correlation coefficients in the range

of 0.8), subsequent averaging of rheological parameters
for all cells results in drastic overestimation of their
dispersion.

(b) The averaged creep function for all cells can be
obtained. It is not a single curve but an area of
distribution within which most of the single cells' creep

function trajectories fall. At this stage of the procedure,
it is possible to distinguish subpopulations of cells
characterized by similar rheological behavior. Applica-
tion of the x2 test helps in the subsequent choice of an

appropriate rheological model for the population and,
eventually, for subpopulations, if found. This procedure
reduces statistical errors, making the evaluated final
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rheological parameters for a given cell population more

reliable, and was followed in this study.
It was assumed that within the limits of controllable

experimental conditions the analyzed population was

homogeneous. Considerable scattering of the experimen-
tal data was observed, reflecting the influence of noncon-
trollable parameters on the process. In our opinion, this
scattering was mainly due to the biological diversity of
the cells such as the stage of their generation cycle,
metabolic activity, individual structural complexity and
so on. The general averaged characteristics of the cell
population found by this approach should be treated as a

starting point for further studies of various single-cell
behaviors (sometimes extremely different from the gen-

eral model), for comparative studies of cells in which the
standard state has been disturbed, finally for studies of
populations of different types of cells. Such investiga-
tions could in principle help to clarify the role of as yet
noncontrollable parameters on the rheological proper-

ties of individual cells.
Nonlinear dependence of measured deformations on

analytically determined stress was observed. It is well
known that most physical processes can be correctly
analytically described only when their relevant parame-
ters show linear dependence. In this work, for the first
time, a statistical procedure of data evaluation, includ-
ing evaluation of variance, is proposed, which permits
extrapolation of experimental data down to the limits of
linear dependence of the infinitesimal deformation on

the infinitesimal stress. This extrapolation procedure
formally justifies the calculations of stress for an unde-
formed, spherical cell. A generalized description of the
rheological behavior of a population under undamaging
stress, utilizing linear equations, was obtained.

Spheroplats of Neurospora crassa (slime) were used
for exemplification of the procedure. These eukaryotic
cells have previously been well characterized structually
and biochemically (Emerson, 1963, Scarborough, 1978,
Aaronson and Martin, 1983), as well as with respect to
their electrical properties (Fikus et al., 1987, Marszatek
et al., 1989, 1991). They represent a convenient model
for investigations of the native cytoplasmic membrane
with no need for enzymatic pretreatment. This study
introduces a new taxonomic group of organisms into the
field of cellular rheology.

THEORETICAL ANALYSIS OF STRESS AND
DEFORMATION

Model of a spherical shell
The analysis of the biorheological model of cell
(Pawlowski and Fikus, 1989) was further extended
(Pawlowski and Fikus, 1991). In this paper, shape

deformation of the thin area, noncompressible spherical
shell, separating two different ideal liquids, exposed to
an external, alternating electric field has been consid-
ered. It has been assumed that shear stress in the plane
of the shell develops as a result of Maxwell stress acting
on both shell surfaces. All media have been considered with
losses (dielectric losses, conducting media). The foregoing
analysis can be applied to a description of cell deformation.
For a cell meeting the requirements of the above

model the z dimension parallel to field lines varies
according to the formula:

(z - R)IR = 2E:xt, (1)

where z is the cell demi-axis in the field direction, R is
the initial cell radius and Eextr is the extreme shear
deformation in the membrane plane.

Accordingly, the constitutive equation for shear elas-
tic deformation relates Eextrand extreme shear stress in
the membrane plane, ae'r:

1
extr

3
extr

2~ (2)

where ,u is the area elastic shear modulus which may be
regarded as an effective elastic shear modulus (see next
section), which describes the nondissipative phenom-
ena. In a real situation, deformation of the cellular
membrane under stress develops in time, owing to
membrane viscosity. Hence, Eq. 2 is substituted by a

constitutive equation for shear viscoelastic deformation:

e(=10 J(t-v) dUdxtr
Eextr(t

t

0J(t T)
d T~

where J(t - 7) is a function of the viscoelastic shear
response in the membrane plane after time (t - r) to a

change in shear stress at time T.

