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Abstract

In this paper and in the forthcoming Part II, we introduce a Morse complex for a class
of functions f defined on an infinite dimensional Hilbert manifoldM, possibly having critical
points of infinite Morse index and co-index. The idea is to consider an infinite dimensional
subbundle—or more generally an essential subbundle—of the tangent bundle ofM, suitably
related with the gradient flow off. This Part I deals with the following questions about
the intersectionW of the unstable manifold of a critical pointx and the stable manifold of
another critical pointy: finite dimensionality ofW, possibility that different components ofW
have different dimension, orientability ofW and coherence in the choice of an orientation,
compactness of the closure ofW, classification, up to topological conjugacy, of the gradient
flow on the closure ofW, in the case dimW = 2.
© 2004 Elsevier Inc. All rights reserved.
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0. Introduction

Morse theory[Mor25] relates the topology of a compact differentiable manifoldM
to the combinatorics of the critical points of a smooth Morse functionf :M → R: if
�q(M) = rankHq(M) denotes theqth Betti number ofM, andcq(f ) is the number of
critical pointsx of f with Morse indexm(x) = q, then the identity

dimM∑
q=0

cq(f )t
q =

dimM∑
q=0

�q(M)tq + (1+ t)Q(t) (0.1)

holds, withQ a polynomial with positive integer coefficients. Denoting byCq(f ) the
free Abelian group generated by the critical points off of indexq, q = 0,1, . . . ,dimM,
it is readily seen that (0.1) is implied1 by the existence of homomorphisms�q :Cq(f )

→ Cq−1(f ) making {C∗(f ), �∗} a chain complex, whose homology groups are iso-
morphic to the singularZ-homology groups ofM:

Hq({C∗(f ), �∗}) = ker�q
ran�q+1

�Hq(M). (0.2)

A chain complex with the above properties is indeed provided by a suitable cellular
filtration of M. More precisely, if we fix a Riemannian structure onM such that the
corresponding gradient flow off, i.e. the integral flow� :R ×M → M of the vector
field −gradf , is Morse–Smale,2 then the open subsets

Mq :=
⋃

x∈crit(f )
m(x)�q

�([0,+∞[×Ux), q = 0,1, . . . ,dimM

for Ux a suitable small neighborhood ofx, constitute a cellular filtration ofM, such
that

Hq(M
q,Mq−1)�Cq(f ).

So we get the boundary homomorphism

�q :Cq(f )�Hq(M
q,Mq−1) → Hq−1(M

q−1,Mq−2)�Cq−1(f ) (0.3)

and the classical isomorphism between the homology of the cellular chain complex
(0.3) and the singular homology ofM (see[Dol80, Section V.1]) implies (0.2).

1 The two facts would actually be equivalent if we were using coefficients in a field, instead of the
ring Z.

2 Here one needs just that the unstable manifoldWu(x) and the stable manifoldWs(y) have empty
intersection, for every pair of distinct critical pointsx, y with m(x)�m(y).
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The boundary homomorphism�q constructed above has also the following combina-
torial description, in terms of the intersections between the unstable manifoldsWu(x)

and the stable manifoldsWs(y) of pairs of critical points.3 Since dimWu(x) = m(x)

and dimWs(y) = dimM −m(y), the intersectionWu(x) ∩Ws(y) is a submanifold of
dimensionm(x)−m(y). An arbitrary choice of an orientation for each unstable manifold
Wu(x) determines a co-orientation (i.e. an orientation of the normal bundle) for each
stable manifoldWs(x), and thus an orientation for each intersection4 Wu(x)∩Ws(y).
Whenm(x) = q andm(y) = q − 1, Wu(x)∩Ws(y) consists of finitely many gradient
flow lines, each of which can be counted as+1 or as−1, depending on whether its
orientation agrees with the direction of the gradient flow or not. The algebraic sum
of these numbers gives an integern(x, y), and �q can be expressed in terms of the
generators ofCq(f ) andCq−1(f ) as

�qx =
∑

y∈crit(f )
m(y)=q−1

n(x, y) y for x ∈ crit(f ), m(x) = q. (0.4)

The Morse complex{C∗(f ), �∗} depends on the choice of the Riemannian structure on
M (a different Riemannian structure would produce a different gradient flow) and on
the choice of the orientations of the unstable manifolds, but the isomorphism class of
such a chain complex depends just on the functionf.
The approach described above was essentially clear to the pioneers of Morse theory,

such as Thom[Tho49] and Milnor [Mil63,Mil65] , and to people in dynamical systems,
such as Smale[Sma60,Sma61,Sma67]and Franks[Fra79,Fra80], but it has received
increasing attention after the works of Witten[Wit82] and Floer [Flo89]. See the
systematic study by Schwarz[Sch93], and Weber’s thesis[Web93]. The observation on
the invariance of the isomorphism class of the Morse complex is due to Cornea and
Ranicki [CR03], together with more striking rigidity results.
Already in the sixties, Morse theory had been generalized to infinite dimensional

Hilbert manifolds (manifolds modeled on a Hilbert space) by Palais[Pal63], and Smale
[Sma64a,Sma64b], and had been successfully applied to many variational problems (see
the expository papers of Bott[Bot82,Bot88], the books of Klingenberg[Kli78,Kli82] ,
of Mawhin and Willem[MW89], of Chang[Cha93], and references therein). Indeed,
the compactness ofM can be replaced by a compactness assumption onf, the well
known Palais–Smale condition ((PS) for short): any sequence(pn) ⊂ M such that
f (pn) is bounded and‖Df (pn)‖ is infinitesimal must be compact. IfM is a Hilbert
manifold endowed with a complete Riemannian structure, andf ∈ C2(M,R) is a
Morse function, bounded below and satisfying (PS), then the Morse relations (0.1) still
hold, the difference being that now (0.1) is an equality between formal power series,
with coefficients inN ∪ {∞}.

3 Here one needs thatWu(x) and Ws(y) meet transversally just whenm(x)−m(y)�1.
4 Indeed by transversality, a normal bundle ofWu(x) ∩Ws(y) in Wu(x) is also the restriction of a

normal bundle ofWs(y) in M, so it is oriented, and together with the orientation ofWu(x), it determines
an orientation ofWu(x) ∩Ws(y). Notice that the manifoldM needs not be orientable.



A. Abbondandolo, P. Majer /Advances in Mathematics 197 (2005) 321–410 325

However, (0.1) takes into account only critical points with finite Morse index, the
ultimate reason being that the closed ball of an infinite dimensional Hilbert space
is retractable onto its boundary, so that critical points with infinite Morse index are
invisible to homotopy theory. It was Floer[Flo88a,Flo88b,Flo88c,Flo89]who observed
that the Morse complex approach is suitable to deal with critical points of infinite Morse
index and co-index: even if the unstable and stable manifolds are infinite dimensional,
one may still hope the dimension of their intersection to be finite. In this case, one
could try to see (0.4) not as a description, but rather as the definition of a chain
complex. In this way, Floer was able to develop the analogue of Morse theory in
a case where the gradient flow ODE is replaced by a Cauchy–Riemann type PDE,
which does not even determine a local flow (so that there are no stable and unstable
manifolds). The resulting theory, known as Floer homology, plays now a central role
in symplectic geometry (see[HZ94,Sal99]and references therein).
In the present paper, and in the forthcoming Part II, we introduce and study the

Morse complex for gradient-like flows on infinite dimensional Hilbert manifolds. The
results we present are a far reaching generalization of a previous work on a special
class of functionals on Hilbert spaces[AM01] . See also[AvdV99] for a construction
of the Morse complex for the energy functional of an elliptic system, and Chapter 6
in Jost’s book[Jos02] for a general approach to the Morse complex. More precisely,
we give an answer to the following questions.

(i) When isWu(x) ∩Ws(y) a finite dimensional manifold?
(ii) How can we give coherent orientations to the manifoldsWu(x) ∩Ws(y)?
(iii) When is the closure ofWu(x) ∩Ws(y) compact?
(iv) Having defined�q by (0.4), how do we prove that�q−1 ◦ �q = 0?
(v) Which form of transversality is generic?
(vi) How do we recover the classical infinite dimensional Morse theory?
(vii) How can we compute the homology of the Morse complex?

In the present paper, we address questions (i)–(iv), leaving questions (v)–(vii) to Part
II. We wish to emphasize the fact that these questions are only formally analogue to
corresponding issues in Floer homology. Indeed, since in our case the gradient-like
vector field determines aC1 local flow, some of the problems above can be dealt by
dynamical systems techniques. On the other hand, finite dimensionality and compactness
results do not come from elliptic estimates, but involve different ideas. In particular, the
study of some infinite dimensional Grassmannians, of ordinary differential operators on
Hilbert spaces, and the use of Hausdorff measures of non-compactness turn out to be
important tools.
We conclude this introduction by giving an informal description of our results.

0.1. Finite dimensional intersections

Let f be aC2 Morse function on a paracompact Hilbert manifoldM. Let F be a
C1 Morse vector field onM, having f as a non-degenerate Lyapunov function: this
means thatDf (p)[F(p)] < 0 for everyp ∈ M which is not a rest point ofF, that the
Jacobian ofF at every rest pointx—denoted by∇F(x)—is a hyperbolic operator, and
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that the quadratic formD2f (x) is coercive onV −(∇F(x)), the negative eigenspace
of ∇F(x), while −D2f (x) is coercive on the positive eigenspaceV +(∇F(x)). Under
these assumptions,x is a rest point ofF if and only if it is a critical point of f.
Typically, F = −gradf , the negative gradient off with respect to some Riemannian
metric onM, or F = −hgradf , for some positive functionh.
The unstable and stable manifolds of a critical pointx are C1 submanifolds of

dimension the Morse index and co-index ofx. When the critical pointsx and y have
infinite index and co-index, respectively, the intersectionWu(x)∩Ws(y) can be infinite
dimensional: consider for example the restriction of a continuous linear formf on a
Hilbert spaceH to the unit sphereS of H. Its critical points are a maximum pointx
and a minimum point−x, andWu(x) ∩Ws(−x) = S \ {x,−x}.
What is more striking, ifx andy are critical points off with infinite Morse index and

co-index, the dimension of the intersection between their unstable and stable manifolds
(with respect to the negative gradient flow off) depends on the metric onM: indeed, if
all the critical points of a Morse functionf have infinite Morse index and co-index, and
a : crit(f ) → Z is any function, thenM supports a metricg—uniformly equivalent to
a given one—such that the corresponding negative gradient flow off has the property
that for every pair of critical pointsx, y the intersectionWu(x) ∩Ws(y) is transverse
and has dimensiona(x)− a(y) (see[AM04b]).
Therefore, some extra structure on the manifoldM is needed: we will assume the

existence of a subbundleV of TM, which can be used to make comparisons. More
precisely, the object of our study will be a quartet(M,F, f,V), where f is a non-
degenerate Lyapunov function for the Morse vector fieldF, and the subbundleV of
TM is compatible toF, meaning that:

(C1) for every rest pointx, V +(∇F(x)), the positive eigenspace of the Jacobian of
F at x, is a compact perturbation ofV(x) (this means that the corresponding
orthogonal projectors have compact difference);

(C2) denoting byP a projector ontoV, (LFP)(p)P(p) is a compact linear operator
on TpM, for everyp ∈ M (hereLFP denotes the Lie derivative of the tensorP
along the vector fieldF).