The stress "jump" applied to the experiments can be
expressed as a function of time:

Uextr(T) = rextr(init)O(T) + A&uXer(O(T t) - -( t ))

(4)

where uextr(init) denotes the initial shear stress, t4 is the
moment of the "jump" increase in shear stress, t I is the
moment of reversion to the initial shear stress, Aurselr is
the increment of shear stress, @(T) is the theta-Heavside
step function.
Upon use of Eqs. (3 and 4), evolution of shear

deformation is obtained:

1/2J(t)uextr(init)

1/2J(t)uextr(init)

Eextr = + 1/2J(t t4 )Aore

½/2J(t)aU-xlr(init) + 1/2(J(t t)

-J(t -t ))A

tt < t < t4 (5)

t > t4.
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Experiments started when initial deformation, J(t)
sextr(init), caused by the initial stress, became stabilized.
Hence temporal evolution of initial deformation was not
considered in the analysis:

z(init) - R

J(t):ff(irit) -z(= R fort - 8 < t, (6)

where ar is the left-side environment of t Twhere deforma-
tion does not vary with time.
Upon use of Eqs. (1, 5, and 6), the description of cell

length variation with time assumes the form:

rel(t) = res(t) ao& r, (7)

equations describing an ideal elastic body can be adapted
to a viscoelastic body as follows:

1

1/J5 + 3To/2d + 1RI/8dJ,
(11)

where J, Js, Ji are results of Laplace transformations of
the functions describing the effective response of the
membrane, the response of the membrane itself and the
response of the cellular interior, respectively.
Temporal evolution of membrane deformation was

obtained using reciprocal Laplace transformation. Then:

z - R
R (t) =<[ s ip]

where:

0

res(t) = J(t - tt)
J(t - tt) - J(t - t 1)

tt-8 < t < tt
tt < t < t

t, < t,

and

rel(t)
z(t) z(init)

R

(12)

where &,elr is the Laplace transformation of the extremal
stress, elxtr.

(8) In terms of a model, Eq. 11 describes two viscoelastic
units in parallel with an elastic one. It takes into account
different factors involved in the general response of the
cell to the applied stress. It may be used in a simplified
form, depending on our knowledge about the role of the

(9) above factors in the investigated process.

denotes the relative increase in cell length along electric
field lines. It was directly measured for deformed cells.

Effective model of cellular membrane
Assumptions of the above model were applied to the
case of a spherical shell. This model can be used in
description of more complex objects, when apparent
effective properties of the surrounding shell (mem-
brane) are considered. Thus, the shear elastic properties
of the membrane depend on: (a) the elastic properties of
the lipid bilayer with surface and integral proteins,
together with a cushion of the membrane skeleton, (b)
surface tension, and (c) interactions of the membrane
with cytoplasm and internal skeleton. Effective shear
elasticity can be expressed as a sum of elasticities:

T0 R
A= Ps+ Cl + C2 Ili, (10)

where: L,s is shear elastic modulus of the membrane, T0 is
surface tension, pLi is shear elastic modulus of the cell
interior, d is membrane thickness, R is cell radius, cl and
c2 are numerical coefficients.
Upon solution of equilibrium equations for an elastic

membrane exposed to external electric field, cl = 3/2
and c2 = 11/8 (P. Pawlowski, unpublished results).
According to the principle of correspondence, the

RESULTS

Experimental procedures
The experimental set-up and N. crassa (slime) cells have
previously been described (Fikus et al., 1985, Fikus and
Pawlowski, 1989). Before the experiment, cells were of
roughly spherical shape with a smooth surface as exam-
ined under a light microscope and in an electron
microscope (Scarborough, 1978). Cells were suspended
in 10% sorbitol (Merck, Darmstadt) between two paral-
lel platinum wire electrodes and driven to one of the
electrodes by electric field of 1 Vpp and 3 MHz. Field
strength was adequate for dielectrophoretic alignment
of cells; the value of their initial deformation averaged
for whole population was smaller than its standard
deviation and it did not evolve with time. Field fre-
quency corresponded to the flat maximum of the func-
tion describing the relationship between shear stress and
electric field frequency (Fig. 1).

Field amplitude was increased stepwise to the desired
value, maintained for 60 s and abruptly reduced to the
initial, 1 Vpp value. Field strength in the experimental
chamber was monitored throughout the experiment.
The shape of cells was recorded on videotape (final
magnification 1,340 x). Time points for measurements
were chosen so as to best reproduce the evolution of
deformation.

Cells were measured in the plane of electrodes in z
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FIGURE 1 Calculated relationship between extreme shear stress in N.
crassa membrane and electric field frequency (Pawlowski and Fikus,
1991). Cell radius, R = 15 p,m, field strength 104 Vlm.

direction parallel to the field lines. 30 randomly chosen
cells were examined within the electric field strength
range or 3-11 Vpp. For each cell the field amplitude was

calculated at a point distant from the electrode by the
initial cell radius (Fikus and Pawlowski, 1989). Tempo-
ral trajectories of deformation for all cells were exam-

ined and those cells whose deformation did not exceed
the measurement noise were disregarded in further
analysis. Preliminary experiments suggested that the
discarded cells were those which took up substances not
penetrating into living membranes.

Original statistical computer programs based on
Brandt's (1970) textbook were developed.

Statistical treatment of the
experimental data. Calculation
of creep
Systematic experimental errors in measurements of
single cells arise from errors in determination of values
for: cell radius, field strength, distance between elec-
trodes, relevant physical constants of the system studied,
and time of experiment. These partial errors are re-
flected in the calculated stress as well as in the measured
deformations, both of which are used in calculations of
rheological parameters. It is not possible to evaluate
errors in the calculated value of stress on account of the
complex nature of the dependence of stress on mea-
sured parameters. Moreover, the correctness of our
theoretical approach has to be assumed. These errors,
however, are considerably smaller than the dispersion of
the experimental data (cf Fig. 2A). This suggests that
the scattering of the data is mainly due to the biological
diversity of cells studied.

0 50 100 150 200 250 300 350 400 450 600 550 600
time [sl

FIGURE 2 Illustration of fitting procedures for determining the re-
sponse function. (A) Fitting procedures in the 15th s of the experi-
ment. Experimental values of the relationship of rel(t) to C¢Xtr for all
cells at a given time point were analyzed by various fitting procedures:
(1) linear regression for all data (see text, procedure a) (2) linear
regression, for data obtained under small stress (see text, procedure b)
(3) nonlinear regression according to Eq. 14. Rel(t) values greatly vary
for different cells under similar stress. The bidirectional arrow
represents the mean error of experimental measurements of deforma-
tions. (B) Response functions obtained from the experimental data
analyzed according to Fig. 2A for all time points, following the three
proposed regression procedures. The respective values of res(t) are
denoted by geometrical symbols.

It can be seen that systematic errors will only result in
scaling up/down the stress values, leading to propor-
tional changes in the values of amplitudes of deforma-
tion (see below), without changing their ratio and their
characteristic times.
At the starting point for the statistical analysis, we

accept the notion that infinitesimal stress and deforma-
tion are linearly dependent (Eq. 7). From the theoretical
standpoint, infinitesimal stress should be applied to
cells, to obtain their infinitesimal deformation empiri-
cally. However, this approach calls for the arbitrary
decision about the "infinitesimal" range of both phenom-

Ponnk et a. Sha Deomto of th Celua Membrane

.. -* (

* * (3)

*X *

lEl 1E2 1E3 1E4 1E5 1E6 frequency [Hz]