Assumption (C1) allows us to define therelative Morse index of a rest point x with
respect toV to be the integer

m(x,V) := dim(V +(∇F(x)),V(x))
= dimV +(∇F(x)) ∩ V(x)⊥ − dimV +(∇F(x))⊥ ∩ V(x).

Notice thatm(x,V) can be negative. A subbundleV = P(TM) is invariant for the
differential of the integral flow of a vector fieldX if and only if (LXP)P = 0.
Assumption (C2) says thatV is essentially invariantfor the linearized flow ofF,
meaning that the differential of the flow ofF mapsV into a compact perturbation of
V. Assumptions (C1) and (C2) are automatically fulfilled when all the critical points
have finite index, by choosingV = (0): in this casem(x, (0)) is the usual Morse
index.
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Our first result will be that if (C1) and (C2) hold, andWu(x), Ws(y) meet transver-
sally, then their intersection is finite dimensional, and

dimWu(x) ∩Ws(y) = m(x,V)−m(y,V), (0.5)

which is the first step for the construction of the Morse complex. A useful tool, in
the proof of this result and in transversality questions, will be the study, presented in
[AM03b], of the Fredholm properties of the differential operator

d

dt
− A(t) :C1

0(R, H) → C0
0(R, H),

where the subscript 0 means vanishing at infinity, andA is a continuous path of bounded
operators on the Hilbert spaceH, converging to hyperbolic operators fort →±∞.
As we shall see, the usefulness of conditions (C1) and (C2) lies in the fact that they

are bothstableand convex.
In many cases, the choice of the subbundleV for which (C1) and (C2) hold, is

suggested by the problem itself: for example, this is the case of semi-linear equations,
where f is a lower order perturbation of a non-degenerate quadratic form on a Hilbert
space, and of many functionals coming from geometric problems, such as the energy of
curves on a semi-Riemannian manifold. In other cases, (C1) and (C2) just hold locally:
one finds an open covering

{
Uj | j ∈ J

}
of M and subbundlesVj of T Uj , which satisfy

(C1), (C2), and are such thatVi |Ui∩Uj
is a compact perturbation ofVj |Ui∩Uj

, for any
i, j ∈ J . That is, (C1) and (C2) hold with respect to anessential subbundle. In such
a situation the intersection of the unstable and stable manifolds are finite dimensional,
but no formula like (0.5) can possibly hold. Indeed, we will show an example of a
Morse function onS1×H , H an infinite dimensional Hilbert space, with two rest points
x, y, such that different components of the transverse intersectionWu(x)∩Ws(y) have
different dimension. This is a purely infinite dimensional phenomenon, related to the fact
that the general linear group of an infinite dimensional Hilbert space is contractible (see
[Kui65]). Formula (0.5) will hold in the intermediate situation in which dim(Vi ,Vj ) = 0
for every i, j ∈ J : in this case we will say that (C1) and (C2) hold with respect to a
(0)-essential subbundle.
These facts are closely related to Cohen, Jones, and Segal’s use of polarizations to

understand the homotopy theory which lies behind Floer homology[CJS95].

0.2. Coherent orientations

As we have seen, whenM is finite dimensional—or more generally when the rest
points have finite Morse index—Wu(x) ∩Ws(y) is orientable. In the case of infinite
Morse indices and co-indices, however,Wu(x) ∩ Ws(y) needs not be orientable: in-
deed we will provide an example showing that such a transverse intersection can be
diffeomorphic toZ × R, whereZ is any manifold.
The existence of a subbundleV satisfying (C1) and (C2) will imply that all the inter-

sectionsWu(x)∩Ws(y) are orientable, and it will allow us to define their orientations
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in a coherent way. The starting point is the fact that Fredholm pairs (i.e. pairs(V ,W) of
closed linear subspaces of a Hilbert spaceH with dimV ∩W < ∞, codim(V+W) < ∞)
can be oriented: an orientation of(V ,W) is by definition an orientation of the finite
dimensional space(V ∩W) × (H/(V +W))∗. Actually, a determinant bundle can be
defined on the space of Fredholm pairs, extending the determinant bundle on the space
of Fredholm operators, defined by Quillen[Qui85]. Together with the fact that the
fundamental group of the space of Fredholm pairs(V ,W) with dimV = dimW = ∞,
is Z2, this implies that the notion of orientation of a Fredholm pair shares all the good
properties of orientations of finite dimensional spaces.
For every rest pointx, one fixes an orientation of the Fredholm pair(TxW

s(x),V(x)).
Assumptions (C1) and (C2) guarantee that(TpW

s(x),V(p)) is a Fredholm pair, for
every p ∈ Ws(x). Hence, the orientation chosen atx propagates to all the stable
manifold of x. The way of orientingWu(x) ∩Ws(y) is then similar to what we have
described in the case of a finite dimensionalM.
If conditions (C1) and (C2) hold with respect to a (0)-essential subbundle, coherent

orientations cannot be defined, and one obtains just a Morse complex withZ2 coeffi-
cients. Bott periodicity theorem[Bot59] can be used to find the obstructions to have
a Morse complex with integer coefficients: they are given by the homotopy groups
�i (M), with i ≡ 1,2,3,5mod 8.

0.3. Relative compactness of the intersections

When the rest pointx has a finite Morse index, the (PS) condition5 and the com-
pleteness of the flow imply that the intersectionWu(x) ∩Ws(y) has compact closure
in M. When the indices are infinite, even if (C1-2) guarantee thatWu(x) ∩ Ws(y)

is finite dimensional, we cannot conclude that its closure is compact: for instance,
it may consist of infinitely many isolated curves, with no cluster points besidesx
and y.
The reason is that (C1-2) are local assumptions, while compactness involves a global

condition: we shall need a global version of condition (C2). Let us assume for simplicity
that the subbundleV of TM has aglobal presentation, that is a submersionQ :M → N

into a complete Riemannian Hilbert manifoldN such thatV(p) = kerDQ(p). We will
denote by�X(A) the Hausdorff measure of non-compactness of the subsetA of a metric
spaceX, that is the infimum of all positive numbersr such thatA can be covered by
finitely many balls of radiusr. The new assumption is:

(C3) (i) DQ ◦ F is bounded;
(ii) for every q ∈ N there exist� > 0 andc�0 such that�TN(DQ(F (A)))�c �N
(Q(A)), for anyA in a Q−1(B�(q)).

This condition implies (C2) by differentiation. Condition (C3) is also stable and
convex, in a sense to be specified.

5 In this contest, a (PS) sequence is a sequence(pn) ⊂ M such that (f (pn)) is bounded and
(Df (pn)[F(pn)]) is infinitesimal.
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We shall prove that conditions (C1) and (C3), together with (PS) and the completeness
of the flow, imply thatWu(x) ∩Ws(y) has compact closure inM, for every pair of
critical pointsx, y.
This compactness result will be proved in the more general setting of a flow which

preserves anessentially vertical familyF of subsets ofM, with respect to astrong
integrable structurefor an essential subbundleE of TM. WhenE is the essential class
of a subbundleV with a global presentationQ, one choosesF to be the family of
subsetsA ⊂ M such thatQ(A) is pre-compact. More-generally, one can deal with a
suitable presentation ofE consisting of an open covering{Mi}i∈I of M and of semi-
Fredholm maps with non-negative indexQi :Mi → Ni , such thatE(p) = [kerDQ(p)]
for everyp ∈ Mi .

0.4. The boundary homomorphism

Assume that(M,F, f,V) satisfies (C1-3) and (PS), and that the stable and unstable
manifolds of rest points meet transversally. Forq ∈ Z, we can defineCq(F ) to be the
free Abelian group generated by the rest pointsx with m(x,V) = q. In order to define
the homomorphism�q :Cq(F ) → Cq−1(F ), we just need the last condition

(C4) for anyq ∈ Z, f is bounded below on the set of critical pointsx of relative Morse
indexm(x,V) = q,

which guarantees that the sum appearing in (0.4) is finite.
The boundary property�q−1 ◦ �q = 0 comes from the possibility of describing

exactly the flow on the closure of each component ofWu(x)∩Ws(y), whenm(x,V)−
m(y,V) = 2: such a flow is either topologically conjugated to the exponential flow
(t, z) �→ et z on the Riemann sphereC ∪ {∞}, or it is topologically conjugated to the
shift flow (t, (u, v)) �→ (u+ t, v + t) on [−∞,+∞] × [−∞,+∞]. In the latter case,
the orientation of this component is the product orientation of its sides. These results
will be proved by hyperbolic dynamical systems techniques, which in this case seem
more natural than the gluing method used in Floer homology.
The resulting complex{C∗(F ), �∗} is said theMorse complexof F. If F1 andF2 are

two Morse vector fields having the same non-degenerate Lyapunov functionf, the Morse
complexes ofF1 and ofF2 are isomorphic. In particular, their homology depends only
on the Lyapunov functionf, and it will be said theMorse homologyof f and denoted
by H∗(f ).

0.5. Transversality

The transversality of the intersection of stable and unstable manifolds will be achieved
by perturbing the vector fieldF. Small perturbations in a suitable class of vector fields
keep the conditions (C1-4) and (PS) valid: in this sense, these conditions were said
to be stable. When one restricts the attention to the class of gradient vector fields,
transversality can be achieved by using rank 2 perturbations of the given Riemannian
metric. A difference with respect to the finite dimensional case is the regularity require-
ment. Indeed, high regularity ofF is needed to apply Sard–Smale theorem, and such a
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regularity cannot be obtained by smoothing the vector fieldF, becauseCk+1 functions
on an infinite dimensional Hilbert space are notCk dense (see[NS73,LL86]). As a
consequence, we shall assumeF ∈ C2(M), and we will achieve transverse intersections
of Wu(x) andWs(y) wheneverm(x,V)−m(y,V)�2, which is what we need for the
construction of the Morse complex.

0.6. Relationship with classical infinite dimensional Morse theory

In the case off bounded below, satisfying (PS), and with critical points of finite
Morse index, we shall prove that the Morse homology off is isomorphic to the singular
homology ofM, a result which agrees with the Morse relations proved by Palais. This
will be a simple generalization of the cellular filtration argument described for the
compact case.
From this fact, it is easy to determine the Morse complex of some classes of vector

fields having rest points of infinite Morse index and co-index. For instance, ifM =
M− ×M+ is the product of two infinite dimensional Hilbert manifolds, endowed with
a complete product Riemannian structure, and the Morse functionf :M → R has the
special form

f (p−, p+) = f+(p+)− f−(p−), (0.6)

wheref+ :M+ → R, f− : M− → R are bounded below and satisfy (PS), then

F = −
(

gradf−

1+ ‖gradf−‖2 ,
gradf+

1+ ‖gradf+‖2
)

satisfies (C1-3) with respect to the subbundleV = TM− × (0), with global presen-
tation the submersionQ : M → M+, (p−, p+) �→ p+. Notice thatF has the form
F(p−, p+) = (F−(p−), F+(p+)). It is easy to see that the Morse complex ofF is

Cq(F ) = (C∗(F+)⊗ C−∗(F−))q =
⊕

(q−,q+)∈N2

q+−q−=q

Cq+(F
+)⊗ Cq−(F

−) ∀q ∈ Z

and the Morse homology off is

Hq(f )�(H∗(M+)⊗H−∗(M−))q=
⊕

(q−,q+)∈N2

q+−q−=q

Hq+(M
+)⊗Hq−(M

−) ∀q∈Z. (0.7)
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0.7. Computation of the homology and functoriality

In the case of infinite Morse indices and co-indices, the topology ofM is not
immediately related to the Morse homology off. However, the homology groupsHq(f )

are still considerably stable.
The key ingredient to compute the Morse homology groups will be the fact that

Morse homology is a functor from the class of Morse functions with a gradient-like
vector field satisfying (C1-4) and (PS), seen as a small category with the usual order
relation, to the category of Abelian groups: to every inequalityf0�f1 is associated a
homomorphism

�f0f1
:H∗(f0) → H∗(f1),

in such a way that�f1f2
◦ �f0f1

= �f0f2
, and �ff = id (actually, ��◦ff = id, for

�(s)�s a strictly increasing smooth function). The idea for the definition of�f0f1

comes from the following observation: every chain homomorphism� : {C0∗, �
0
∗} →

{C1∗, �
1
∗} comes from a boundary operator�q :C0

q ⊕ C1
q+1 → C0

q−1 ⊕ C1
q , the cone of

�, namely

�q =
(

�0q 0

� −�1q+1

)
. (0.8)

With this in mind, we will construct a Morse functionf :R ×M → R, of the form

f (s, p) = �(s)f0(p)+ (1− �(s))f1(p)+ �(s),

with � a monotone smooth function such that�(s) = 1 for s�0, and �(s) = 0 for
s�1, while �(s) = 2s3 − 3s2 + 1 has a non-degenerate maximum at 0 and a non-
degenerate minimum at 1. The functionf is a non-degenerate Lyapunov function for a
Morse vector field onR ×M satisfying (C1-4) and (PS), and the boundary operator
in the associated Morse complex has the form (0.8). This allows us to define�f0f1

as
the homomorphism induced by the chain homomorphism�.
We wish to emphasize that this functorial approach is possible thanks to the fact that

the conditions (C1-4), and (PS) naturally pass from the functionsf0, f1 to the cone
function f: in this sense, these conditions were said to be convex.
In particular, two functionsf0 and f1 such thatc := ‖f1 − f0‖∞ is finite, have

always isomorphic Morse homologies, as implied by the functoriality applied to the
inequalities

f0 − c�f1�f0 + c, f1− c�f0�f1+ c.

For example, letf :M− × M+ → R be a Morse function satisfying (PS) and such
that F = −gradf/(1+ ‖gradf ‖2) satisfies (C1-4) with respect to the subbundleV =
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TM−× (0). If f has bounded distance from a function of the form (0.6), still satisfying
the same assumptions, the Morse homology off is given by (0.7). More generally, if
there existsc > 0 such that

1

c
f+(p+)− cf−(p−)− c�f (p−, p+)�cf+(p+)− 1

c
f (p−)+ c,

we deduce the existence of a surjective homomorphism

Hq(f ) →
⊕

(q−,q+)∈N
q+−q−=q

Hq+(M
+)⊗Hq−(M

−),

which implies lower estimates on the number of critical points off of a given relative
Morse index.

1. Essential subbundles of a Hilbert bundle

In this section, we will fix some basic facts about the Grassmannian of a Hilbert
space and some related constructions. We refer to Appendix A for more details.

1.1. Hilbert Grassmannians

If E and F are Banach spaces,L(E, F ) will denote the space of bounded linear
operators fromE to F, while Lc(E, F ) will denote the subspace consisting of compact
operators. In the caseF = E, we will simply write L(E) andLc(E).
Let H be an infinite dimensional separable real Hilbert space. The orthogonal projec-

tion onto a closed linear subspaceV ⊂ H will be denoted byPV , while the orthogonal
complement ofV will be indicated byV ⊥. We will denote by Gr(H) theGrassmannian
of H, that is the space of all closed linear subspaces ofH, endowed with the operator
norm topology. By Gr∞,∞(H) we will denote the connected component of Gr(H)

consisting of subspaces of infinite dimension and infinite codimension. The other con-
nected components of Gr(H) are the subsets Grn,∞(H), the set of linear subspaces of
H of dimensionn, and Gr∞,n(H), the set of linear subspaces ofH of codimensionn.

1.2. Compact perturbations and essential Grassmannians

GivenV,W ∈ Gr(H), we will say thatV is a compact perturbationof W if PV −PW

is a compact operator. In this case, therelative dimensionof V with respect toW is
the integer

dim(V ,W) = dimV ∩W⊥ − dimV ⊥ ∩W.
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Given m ∈ N, the (m)-essential GrassmannianGr(m)(H) is the quotient space of
Gr(H) by the equivalence relation

{(V ,W) ∈ Gr(H)2|V is a compact perturbation ofW,

and dim(V ,W) ∈ mZ}.

By Gr∗(m)(H) we will denote the quotient of Gr∞,∞(H) by the same equivalence
relation. The space Gr(1)(H) is called just theessential Grassmannianof H. If [W ] ∈
Gr(m)(H) and V ∈ Gr(H) is a compact perturbation of an element (hence every
element) of the class[W ], then dim(V , [W ]) := dim(V ,W) is well defined as an
integer modulom.

1.3. Essential subbundles

Fix some k ∈ N ∪ {∞}. Let B be a topological space ifk = 0, or a Ck Banach
manifold if k�1, and letH → B be anH-bundle onB, that is aCk fiber bundle
with base spaceB, total spaceH, typical fiber the Hilbert spaceH, and structure
group GL(H). Since the Hilbert spaceH is infinite dimensional, the group GL(H) is
contractible (see[Kui65]), so the above bundle is always trivial.
We can associate to theCk Hilbert bundleH → B the Ck fiber bundles

Gr(H) =
⋃
b∈B

Gr(Hb) → B, Gr(m)(H) =
⋃
b∈B

Gr(m)(Hb) → B, m ∈ N.

The spaces Gr(H) and Gr(m)(H) admit natural analytic structures, so the above bundles
haveCk structures. ACk section of Gr(H) → B is just aCk subbundle ofH → B.
Similarly, aCk section of Gr(m)(H) → B will be called aCk (m)-essential subbundle
of H → B, or just aCk essential subbundlein the casem = 1.

1.4. Lifting properties

The following questions arise naturally: when is an(m)-essential subbundle,m ∈ N,
liftable to a true subbundle? when is an(m)-essential subbundle,m�1, liftable to an
(hm)-essential subbundle, forh ∈ N ? We shall discuss these questions in the nontrivial
case of subbundles with infinite dimension and codimension.
Since the Hilbert bundleH → B is trivial, the (m)-essential subbundle we wish to

lift can be identified with a map

E :B → Gr∗(m)(H)
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and we are looking at the lifting problems

Gr∞,∞(H)

��

B

���
�

�
�

� E
�� Gr∗(m)(H)

Gr∗(hm)(H)

��

B

���
�

�
�

� E
�� Gr∗(m)(H)

In the first diagram, the vertical map is a fibration from a contractible space, so the
(m)-essential subbundleE is liftable to a true subbundle if and only if the mapE is null-
homotopic. It can be proved that Gr∗

(0)(H) is simply connected, while the fundamental
group of Gr(m)(H) for m�1 is infinite cyclic. Furthermore,�i (Gr(m)(H))��i−1
(BO(∞)) for i�2, where BO(∞) denotes the classifying space of the infinite real
orthogonal group. Hence, using Bott periodicity theorem, we deduce thatE is null
homotopic if and only the homomorphism

E∗ : �i (B) → �i (Gr∗(m)(H))

vanishes for everyi ≡ 1,2,3,5mod 8. In particular, every(m)-essential subbundle is
liftable to a true subbundle when�i (B) = 0 for every i ≡ 1,2,3,5mod 8.

In the second diagram, the vertical arrow is a covering map, and the image of the
induced homomorphism

�1(Gr∗(hm)(H)) → �1(Gr∗(m)(H)) = Z

is the subgrouphZ, so the (m)-essential subbundleE is liftable to a (hm)-essential
subbundle if and only ifE∗(�1(B)) ⊂ hZ. In particular, every(m)-essential subbundle
is liftable to a (0)-essential subbundle whenB is simply connected.
In this paper, we will be mainly interested in subbundles and essential subbundles

of the tangent bundleTM of a Hilbert manifoldM (that is a paracompact manifold
modeled on the Hilbert spaceH). Notice that, sinceM is locally contractible, any
(m)-essential subbundleE is locally liftable to a true subbundle, which will be called
a local representativeof E .

1.5. Integrable essential subbundles ofTM

An essential subbundleE of TM is called integrable if M admits an atlas whose
charts� :dom(�) ⊂ M → H map E into the essential subbundle represented by a
constant closed linear subspaceV ⊂ H :

∀p ∈ dom(�) D�(p)E(p) = [V ]. (1.1)
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If � and� are two such charts, the transition map	 = � ◦ �−1 : dom(	) ⊂ H → H

satisfies

D	(
)V is a compact perturbation ofV ∀
 ∈ dom(	).

By PropositionA.4, the above fact is equivalent to

QD	(
)(I −Q) is a compact operator∀
 ∈ dom(	), (1.2)

Q being a projector with kernelV. An atlasA of M satisfying (1.1) and (1.2) form an
integrable structure modeled on(H, V ) for the essential subbundleE .
Conversely, an atlas ofM whose transition maps satisfy (1.2) defines an integrable

essential subbundle ofTM. Such an essential subbundle is liftable to an(m)-essential
subbundlem ∈ N, if and only if

dim(D	(
)V , V ) ≡ 0 modm

for every transition map	 and every
 ∈ dom(	).
Considering integrable essential subbundles will be important starting from

Section 6. Actually, we will be interested in the following stronger version of
integrability.