0.6

o r .IN

70-

Poznanski et al. Shear Deformation of the Cellular Membrane 615



ena. In this study a statistical procedure, based on

regression analysis, is proposed, solving this problem. It
aims at obtaining information about the linear range of
stress-deformation dependence from the measurements
of finite (measurable) deformations. Stress increments,
Asu (i = 1, . . . N), for individual cells were calculated

as a function of two parameters: cell radius and the
increment of square electric field strength, making use

of some constants (cf Appendix). For each cell
(i = 1 ... N), at all time points (j = 1 ... M) the rela-
tive elongation, rel', based on measurements of temporal
evolution of cell z demi-axis, was calculated:

z'- z.
rel'= R. (13)

where Rj = [(xc)1zc]113 and xc, zc are demi-axes of a cell
before deformation in perpendicular and parallel orien-
tation, respectively, to the field direction, z' is the
demi-axis of the cell, parallel to the field direction at a

given time point.
For each moment, j, the dependence of rel' on A,,eior

for all cells was found. Three different statistical proce-
dures for data evaluation were considered consecutively:

(a) Linear regression to the set of all rel' and Acrei'r
values was applied and the results verified by Fischer's
test. The level of significance was 0.03-0.07 for the first
120 s of the experiment and 0.2-0.3 for the total
experimental time. This result did not permit rejection
of the assumption about the linearity of the stress to
deformation relationship but it did emphasise the consid-
erable scattering of the data exceeding estimated exper-
imental errors (Fig. 2A, curve 1) and suggested the need
for development of a different analytical procedure.

(b) Linear regression, as above, was limited to the set
of data obtained in the range of small stresses, Aue' <

200 N/m2. However this procedure fails to include most
of the results and as such was found inappropriate
(Fig. 2A, curve 2) leading to the development of a

nonlinear function.
(c) The nonlinear function used was of the form:

res(t)Aor
rel(t) =1 + AaSo'; (14)

where ae is the characteristic stress fitted to give the best
agreement between estimated res(t) and the results of
procedure (b). (Fig. 2 B, curves 2 and 3), which for this
set of data was found equal to 500 N/M2. Eq. 14
describes all the experimental data. According to Fish-
er's test, the significance level was 0.01-0.04 for the first
120 s of the experiment and 0.2-0.3 for the whole
experimental period; this result did not permit rejection
of Eq. 14.

The use of this nonlinear procedure enabled extrapo-
lation of all the experimental data to the range of
infinitesimal stress, allowing for the use of the analysis of
small deformations for data evaluation. Formally, extrap-
olation procedure limits our attention to the first term of
resolution of Eq. 14 which is consistent with Eq. 7.

res(t)Ao'
rel(t) = = resQ)Ao.tr +

1 + AUexrIU.
(15)

Introduction of nonlinear analysis in the evaluation of
the relationship between rel(t) and ArXtr resulted in a

substantial reduction of residual errors and of the
standard deviation of res(t). The above procedure,
applied to a given set of results (Fig. 2B), permitted
assignment of the averaged value of res(t), together with
its variance, to the whole population of cells studied.
Consequently, a region defined by standard deviations
was determined within which creep function trajectories
for most of the single cells should be found. All data
obtained under stress up to 600 N/M2 applied for t < 60
s could be included in analysis. Fig. 2 shows that the
linear regression (procedure [b]) can be used for the
analysis of results in the range of stress A& < 100

N/M2 (Fig. 2A) acting on cells with t < 60 s (Fig. 2 B).

DISCUSSION

In their studies of the mechanical properties of human
erythrocytes exposed to an alternating electric field,
Sackmann and co-workers (Engelhardt and Sackmann,
1988, Sackmann et al., 1984) have calculated the mechan-
ical stress for undeformed spherical cells, but have
measured finite deformations. Furthermore, these au-

thors have evaluated rheological parameters using an

approximate, nonlinear constitutive equation which de-
scribes the viscoelastic effects. Within the range of
infinitesimal deformations, this equation is not reducible
to a linear one. This may result in substantial errors in
the values of the parameters studied. Moreover, the
agreement between these values and those obtained by
other methods may be incidental.