Definition 1.1. Let V be a closed linear subspace of the Hilbert spaceH, and let
Q ∈ L(H) be a projector with kernelV. A strong integrable structure modeled on
(H, V ) for the essential subbundleE of TM is atlasA of M such that:

(i) for every � ∈ A and everyp ∈ dom(�), D�(p)E(p) = [V ];
(ii) for every �,� ∈ A the transition map	 = � ◦ �−1 : dom(	) ⊂ H → H satisfies

QA is pre-compact if and only ifQ	(A) is pre-compact,

for every boundedA ⊂ dom(	).

Since the setQA is pre-compact if and only if the projection ofA into the quotient
spaceH/V is pre-compact, the above definition does not depend on the choice of the
projectorQ, but only on the subspaceV.
Let 	 be a transition map satisfying condition (ii) of the above definition, and let


 ∈ dom(	). Then the restriction of the mapQ	 to the set dom(	) ∩ (
 + V ) is a
compact map (i.e. it maps bounded sets into pre-compact sets). Therefore its differential
at 
, namely the linear operatorQD	(
)|V is compact, implying (1.2). Hence a strong
integrable structure is also an integrable structure. The notion of a strong integrable
structure is strictly more restrictive, because a nonlinear map whose differential at every
point is compact need not be compact.
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Remark 1.2. Assume thatW is a compact perturbation of the closed linear subspace
V. Notice that ifA ⊂ H

PW⊥A ⊂ PV⊥A+ (PV − PW)A.

Then if A is boundedPV⊥A is pre-compact if and only ifPW⊥A is pre-compact.
Therefore, a strong integrable structure modeled on(H, V ) is also a strong integrable
structure modeled on(H,W).

1.6. Presentations of an essential subbundle

A natural way to construct an integrable subbundle ofTM is to consider the kernel
of a submersion, or of a family of submersions with matching kernels. We wish to
describe the essential version of this construction.
The following lemma can be considered the essential version of the fact that in

suitable charts a submersion is a linear projection.

Lemma 1.3. Let M and N be manifolds modeled on the Hilbert spaces H and E,
respectively. LetQ :M → N be a Ck, k�1, semi-Fredholm map with constant non-
negative index. Then there exists a projectorQ ∈ L(H) such that, denoting by V its
kernel, there holds: for everyp ∈ M there exists aCk chart � :U → H , p ∈ U ⊂ M,
such that

(i) �(U) is bounded;
(ii) for every
 ∈ �(U), kerD(Q ◦ �−1)(
) is a compact perturbation of V, with

dim(kerD(Q ◦ �−1)(
), V ) = dim cokerDQ(�−1(
));

(iii) for everyA ⊂ �(U), Q(�−1(A)) is pre-compact if and only if QA is compact.

In most applications, the index ofQ will be +∞.

Proof. The matter being local, we may assume thatM is an open subset of the Hilbert
spaceH, thatp = 0, thatN is an open subset of the Hilbert spaceE, and thatQ(0) = 0.
Since indDQ(0)�0, there isT ∈ L(H,E) with finite rank such thatDQ(0) + T is
surjective. By the open mapping theorem,DQ(0)+T has a linear bounded right inverse
R ∈ L(E,H). Let Q := R(DQ(0) + T ) ∈ L(H) be the associated linear projection,
and setV := kerQ. Since the index ofQ is constant (i.e. it does not take different
values on different connected components ofM), by applying a linear conjugacy the
sameQ andV can be used for every pointp ∈ M.
The mapR(Q+T ) :M → ranQ is a local submersion at 0, with differential at 0 equal

to Q. Therefore, there exists a neighborhoodU ⊂ M of 0 and aCk diffeomorphism
� :U → H such that�(0) = 0, D�(0) = I , �(U) and Q(U) bounded (so that (i)
holds), and

R(Q+ T ) ◦ �−1(
) = Q
 ∀
 ∈ �(U). (1.3)
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Differentiating we getRD(Q ◦ �−1)(
)+ RTD�−1(
) = Q. SinceR is injective and
sinceT has finite rank, PropositionA.3 implies that

kerD(Q ◦ �−1)(
) = kerRD(Q ◦ �−1)(
)

is a compact perturbation of kerQ = V , and

dim(kerD(Q ◦ �−1)(
), V ) = −dim(ranRD(Q ◦ �−1)(
), ranQ)

= −dim(ranD(Q ◦ �−1)(
), E)

= dim cokerDQ(�−1(
))D�−1(
)

= dim cokerDQ(�−1(
)),

proving (ii). By (1.3), for everyA ⊂ �(U),

QA ⊂ RQ(�−1(A))+ ranRT, Q(�−1(A)) ⊂ (DQ(0)+ T )QA+ ranT ,

so claim (iii) follows from the fact that�(U) and Q(U) are bounded, and from the
fact thatT has finite rank. �

Proposition 1.4. Consider an open covering{Mi}i∈I of M, a family of infinite dimen-
sional Hilbert manifolds{Ni}i∈I modeled on E, and a family of semi-FredholmCk,
k�1, mapsQi :Mi → Ni with the same constant non-negative index, such that for
any i, j ∈ I and for anyA ⊂ Mi ∩Mj ,

Qi (A) is pre-compact if and only if Qj (A) is pre-compact. (1.4)

Then the family{kerDQi (p) | p ∈ Mi}, i ∈ I , defines aCk−1 essential subbundleE
of TM. The atlasA consisting of all the charts� of M satisfying properties(i)–(iii)
of Lemma1.3 applied to all the mapsQi is a strong integrable structure modeled on
(H, V ) for E . This atlas is such that for every� ∈ A and everyA ⊂ dom(�) ⊂ Mi ,

Q�(A) is pre-compact if and only if Qi (A) is pre-compact. (1.5)

Moreover, for every p ∈ Mi ∩ Mj the operatorDQi (p)DQj (p)
∗ ∈ L(TQj (p)Nj ,

TQi (p)Ni) is Fredholm, and E is liftable to an(m)-essential subbundle, m ∈ N, if and
only if

ind (DQi (p)DQj (p)
∗) ≡ 0 modm ∀i, j ∈ I, ∀p ∈ Mi ∩Mj.

Proof. Let us prove that for anyp ∈ Mi ∩ Mj the subspace kerDQi (p) is a
compact perturbation of kerDQj (p). SinceDQi (p) has finite corank, we can find aC1
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embedded finite dimensional open diskD ⊂ Ni with D compact, such thatQi (p) ∈
D and the mapQi is transverse toD. Then Q−1

i (D) is a C1 submanifold ofM,
and by our assumption the mapQj |Q−1

i (D)∩Mj
is compact. Therefore its differential,

namely the restriction ofDQj to the subspaceTpQ−1
i (D) ⊃ kerDQi (p) is compact.

In particular, the restriction ofDQj (p) to kerDQi (p) is compact, and similarly the
restriction ofDQi (p) to kerDQj (p) is compact. Hence PropositionA.5 implies that
kerDQi (p) is a compact perturbation of kerDQj (p), as we wished to prove, and
that

ind (DQi (p)DQj (p)
∗) = dim cokerDQj (p)− dim cokerDQi (p)

+dim(kerDQi (p), kerDQj (p)). (1.6)

Now let � and�, dom(�) ⊂ Mi , dom(�) ⊂ Mj , be two charts satisfying conditions
(i)–(iii) of Lemma 1.3 applied toQi and Qj , respectively (possiblyi = j ). Let 	 =
� ◦ �−1 be the transition map. IfA ⊂ dom(	) = �(dom(�) ∩ dom(�)), by Lemma
1.3(iii) QA is pre-compact if and only ifQj (�

−1(A)) is pre-compact, by (1.4) if and
only if Qi (�

−1(A)) = Qi (�−1(	(A))) is pre-compact, and again by Lemma1.3(iii) if
and only if Q	(A) is pre-compact. This proves condition (ii) of Definition1.1, and
proves that the atlasA satisfies (1.5).
Finally, let p ∈ Mi . By Lemma1.3(ii), there is a neighborhoodUp of p and aCk

submersionQ̃p := Q� :Up → ranQ into a Hilbert space such that for anyq ∈ Up,
kerDQi (q) is a compact perturbation of kerDQ̃p(q), and

dim(kerDQi (q), kerDQ̃p(q)) = dim cokerDQi (q). (1.7)

Then the family{kerDQi | i ∈ I } defines the sameCk−1 essential subbundle ofTM
as the one defined by the family

{
kerDQ̃p | p ∈ M

}
. (1.8)

If q ∈ Up ∩ Up′ ∩Mi ∩Mj , by (1.6) and (1.7) we obtain (see formula (A.2))

dim(kerDQ̃p(q), kerQ̃p′(q)) = dim(kerDQ̃p(q), kerDQi (q))

+dim(kerDQi (q), kerDQj (q))+ dim(kerDQj (q), kerDQ̃p′(q))

= ind (DQi (q)DQj (q)
∗),
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so (1.8) defines an(m)-essential subbundle ofTM if and only if

ind (DQi (q)DQj (q)
∗) ≡ 0 modm ∀i, j ∈ I, ∀q ∈ Mi ∩Mj. �

The above proposition suggests the following:

Definition 1.5. A strong presentation of the essential subbundleE of TM consists of an
open covering{Mi}i∈I of M, a family of manifoldsNi , i ∈ I , modeled on the Hilbert
spaceE, a family of semi-FredholmC1 mapsQi :Mi → Ni with the same constant
non-negative index such that:

(i) for every i ∈ I and everyp ∈ Mi , the kernel ofDQi (p) belongs to the essential
classE(p);

(ii) for every i, j ∈ I and everyA ⊂ Mi ∩Mj , Qi (A) is pre-compact if and only if
Qj (A) is pre-compact.

Proposition1.4 states among other facts that a strong presentation ofE determines
a strong integrable structure forE .

2. Morse vector fields and subbundles

2.1. Definitions and basic facts

Let M be a paracompact manifold of classC2, modeled on the infinite dimensional
separable real Hilbert spaceH. Let F be a tangent vector field of classC1 on M. This
field determines a local flow onM,

� ∈ C1(�(F ),M), �t�(t, p) = F(�(t, p)), �(0, p) = p,

where�(F ) ⊂ R×M is the maximal set of existence for the solutions of this ordinary
differential equation. We will also use the notation�t (p) = �(t, p).
A rest pointof F is a pointx ∈ M such thatF(x) = 0. The set of rest points ofF

is denoted by rest(F ). If x ∈ rest(F ), the Jacobian ofF at x, ∇F(x), is the bounded
linear operator onTxM defined as

∇F(x)
 = LXF(x) for X a tangent vector field such thatX(x) = 
 ∈ TxM,

whereLXF denotes the Lie derivative ofF along X. Indeed, the fact thatF(x) = 0
implies thatLXF(x) depends only on the value ofX at x.
We recall that an operatorL ∈ L(H) is saidhyperbolicif �(L)∩iR = ∅. In this case,

the decomposition of the spectrum ofL into the subset with positive real part and the
one with negative real part determines anL-invariant splittingH = V +(L)⊕ V −(L).
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A point x ∈ rest(F ) is said hyperbolic if the operator∇F(x) is hyperbolic. In this
case, thelinear unstable spaceHu

x and thelinear stable spaceHs
x , are defined as

Hu
x := V +(∇F(x)), Hs

x := V −(∇F(x)).

A vector fieldF all of whose rest points are hyperbolic is said aMorse vector field.
A Lyapunov functionfor the vector fieldF is a functionf ∈ C1(M) such that

Df (p)[F(p)] < 0 ∀p ∈ M \ rest(F ). (2.1)

In particular, t �→ f (�(t, p)) is strictly decreasing ifp /∈ rest(F ). Note that every
critical point of f must be a rest point ofF. If x is a hyperbolic rest point forF, then
it is a critical point of f, as it easily follows from a first-order expansion ofF at x.

If the vector field F is Morse, we shall ask the Lyapunov function to benon-
degenerate: f is twice differentiable at every rest pointx and, denoting byD2f (x) the
second differential off at x, seen as a symmetric bounded bilinear form, we have that

 �→ D2f (x)[
, 
] is coercive onHs

x , while 
 �→ −D2f (x)[
, 
] is coercive onHu
x .

The Morse vector fieldF is said gradient-like if it has a non-degenerate Lyapunov
function.

2.2. The relative Morse index

For V a subbundle ofTM of classC1, consider the following compatibility condition
betweenF andV:
(C1) for everyx rest point ofF, the linear unstable spaceHu

x is a compact perturbation
of V(x).

If (C1) holds, therelative Morse indexof x ∈ rest(F ) is the integer

m(x,V) := dim(Hu
x ,V(x))

and the sets

restq(F ) := {x ∈ rest(F ) | m(x,V) = q} , q ∈ Z,

constitute a partition of rest(F ).
Condition (C1) clearly depends only on the essential class ofV. Therefore, it makes

sense to talk about vector fields which satisfy (C1) with respect to an essential sub-
bundle. More precisely, theC1 Morse vector fieldF satisfies (C1) with respect to the
essential subbundleE if for every rest pointx of F the unstable spaceHu

x belongs to
the essential classE(x). In this more general situation, there is no relative Morse index.
However, if the essential subbundleE comes from an(m)—essential subbundle—still
denoted byE—then the relative Morse index ofx ∈ rest(F ) is an integer modulo
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m—denoted bym(x, E). In particular, if E is a (0)-essential subbundle, the relative
Morse index is still integer valued.

2.3. Essentially invariant subbundles

We shall say that theC1 subbundleV is invariant with respect to F atp ∈ M if

(LFP)(p)P(p) = 0, (2.2)

whereP is a projector ontoV of TM: P is aC1 section of the Banach bundle of linear
endomorphisms ofTM such that for everyp ∈ M, P(p) ∈ L(TpM) is a projector onto
V(p). This notion does not depend on the choice of the projectorP, but only on the
subbundleV. Indeed, ifP andQ are two projectors ontoV, we have the identity

(LFQ)Q = (I −Q)(LFP)PQ, (2.3)

which can be verified by taking the Lie derivative of the identitiesPQ = Q = Q2.
This definition is motivated by the well-known fact that (2.2) holds for anyp ∈ M if
and only if the subbundleV is invariant under the action of the local flow�, that is
D�t (p)V(p) = V(�t (p)) for every (t, p) ∈ �(F ).
Similarly, we shall say thatV is essentially invariant with respect to F at pif

(LFP)(p)P(p) is a compact endomorphism ofTpM. Again, (2.3) shows that this
notion depends only onV. By PropositionA.4, V is essentially invariant with respect
to F at everyp ∈ M if and only if D�t (p)V(p) is a compact perturbation ofV(�t (p)),
for every (t, p) ∈ �(F ). The second compatibility condition betweenF andV is:

(C2) V is essentially invariant with respect toF at any pointp ∈ M.

Also this condition can be stated for an essential subbundle. Indeed, an essential sub-
bundleE of TM will be said invariant with respect to F at pif a local representative
of E at p is essentially invariant with respect toF at p. This notion does not de-
pend on the choice of the local representative ofE at p: if V and W are two such
local representatives on some neighborhoodU of p, andP, Q are the orthogonal pro-
jectors ontoV, W, with respect to some Riemannian structure onM, we have that
P(q) − Q(q) ∈ Lc(TqM) for any q ∈ U , so (LF (P − Q))(p) ∈ Lc(TpM), and the
identity

(LFP)P − (LFQ)Q = (LFP)(P −Q)+ (LF (P −Q))Q,

shows that(LFP)P is compact if and only if(LFQ)Q is compact. Hence, we shall
say that theC1 vector fieldF satisfies (C2) with respect to theC1 essential subbundle
E of TM if E is invariant with respect toF at everyp ∈ M.

Proposition 2.1. Let E be aC1 essential subbundle of TM. Then the set ofC1 vector
fields on M which satisfy(C2) with respect toE is a C1(M)-module.
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Proof. Everything follows from the formulas

(LX+YP)P = (LXP)P + (LYP)P,

(LhXP)P
 = h(LXP)P
+Dh[P
](P − I )X ∀
 ∈ TM,

whereh ∈ C1(M). �
Examples: We conclude this section with some simple examples.

Example 2.2 (Vector fields whose rest points have finite Morse index or finite
Morse co-index) Consider the classical situation of a Morse vector fieldF all of
whose rest points have finite Morse index. Then (C1) and (C2) hold with respect to
the trivial subbundleV = (0). With such aV indeed, (C2) is fulfilled by any vector
field, while (C1) is equivalent to asking the unstable space of every rest point to be
finite dimensional. In this case,m(x, (0)) is the usual Morse index of the rest pointx.
Similarly, a Morse vector field all of whose rest points have finite Morse co-index

satisfies (C1) and (C2) with respect to the trivial subbundleV = TM, and−m(x, TM)

is the co-index of the rest pointx.

Example 2.3 (Perturbations of a non-degenerate quadratic form). Assume thatM =
H is a Hilbert space, and consider a function of the form

f (
) = 1
2〈L
, 
〉 + b(
),

whereL ∈ L(H) is self-adjoint invertible, andb ∈ C2(H). Let F be the (negative)
gradient vector field off,

F(
) = −gradf (
) = −L
− gradb(
)

and consider the constant subbundleV = V −(L). In this case, condition (C2) means
asking that

(Lgradf PV )(
)PV = [PV ,Hessf (
)]PV = [PV ,Hessb(
)]PV

should be compact for every
 ∈ H . In particular, if we assume that the Hessian of
b at every point is compact, condition (C2) holds. Since the negative eigenspace of
a compact perturbation ofL is a compact perturbation ofV (PropositionB.1), also
condition (C1) holds.

Example 2.4 (Product manifolds). Assume thatM = M− ×M+ is the product of two
Hilbert manifolds, and consider the subbundleV = TM− × (0) of TM. Fix some Rie-
mannian structure onM− and onM+, and consider the product Riemannian structure
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on M. Let F = −gradf be the negative gradient of a Morse function onM. ThenF
satisfies (C1) with respect toV if and only if for every critical pointx the Hessian of
f at x decomposes as Hessf (x) = Lx + Kx , whereLx is self-adjoint, invertible, and
V −(Lx) = V(x), while Kx is a compact endomorphism ofTxM. Moreover,F satisfies
(C2) with respect toV if and only if for everyp ∈ M the operator

(LFP)(p)P(p) = (∇gradf P(p)+ [P(p),Hessf (p)])P(p)

is compact, whereP denotes the orthogonal projection ontoV.

Example 2.5 (Semi-Riemannian geodesics[AM04a]). LetQ be ann-dimensional man-
ifold, endowed with a semi-Riemannian structureh, that is a symmetric non-degenerate
bilinear form on TQ. Denote by (n+, n−) the signature ofh, n+ + n− = n. The
semi-Riemannian structureh induces a Levi-Civita covariant derivation∇, and the
geodesics, i.e. the solutionsq of the second order ODE∇q̇ q̇ = 0, joining two fixed
points q0, q1 ∈ Q are the critical points of the energy functional

f (q) = 1

2

∫ 1

0
h(q̇(t), q̇(t)) dt,

on the Hilbert manifoldM := {
q ∈ W1,2([0,1],Q) | q(0) = q0, q(1) = q1

}
consisting

of paths inQ of Sobolev classW1,2 joining q0 andq1. Whenn+ $= 0 andn− $= 0, all
the critical points off have infinite Morse index and co-index. Assume thatTQ has an
integrablesubbundleV of dimensionn− such thath is strictly negative onV, and set

V(q) = {
� ∈ TqM = q∗(TQ) | �(t) ∈ V (q(t)) ∀t ∈ [0,1]} ∀q ∈ M.

The integrability ofV is reflected into the integrability ofV, and this fact can be
used to build a class of Riemannian structures onM—equivalent to the standardW1,2

metric—such that gradf satisfies (C1) and (C2) with respect toV. In this situation, it
can also be proved that the relative Morse indexm(q,V) of the geodesicq coincides
with the Maslov index of a suitable path of Lagrangian subspaces, obtained by looking
at the Hamiltonian system on the cotangent bundle ofQ generated by the Legendre
transformH : T ∗Q → R of the LagrangianL : TQ → R, L(�) = 1/2h(�, �).

3. Finite dimension ofWu(x) ∩ Ws(y)

3.1. Stable and unstable manifolds

The unstable and stable manifolds of a hyperbolic rest pointx are the sets

Wu(x) := {p ∈ M | ] −∞,0] × {p} ⊂ �(F ) and�(t, p) → x for t →−∞} ,
Ws(x) := {p ∈ M | [0,+∞[×{p} ⊂ �(F ) and�(t, p) → x for t →+∞}
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and classical results in the theory of dynamical systems imply thatWu(x) andWs(x)

are the images of injectiveC1 immersions ofHu
x andHs

x , respectively, and that

TxW
u(x) = Hu

x , TxW
s(x) = Hs

x .

In general, they need not be embedded submanifolds. Starting from Section6 however,
we will restrict our attention to gradient-like vector fields, for whichWu(x) andWs(x)

are embedded submanifolds (see also Appendix C).

Proposition 3.1. Let E be an essential subbundle of TM, and let x be a hyperbolic
rest point of theC1 vector field F on M. Then the following facts are equivalent:

(i) Hu
x belongs to the essential classE(x), and E is invariant with respect to F at

everyp ∈ Wu(x);
(ii) the tangent spaceTpWu(x) belongs to the essential classE(p) for every p ∈

Wu(x).

If either (i) or (ii) holds, and if E is liftable to an(m)-essential subbundle—still denoted
by E—then we have the identity between integers modulo m

dim(TpW
u(x), E(p)) = m(x, E) ∀p ∈ Wu(x).