In the present work, a statistical procedure was

developed which permitted extrapolation of data down
to the limit of infinistesimal deformations. Thanks to this
procedure, calculations of stress generated in the spher-
ical cell were formally warranted. Furthermore, it en-

sured that only linear phenomena were included in the
analysis which uses linear equations for describing
viscoelastic effects.

This procedure allows for high reliability for the final
data and substantially reduces statistical errors. Conse-
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quently an appropriate rheological model could be fitted
to the experimental data. This may be exemplified by our
own results.
We have previously analyzed large deformations ofN.

crassa cells, and we described them by the Burgers
model (Fikus and Pawtowski, 1989). The model includes
a free viscous element, and the fast component of
deformation is approximated by a spring element. Ow-
ing to the present procedure, the errors were reduced.
Consequently, the presence of a pure elastic response
and viscous dissipation can no longer be statistically
confirmed. Instead, the whole process of deformation
could be modeled exclusively by viscoelastic elements.

In the search for an appropriate general rheological
model, a typical statistical procedure was applied to fit
the theoretical curve (Eq. 8) to the experimental data
extrapolated to the infinitesimal stress range according
to the nonlinear regression procedure, and to minimize
x2. The whole covariance matrix for the final results was
calculated, together with the errors of the values of the
parameters estimated. The response function (Eq. 8)
was formulated in the monoexponential form:

J(t) =A [1 - exp (- t/T)], (16)

whereA is the amplitude of the response function, t is
variable and expressed in time units, and T is characteris-
tic time. This function corresponds, in terms of rheologi-
cal models, to the Voigt-Kelvin model; the values of x2 =

140, n = 54; large deviations of the experimental data
from the theoretical curve were observed (data not
shown). These results were unsatisfactory, indicating the
need for a more extended rheological model to fit our
experimental data.
The function of the form:

JQ() = A,[1 - exp (- t/T)] + A2, (17)

was examined. There are two different reduced rheolog-
ical models which correspond to the function (Eq. 17):

El~~~~l

E2

E2L

.0030
res(t) [mjfN]

bme [s]

200

time [s]

FIGURE 3 Fitting of the function (Eq. 17) (A) and of the biexponen-
tial function (Eq. 18) (B) to the experimental data for the whole
experimental period and for the first 60 s (inserts) of the experiment.
Vertical bars are standard deviations of determined creep values. They
determine the width of the area, equal [s2]"2(t) where all the expected
trajectories of creep for most cells in the population will be found. The
function corresponding to the proposed biexponential rheological
model passes through this area (solid line), as proved by the x2 test.

The value of x2 decreased, whereas systematic devia-
tions of the experimental results from the theoretical
function, occurring mostly at the first stages of the
experiment, were still present (Fig. 3 A).
Expanding function (Eq. 17) to the biexponential

form:

J(t) =A1[1 - exp (- /T,)] +A2[1 - exp (-t/T2)I,
(18)

leads to a satisfactory approximation of the theoretical
curve to the data (X2 = 16, n = 52) (Fig. 3 B). This
function can be represented by four rheological models:
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FIGURE 4 Res(t) values for creep and recovery taken from Fig. 2 B,
curve (3), corresponding to the same time points for both these
processes.