Proof. Let p ∈ Wu(x) and defineu : [−∞,0] → M by u(t) := �t (p) for t > −∞,
and u(−∞) = x. If � :U → H , x ∈ U , is a local chart mapping the open setU
diffeomorphically into the Hilbert spaceH, then forT large� ◦�−T :�−1

−T (U) → H is
a local chart whose domain containsu([−∞,0]). Therefore, since both the assertions of
the theorem are invariant with respect to differentiable conjugacy, we may assume that
M is an open subset ofH. The set�([−∞,0] × {p}) has a contractible neighborhood
U, and we can find aC1 map P :U → L(H) such thatP(
) is a projector onto a
subspace in the essential classE(
), for every
 ∈ U .
Set P := P(x), and letR : [−∞,0] → GL(H) be such thatR(t)P = P(u(t))R(t),

R(−∞) = I , andR′(t) → 0 for t →−∞. Set

X(t) := R(t)−1D�t (p)R(0).

ThenX solvesX′ = AX, X(0) = I , where

A(t) = R(t)−1R′(t)+ R(t)−1DF(u(t))R(t) ∈ L(H)

converges to the hyperbolic operatorA(−∞) = DF(x) for t →−∞. Let

Wu
A :=

{

 ∈ H | lim

t→−∞ X(t)
 = 0

}
,
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be the linear unstable space of the path of operatorsA (see Appendix B). Then

Tu(t)W
u(x) = R(t)X(t)Wu

A, TxW
u(x) = V +(A(−∞)). (3.1)

DifferentiatingR(t)P = P(u(t))R(t) we obtain the identity

R′(t)P = DP(u(t))[F(u(t))]R(t)+ P(u(t))R′(t),

from which an easy computation gives

[A(t), P ]P = R(t)−1 (DP(u(t))[F(u(t))] + [P(u(t)),DF(u(t))])P(u(t))R(t).

So by the usual expression for the Lie derivative,

[A(t), P ]P = R(t)−1(LFP)(u(t))P(u(t))R(t) (3.2)

and the equivalence of (i) and (ii) follows form (3.1), (3.2), and PropositionB.3.
Assume now thatE comes from an(m)-essential subbundle. SinceWu(x) is con-

nected and the relative dimension is a continuous function, for everyp ∈ Wu(x) we
have the following identity between integers modulom

dim(TpW
u(x), E(p)) = dim(TxW

u(x), E(x)) = dim(Hu
x , E(x)) = m(x, E). �

Recall that a pair of closed subspaces(V ,W) of the Hilbert spaceH is said a
Fredholm pair if V ∩W has finite dimension andV +W has finite codimension, in
which case we define the index of(V ,W) to be

ind (V ,W) = dimV ∩W − codim(V +W).

The space of Fredholm pairs ofH, denoted by Fp(H), is an open subspace of Gr(H)×
Gr(H), and the index is a continuous function. IfH → B is a Ck Hilbert bundle,
there is an associatedCk bundle

Fp(H) =
⋃
b∈B

Fp(Hb) → B.

The above proposition has the following corollary.

Corollary 3.2. Assume that the Morse vector field F satisfies(C1-2) with respect to
a subbundleV of TM. Then for every rest point x:

(i) for any p ∈ Wu(x), TpW
u(x) is a compact perturbation ofV(p), and

dim(TpW
u(x),V(p)) = m(x,V);

(ii) for any p ∈ Ws(x), (TpWs(x),V(p)) is a Fredholm pair of index−m(x,V).
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Proof. Assertion (i) follows immediately from Proposition3.1 and from the continuity
of the relative dimension. By (C1) and PropositionA.2, (TxWs(x),V(x)) = (Hs

x ,V(x))
is a Fredholm pair of index

ind (TxW
s(x),V(x)) = ind (Hs

x ,H
u
x )+ dim(V(x),Hu

x ) = −m(x,V).

Therefore, (TpWs(x),V(p)) is a Fredholm pair of the same index for anyp in a
neighborhoodU of x in the intrinsic topology of the immersed submanifoldWs(x).
The backward evolution ofU by � is the wholeWs(x), so assertion (ii) follows from
the fact that the tangent bundle ofWs(x) is invariant, andV is essentially invariant
under the action of�. �

3.2. Intersections

Recall that two immersed submanifoldsN,O ⊂ M have atransverse intersection
if for every p ∈ N ∩ O there holdsTpN + TpO = TpM. In this case,N ∩ O is an
immersed submanifold ofM, and Tp(N ∩ O) = TpN ∩ TpO. Similarly, N,O ⊂ M

have aFredholm intersectionif for every p ∈ N ∩O, (TpN, TpO) is a Fredholm pair
of subspaces ofTpM. We are now ready to state the result about the dimension of the
intersection of the unstable and the stable manifolds.

Theorem 3.3. Let k ∈ N, let E be a (k)-essential subbundle of TM, and assume that
the Morse vector field F satisfies(C1-2) with respect toE . Let x, y be two rest points
of F. ThenWu(x) andWs(y) have Fredholm intersection, with the number

ind (TpW
u(x), TpW

s(y)), p ∈ Wu(x) ∩Ws(y),

depending only on the homotopy class of the curvet �→ �(t, p) in the space of
continuous pathsu : R → M such thatu(−∞) = x, u(+∞) = y. Furthermore

ind (TpW
u(x), TpW

s(y)) ≡ m(x, E)−m(y, E) modk (3.3)

for everyp ∈ Wu(x) ∩Ws(y).
In particular, if Wu(x) and Ws(y) have non-empty transverse intersection, then

Wu(x) ∩ Ws(y) is an immersed finite dimensional submanifold of M, the dimension
of the componentWp of Wu(x) ∩Ws(y) containing p depends only on the homotopy
class of the curvet �→ �(t, p), and

dimWp ≡ m(x, E)−m(y, E) modk.
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In particular, whenF satisfies (C1-2) with respect to a(0)-essential subbundleE ,
then all the components of the transverse intersectionWu(x) ∩Ws(y) have the same
dimensionm(x, E)−m(y, E).
Proof of Theorem 3.3.Let us fix two pointsp0, p1 ∈ Wu(x) ∩Ws(y) such that their
orbits are homotopic in the space of pathsu :R → M with u(−∞) = x, u(+∞) = y.
In other words, there exists a continuous map

h :R × [0,1] → M,

such thath(−∞, s) = x, h(+∞, s) = y, h(t, i) = �(t, pi), for i = 0,1.
The mapR× [0,1] → Gr(k)(TM), (t, s) �→ E(h(t, x)), is liftable to a mapW :R×

[0,1] → Gr(TM) such thatW(−∞, ·) andW(+∞, ·) are constant maps. By Propo-
sition 3.1, Th(t,s)Wu(x) is a compact perturbation ofW(t, s) and dim(Th(t,s)Wu(x),

W(t, s)) = dim(Hu
x ,W(−∞, ·)), for any t < +∞. Using an argument analogous to

the proof of Corollary3.2(ii), it is easy to see that(Th(t,s)Ws(y),W(t, s)) is a Fred-
holm pair of index−dim(Hu

y ,W(+∞, ·)), for any t > −∞. Then by PropositionA.2,
(Th(t,s)W

s(y), Th(t,s)W
u(x)) is a Fredholm pair of index dim(Hu

x ,W(−∞, ·)) − dim
(Hu

y ,W(+∞, ·)). In particular,(Tp0W
s(y), Tp0W

u(x)) and (Tp1W
s(y), Tp1W

u(x)) are
Fredholm pairs of the same index

ind (Tp0W
s(y), Tp0W

u(x)) = ind (Tp1W
s(y), Tp1W

u(x))

= dim(Hu
x ,W(−∞, ·))− dim(Hu

y ,W(+∞, ·))

and the above formula implies (3.3). Finally, the statements which assume transversality
follow from the fact that, under such an assumption,

ind (TpW
u(x), TpW

s(y)) = dimTpW
u(x) ∩ TpW

s(y). �

Remark 3.4. We wish to remark that (C1-2) are asymmetric conditions: ifF satisfies
(C1-2) with respect to a subbundleV, there need not exist a subbundleW such that−F

satisfies (C1-2) with respect toW. Such an asymmetry is reflected into Corollary3.2,
which states thatTWu(x) is a compact perturbation ofV—a closed condition—while
TWs(x) is in Fredholm pair withV—an open condition. If we symmetrize (C1-2)
we obtain the following stronger assumptions: ifP is a projector onTM, with image
V and kernelW, there holds (C1’):Hu

x is a compact perturbation ofV(x), Hs
x is a

compact perturbation ofW(x) for everyx ∈ rest(F ), and (C2’):(LFP)(p) is compact
for any p ∈ M. This setting—actually its essential version—is closer to the setting of
a polarized manifold (see[CJS95]).
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4. Which manifolds can be obtained asWu(x) ∩ Ws(y)

4.1. Arbitrary gradient-like vector fields

Let F be a gradient-like Morse–Smale vector field on the Hilbert manifoldM, with
Lyapunov functionf. If x, y ∈ rest(F ) and f (y) < c < f (x), the setZ = Wu(x) ∩
Ws(y) ∩ f−1({c}) is a submanifold (non-necessarily closed), being the transverse in-
tersection inf−1({c}) of the submanifoldsWu(x) ∩ f−1({c}) andWs(y) ∩ f−1({c}),
and� subordinates a diffeomorphism fromR × Z ontoWu(x) ∩Ws(y).
WhenM is finite dimensional, there are limitations on the topological type ofZ, e.g.

if M is compact and there are no rest pointsz with f (y) < f (z) < f (x), thenZ is the
transverse intersection inf−1({c}) of two spheres. WhenM is infinite dimensional, and
the rest pointsx, y have infinite Morse index and co-index, there are no limitations at
all on the topological type ofZ, the reason being that any manifold can be obtained
as the transverse intersection of two infinite dimensional spheres.
More precisely, for any Hilbert manifoldZ (finite dimensional or not) there is a

gradient like Morse vector fieldF on the Hilbert spaceH, with a non-degenerate Lya-
punov function f, having exactly two rest pointsx, y with f (y) < 0 < f (x), such
that Wu(x) ∩ f−1({0}) andWs(y) ∩ f−1({0}) are infinite dimensional spheres inter-
secting transversally inf−1({0}) at a closed submanifold diffeomorphic toZ. Notice
that in this case, the closure ofWu(x)∩Ws(y) is (Wu(x)∩Ws(y))∪ {x, y}, which is
homeomorphic to the suspension ofZ.
The construction relies on the following lemma.

Lemma 4.1. Let Z be a closed infinite codimensional submanifold of a Hilbert manifold
M. Then there exists a smooth map� :M → H such that 0 is a regular value and
Z = �−1({0}).