The linear relationship between res(t) for creep

(tt < t < t I) and rest(t) for stress relaxation (t < t)
(Fig. 4) strongly suggested that both processes could be
described by identical temporal functions. In other
words, no pure viscous flow was observed, and the time
constants for both processes were identical. This result
strongly suggests that under the applied stress only
reversible, nondamaging viscoelastic deformations were

developed and analyzed. As we have shown recently in
our laboratory, increase of the stress value and/or
prolongation of its duration results in changes in the
integrity of the cellular membrane with simultaneous
loss of the above temporal symmetry.
We believe that at the present state of our investiga-

tions there are no sound foundations for giving prefer-
ence to any one of the rheological models presented
above and, moreover, for relating its elements with any
particular cellular structure. This does not rule out
further interpretation of our data. According to the
biexponential function, two phases of the cellular re-

sponse, the fast and slow one, can be distinguished in
one experiment. They are characterized by two retarda-
tion times, T, = 3.0 0.5 s and T2 = 39 + 8 s,

respectively, and by two amplitudes,A, and A2, included
in Eq. 18. Both the retardation times and the ratio of the
amplitudes are independent of the stress calculation
method (see Fig. 2 B). The fourth parameter of the
function (Eq. 18), i.e., the sum of the amplitudes of both
responses, depends on the stress calculation method.
The above interpretation of the results enables a

comparison of the material-related properties of dif-
ferent cells, independently of the chosen mechanical
model of the cell. When the model of a homogeneous
sphere with its viscoelastic properties, averaged for its
total volume (Skalak et al., 1984, Sung et al., 1988), has
been applied to investigations of human leukocytes
displaying local small deformations under relatively
large stress, two retardation times have been deter-
mined for both the fast and slow phase of deformation
(or 2 s, T2 - 45 s, respectively). These phases have
been defined in separate experiments; in an analysis of
the initial phase of deformation, the authors neglected
the systematic deviations of the data from the theoreti-
cal curve, (Sung et al., 1988) resembling qualitatively
those found in the present work (Fig. 3 A).

It remains an open question which cellular structures
reponse to stress. In their recently formulated cortical
shell-liquid core model, Yeung and Evans (1989) related
cell deformation to the viscous interior of the cell and its
surface tension. This model has been applied in investi-
gations of human granulocytes (Evans and Yeung,
1989). However, the experimental conditions of stress
application in Evans and Young's study, as well as the
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magnitude and range of cell deformation differ substan-
tially, from those applied by Skalak et al. (1984), Sung et
al. (1988), and in this work. As a result, distinct cellular
elements have responded in the various experiments to
the stress and consequently, the evaluated parameters
corresponded to different phenomena. Moreover, large
deformation of the whole cell in the micropipette as
analyzed by Evans and Yeung (1989) may result in
destruction of the contractile elements in the cellular
interior. For this reason, surface tension should be
considered to be an important stabilizing factor of cell
shape (Evans and Yeung, 1989).

In a separate experiment we observed that N. crassa
cells subjected to the stress for 180 s do not return to
their initial spherical shape after removal of stress. This
suggests that the contractile role of surface tension in N.
crassa cells could have been overlooked. Under condi-
tions of small deformations, the local displacement of
cytoplasm is negligible as is the influence of cytoplasm
viscosity on the process.

Therefore, we assume that in our experiments the
main contribution to the effective viscoelastic response
of the cell originates from the cytoplasmic membrane
coupled to the membrane skeleton, i.e., = JI (Eq. 11).
The proposed rheological model for an averaged

population of cells subjected to nondamaging stress can
be considered as a starting point for further studies on
the origins of the rheological diversity of single cells.

APPENDIX

Values and constants used in
calculations

dm = 10-8m cell membrane thickness
Re |' = 45 Eo dielectric permeability
Re{} = 7.9E*0
Re l} = 80 so
Re {8) = 0.229 S/m specific electric conductivity
Re lt) = 0.001 S/m
Re I} = Im|',i s e,b, } = 0

Eo = 8.8542 -10-12 F/m vacuum dielectric permeabil-
ity

/2,w = 3 * 106 Hz electric field frequency
U = 3,4,5,7,9,11 Vpp electric field strength

between electrodes
Re = 241.8 * 10-6m electrode radius
d = (210.1 T 27.5) * 106m distance between electrodes

Indices ise are for cytoplasm, membrane and external medium,
respectively. *Experimentally determined values for a cell suspension
(Fikus et al., 1987).
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