Proof. A suitable tubular neighborhoodU of Z is diffeomorphic to the normal bundle
of Z. SinceZ has infinite codimension, such a bundle is trivial. Therefore, there exists
a submersion� :U → H such that�−1({0}) = Z. SinceH \ B, B denoting the open
unit ball of H, is diffeomorphic toH (see[Bes66]), it is easy to define a smooth map
� :M → H which agrees with� on a neighborhoodU ′ ⊂ U of Z and such that
�(M \ U ′) ⊂ H \ B, so that�−1({0}) = Z. �
Let F0 be the vector field onH ×H

F0(
, 
) = (
,−�(‖
‖)
),

where � ∈ C∞(R) is decreasing,�(s) = 1 for s� 1
3 and �(s) = 0 for s� 2

3. The
vector fieldF0 has a unique rest pointo = (0,0), with Wu(o) = H × {0}, and has a
non-degenerate Lyapunov function

f0(
, 
) = 1− ‖
‖2+ �(‖
‖)‖
‖2.
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Let B be the open unit ball ofH and letS be its boundary. We can embedZ as a
closed infinite codimensional submanifold ofS. By the above lemma, there exists a
smooth map� : S → H such that 0 is a regular value andZ = �−1({0}). Let C1
andC2 be two copies of the Hilbert manifold with boundaryB ×H , and consider the
Hilbert manifoldM := C1 ∪� C2, where the gluing map� is

� : �C1 = S ×H → S ×H = �C2 (
, 
) �→ (
, 
+ �(
)).

Let F be the vector field onM coinciding with F0 on C1 and with−F0 on C2, and
let f :M → R be the function coinciding withf0 on C1 and with−f0 on C2. It is
readily seen thatF and f are well defined and smooth, and thatf is a non-degenerate
Lyapunov function forF. By construction,C1 is negatively invariant for the flow of
F, C2 is positively invariant, and there are exactly two rest pointsx = (0,0) ∈ C1 and
y = (0,0) ∈ C2. Moreover,f−1({0}) = �C1 = �C2, and

Ws(y) ∩ �C2 = S × {0},
Wu(x) ∩ �C2 = �(Wu(x) ∩ �C1) = �(S × {0}) = graph�.

Hence

Ws(y) ∩Wu(x) ∩ �C2 = (S × {0}) ∩ graph� = �−1({0})× {0} = Z × {0},

the intersection being transversal, as required. Finally, since the gluing map� is isotopic
to the identity map onS×H , M is diffeomorphic to(B×H)∪id(B×H) = (B∪idB)×H .
Being an infinite dimensional sphere,B∪idB is diffeomorphic toH (again by[Bes66]),
henceM is diffeomorphic toH.

4.2. Gradient-like vector fields satisfying (C1-2)

In particular, if Z has components of different dimension, the above example shows
that in the case of infinite Morse indices and co-indices, the components ofWu(x) ∩
Ws(y) may have different dimension. Actually, the discussion of Section3 suggests
that this phenomenon may happen also whenF satisfies (C1-2) with respect to an
essential subbundle, providedM is not simply connected. Indeed this is the case, as it
is shown by the following example, where the vector field is actually the gradient of
a smooth function.
We recall some pieces of notation from Appendix B. IfA : [−∞,+∞] → L(H) is

a path of bounded linear operators withA(−∞) and A(+∞) hyperbolic, we denote
by XA : R → GL(H) the solution of the linear Cauchy problemX′

A(t) = A(t)XA(t),
XA(0) = I , and we consider the closed linear subspaces

Ws
A =

{

 ∈ H | lim

t→+∞ XA(t)
 = 0

}
, Wu

A =
{

 ∈ H | lim

t→−∞ XA(t)
 = 0

}
.
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LetM = H×T1, with T1 = R/2�Z. LetH = H−⊕H+ be an orthogonal splitting such
thatH−, H+ ∈ Gr∞,∞(H), with associated projectorsP−, P+. Let k�1 be an integer.
By PropositionB.5 there existsA ∈ C∞(R,GL(H)∩Sym(H)) with A(t) = P+ −P−
for t /∈]0,1[, such thatWs

A +Wu
A = H and dimWs

A ∩Wu
A = k. Consider the smooth

tangent vector field onM

F(
, s) =
{
((P+ − P−)
, sins) for s /∈ [�/2, �(1)],
(A(	(s))
, sins) for s ∈]0, �[, (
, s) ∈ H × T1,

where 	(s) = log tan(s/2) for 0 < s < �, and �(t) = 	−1(t) = 2 arctanet , t ∈ R. So
�′ = sin� and 	′ = cosh	.
The rest points ofF, x = (0,0) and y = (0, �/2), are hyperbolic, with stable and

unstable linear spaces

Hs
x = H− × (0), Hu

x = H+ × R, H s
y = H− × R, Hu

y = H+ × (0). (4.1)

The flow of F, � :R ×M → M, is readily seen to be

�t (
, s) =

(et (P

+−P−)
,−�(t + 	(s))) for − � < s < 0,
(et (P

+−P−)
, s) for s = 0 or s = �,
(XA(t + 	(s))XA(	(s))−1
, �(t + 	(s))) for 0< s < �.

(4.2)

As a consequence, the unstable manifold ofx and the stable manifold ofy are the sets

Wu(x) = (H+×] − �,0]) ∪
⋃

0<s<�

XA(	(s))W
u
A × {s},

Ws(x) = (H− × [−�,0[) ∪
⋃

0<s<�

XA(	(s))W
s
A × {s},

with tangent spaces

T(
,s)W
u(x) =

{
H+ × R for (
, s) ∈ H+×] − �,0],
XA(	(s))Wu

A ⊕ RF(
, s) otherwise,

T(
,s)W
s(y) =

{
H− × R for (
, s) ∈ H− × [−�,0[,
XA(	(s))Ws

A ⊕ RF(
, s) otherwise.

Therefore, the unstable manifold ofx and the stable manifold ofy meet transversally,
and their intersection

Wu(x) ∩Ws(y) = ({0}×] − �,0[) ∪
⋃

0<s<�

XA(	(s))(W
u
A ∩Ws

A)× {s},
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consists of two connected components, one of which one-dimensional, the other one
of dimensionk + 1.
We are going to show that the vector fieldF satisfies conditions (C1) and (C2) with

respect to a (non-liftable) essential subbundle ofTM. Consider the two subbundles of
T (H × [−�,0]) and T (H×]0, �[),

V1(
, s) = H+ × (0) for (
, s) ∈ H × [−�,0],
V2(
, s) = XA(	(s))Y × (0) for (
, s) ∈ H×]0, �[,

whereY is a closed supplement ofWs
A ∩Wu

A in Wu
A = H+. SinceA(	(s)) = P+ −P−

for 0 < s��/2, V2(
, s) = Y × (0) for any (
, s) ∈ H×]0, �/2]. Moreover, since
H = Ws

A ⊕ Y , by Theorem B.2(iii),

dist(V2(
, s),H
+ × (0)) = dist(XA(	(s))Y, V

+(A(+∞))) → 0 for s → �− .

Therefore,V1 andV2 define aC0 essential subbundleE of TM. In order to show that
E is of classC1, we have to verify that

d

ds
PXA(	(s))Y = 	′(s)Q′(	(s)) = cosh	(s)Q′(	(s)) → 0 for s → �−, (4.3)

whereQ(t) = PXA(t)Y . For t0�1 large,XA(t0)Y ⊂ H+ × H− is the graph of some
operatorL ∈ L(H+, H−), so

XA(t)Y = XP+−P−(t − t0)XA(t0)Y =
{(

et−t0 0
0 et0−t

)(


L


) ∣∣∣∣ 
 ∈ H+
}

from which we deduce thatQ(t) − P+ = O(e−2t ) for t → +∞. By identity (B.1),
Q solves the Riccati equation

Q′ = (I −Q)AQ+QA(I −Q)

and sinceA(t) = P+ − P− for t�1, we obtain

Q′(t) = 2(Q(t)− P+)P−(Q(t)− I )+ 2(Q(t)− I )P−(Q(t)− P+) = O(e−2t )

for t →+∞, which proves (4.3).
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By (4.1) the vector fieldF satisfies (C1) with respect to the essential subbundleE .
By (4.2),

D�t (
, s)[(
,0)] =
{
(et (P

+−P−)
,0) for ��s�0,
(XA(t + 	(s))XA(	(s))−1
,0) for 0< s < �

for every t ∈ R, (
, s) ∈ M, 
 ∈ H . Therefore, the subbundleV1 is invariant with
respect toF. SinceXA(t + 	)XA(	)−1 = XA(·+	)(t), also the subbundleV2 is invariant
with respect toF. Hence (LFPVi )PVi = 0, for i = 1,2, and F satisfies (C2) with
respect to the essential subbundleE .
The smooth function

f (
, s) =
{−1

2〈(P+ − P−)
, 
〉 + coss for s /∈ [�/2, �(1)],
−1

2〈A(	(s))
, 
〉 + coss for s ∈]0, �/2[,

satisfies

Df (
, s)[F(
, s)] =

−‖
‖2− sin2 s for s /∈ [�/2, �(1)],
−‖A(	(s))
‖2− sin2 s
−1

2 cosh	(s)〈A′(	(s))
, 
〉 for s ∈]0, �/2[.

SinceA(t) is invertible for anyt andA(t) is constant fort /∈ (0,1), we find

Df (
, s)[F(
, s)]� − �‖
‖2− sin2 s for ‖
‖ < r (4.4)

for suitable� > 0, r > 0, so f is a non-degenerate Lyapunov function forF on the
open setBr(0) × T1. Actually, on Br(0) × T1 the vector fieldF is the gradient of
−f with respect to a smooth metric of the form�p(�1, �2) = 〈T (p)�1, �2〉, p ∈ M,
�1, �2 ∈ TpM = H ⊕R. HereT ∈ C∞(Br(0)×T1,Sym∩GL(H ⊕R)) is positive, and
verifies

T (
, s) = I for s /∈ [�/2, �(1)], T (p)F (p) = −gradf (p) for p ∈ Br(0)× T1,

where gradf denotes the gradient off with respect to the flat metric onH × T1.
Such a mapT can be easily found because by (4.4), 〈F(p),−gradf (p)〉 > 0 for every
p ∈ Br(0)× [�/2, �(1)].

5. Orientation of Wu(x) ∩ Ws(y)

The first example of the previous section shows that the transverse intersection of
an unstable and a stable manifold of two rest points with infinite Morse index and
co-index, even if finite dimensional, needs not be orientable. This intersection will be
orientable when the vector field satisfies (C1-2) with respect to a subbundle ofTM.
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5.1. Orientation of Fredholm pairs

We need to recall some facts about the orientation bundle on the space of Fredholm
pairs. See Appendix A for more details. ForH a real Hilbert space andn ∈ N, we
denote by Or(Grn,∞(H)) → Grn,∞(H) the orientation bundle of the Grassmannian
of n-dimensional subspaces ofH: the fiber of X ∈ Grn,∞(H) consists of the two
orientations ofX. Similarly, Or(Fp(H)) → Fp(H) denotes the orientation bundle of the
space of Fredholm pairs: the fiber of(V ,W) ∈ Fp(H) consists of the two orientations
of the finite dimensional vector space(V ∩W)×(H/(V +W))∗. This bundle is actually
a double covering of Fp(H). If H → B is a Hilbert bundle, we obtain the bundles
Or(Grn,∞(H)) → B, Or(Fp(H)) → B, where

Or(Grn,∞(H) =
⋃
b∈B

Or(Grn,∞(Hb)), Or(Fp(H) =
⋃
b∈B

Or(Fp(Hb))

and the maps

Or(Grn,∞(H)) → Grn,∞(H), Or(Fp(H)) → Fp(H)

are double coverings.
Let n ∈ N. If S(n,Fp) denotes the open set consisting of all(X, (V,W)) in

Grn,∞(H)×Fp(H) such thatX∩V = (0), the mapS(n,Fp) → Fp(H), (X, (V,W)) �→
(X⊕V,W), is continuous, and it lifts to a continuous map—the product of orientations;

(oX, o(V,W)) �→ oX
∧
o(V,W),

from the corresponding open subset of Or(Grn,∞(H))×Or(Fp(H)) to Or(Fp(H)). If
� :B → Grn,∞(H), �, � :B → Fp(H) are continuous sections such that

�(b) ∩ �1(b) = (0) and (�(b)⊕ �1(b), �2(b)) = �(b) ∀b ∈ B

for any choice of liftings of two of�, �, � to the orientation bundles, there is a unique
lifting of the third one such that̂�(b)

∧
�̂(b) = �̂(b) for every b ∈ B.

5.2. Orientation ofWu(x) ∩Ws(y)

Let V be aC1 subbundle ofTM, and let us assume that the Morse vector fieldF
satisfies (C1-2) with respect toV. By (C1) for every rest pointx the pair (Hs

x ,V(x))
is a Fredholm pair. Let us fix arbitrarily an orientationox of (Hs

x ,V(x)). Let x, y ∈
rest(F ) be such thatWu(x) andWs(y) have a non-empty and transverse intersection.
By Theorem3.3, Wu(x) ∩ Ws(y) is an immersed submanifold of dimensionn =
m(x,V)−m(y,V). In this section, we will prove thatWu(x)∩Ws(y) is orientable, and
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we will show how an orientation of such a manifold is determined by the orientations
ox and oy .
Let hux :Hu

x → M and hsy :Hs
y → M be injectiveC1 immersions ontoWu(x) and

Ws(y) such thathux(0) = x and hsy(0) = y. ThenWu(x) ∩Ws(y) is the image of the
injective immersionh = hux ◦ pu = hsy ◦ ps :W → M coming from the fiber product
square of the transverse mapshux and hsy :

W

ps

��

pu

��

h

���
��

��
��

�
Hs

y

hsy

��
Hu

x

hux
�� M,

W =
{
(
, 
) ∈ Hu

x ×Hs
y | hux(
) = hsy(
)

}
.

Giving an orientation toWu(x) ∩Ws(y) is equivalent to lifting the section

	 :W → Grn,∞(h∗(TM)), w �→ Th(w)(W
u(x) ∩Ws(y)),

to a section	̂ : W → Or(Grn,∞(h∗(TM))).
SinceHs

y is contractible, the section

Hs
y → Fp(hsy

∗
(TM)), 
 �→ (Thsy(
)W

s(y),V(hsy(
))),

has a unique liftingHs
y → Or(Fp(hsy

∗(TM))) whose value at 0 isoy . By composition
with the projectionps :W → Hs

y , we obtain the section

� : W → Fp(h∗(TM)), w �→ (Th(w)W
s(y),V(h(w)))

and a lifting of�, �̂ :W → Or(Fp(h∗(TM))).
Let Y :W → Gr(h∗(TM)) be a continuous section of linear supplements ofT (Wu(x)

∩Ws(y)) in TWs(y), that is

Th(w)W
s(y) = Th(w)(W

u(x) ∩Ws(y))⊕ Y (w) ∀w ∈ W.

By the transversality of the intersection ofWu(x) andWs(y), Y (w) is a linear sup-
plement ofTh(w)W

u(x) in Th(w)M, so by Theorem B.2(iii),

lim
t→−∞ D�t (h(w))Y (w) = Hs

x

and the limit is locally uniform inW. Therefore the mapA : [−∞,0]×W → Fp(TM)

defined by

A(t, w) =
{
(D�t (h(w))Y (w),V(�t (h(w)))) for t > −∞,

(H s
x ,V(x)) for t = −∞,
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is continuous. LetÂ : [−∞,0] ×W → Or(Fp(TM)) be the unique lifting ofA such
that Â(−∞, w) = ox for anyw ∈ W . By restriction to{0} ×W , we obtain the section

� :W → Fp(h∗(TM)), w �→ (Y (w),V(h(w)))

and a lifting of �, �̂ :W → Or(Fp(h∗(TM))).
By construction,

	(w) ∩ �1(w) = (0) and (	(w)⊕ �1(w), �2(w)) = �(w) ∀w ∈ W,

so 	 has a unique liftinĝ	 :W → Or(Grn,∞(h∗(TM))) such that

	̂(w)
∧

�̂(w) = �̂(w) ∀w ∈ W,

which provides us with an orientation ofWu(x) ∩Ws(y).
Since the set of linear supplements ofTp(W

u(x)∩Ws(y)) in TpW
u(x) is connected,

the orientation we have defined does not depend on the choice ofY. The construction
shows that it does not depend on the choice of the immersionshux and hsy .

6. Compactness ofWu(x) ∩ Ws(y)

6.1. The Palais–Smale condition

Let F be a gradient-like Morse vector field onM. Then the stable and unstable
manifolds are (embedded) submanifolds, and so are their transverse intersections. We
would like to state a set of assumptions which imply thatWu(x) ∩ Ws(y) is pre-
compact, i.e. it has compact closure inM. The first assumption is a version of the well
known Palais–Smale condition:

Definition 6.1. Let F be a C1 vector field onM, and f ∈ C1(M) be a Lyapunov
function for F. A (PS) sequence for(F, f ) is a sequence(pn) ⊂ M with f (pn)

bounded andDf (pn)[F(pn)] → 0. The pair (F, f ) satisfies the (PS) condition if
every (PS) sequence is compact. We shall say thatF satisfies (PS) if (F, f ) satisfies
(PS) for some Lyapunov functionf.

When F is the negative gradient of a functionf with respect to some Riemannian
metric onM, one finds the usual notion of a Palais–Smale sequence:f (pn) bounded
and ‖Df (pn)‖ infinitesimal.
SinceDf (p)[F(p)] < 0 for p /∈ rest(F ), the limit points of the (PS) sequences are

rest points ofF. If (F, f ) satisfies (PS), then the set rest(F ) ∩ {a�f �b} is compact
for every a, b ∈ R. If moreoverF is a Morse vector field, this set is also discrete,
hence finite.
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Remark 6.2 (Genesis of (PS) sequences). Let (tn, pn) ∈ �(F ) be such thattn →+∞,
and f (pn), f (�(tn, pn)) are bounded. Then by the mean value theorem there exists
sn ∈ [0, tn] such that(�(sn, pn)) is a (PS) sequence for(F, f ).

The second assumption is the completeness ofF, that is the fact that the local flow
�(t, ·) of F is defined for everyt, i.e. �(F ) = R ×M.

Remark 6.3. Notice that multiplyingF by a positive function does not changeWu(x)∩
Ws(y), whereas it may have an effect on the validity of the (PS) and the completeness
assumption. For instance, multiplication by a suitably small function makes the vec-
tor field complete, while multiplication by a suitable large function makes (PS) true,
when rest(F ) ∩ f−1([a, b]) is compact for everya, b ∈ R. The two assumptions are
meaningful here only when considered together.

6.2. Essentially vertical families

As we shall see, (PS) condition and the completeness imply thatWu(x) ∩ Ws(y)

has compact closure, when either all the rest points ofF have finite Morse index,
or they have finite Morse co-index. However, they are not sufficient in the general
case.
The first assumption we need in the general case is that the essential subbundleE

of TM should have a strong integrable structureA modeled on(H, V ) (see Definition
1.1). In this case, denoting byQ a linear projector with kernelV, we can introduce the
following:

Definition 6.4. A family F of subsets ofM is called an essentially vertical family for
the strong integrable structureA of E if it satisfies:

(i) it is an ideal ofP(M), meaning that it is closed for finite unions and ifA ∈ F
then any subset ofA is also inF ;

(ii) every point p has a neighborhoodU which is the domain of a chart� ∈ A such
that every setA ⊂ U with �(A) bounded belongs toF if and only if Q�(A) is
pre-compact.

Once an essentially vertical familyF has been fixed, its elements will be called
essentially vertical sets. Clearly, there can be many different essentially vertical fami-
lies associated to the same strong integrable structure ofE , because only the “small”
essentially vertical subsets are determined.
The family F will be called positively invariant if it is closed under the positive

action of the flow�: for everyA ∈ F and everyt�0, the set�([0, t] ×A) is in F .
The main result of this section is the following compactness theorem.

Theorem 6.5. Assume that the Morse gradient-like vector field F is complete, satisfies
(C1) with respect to an essential subbundleE of TM, and satisfies(PS). Assume also
that E has a strong integrable structureA modeled on(H, V ) and an essentially
vertical familyF , which is positively invariant for the flow of F.
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Let (pn) ⊂ M, (sn) ⊂ (−∞,0], (tn) ⊂ [0,+∞), be such that(�(sn, pn)) converges
to a rest point x, while (�(tn, pn)) converges to a rest point y. Then the sequence(pn)

is compact.

An immediate consequence is the following corollary.

Corollary 6.6. Under the assumptions of Theorem6.5, for every x, y ∈ rest(F ) the
intersectionWu(x) ∩Ws(y) is pre-compact.

In order to prove the above theorem, we need to establish the following lemma.

Lemma 6.7. Let x be a rest point of F. Then x has a fundamental system of neighbor-
hoods U such that:

(i) the setWu(x) ∩ U is essentially vertical;
(ii) if A ⊂ U is essentially vertical, thenA ∩Ws(x) is pre-compact.

Furthermore, if f is a non-degenerate Lyapunov function for F, for any sequence(pn) ⊂
U converging to x there holds:

(iii) if tn�0 is such that�(tn, pn) ∈ �U then the set{�(tn, pn) | n ∈ N} is essentially
vertical, and

lim sup
n→∞

f (�(tn, pn)) < f (x).

(iv) if tn�0 is such that�(tn, pn) ∈ �U then the set{�(tn, pn) | n ∈ N} has a pre-
compact intersection with any essentially vertical subset of M, and

lim inf
n→∞ f (�(tn, pn)) > f (x).

Proof. By choosing a chart� ∈ A satisfying property (ii) in Definition6.4, we can
identify a neighborhoodU of x in M with a bounded neighborhood—still denoted by
U—of 0 in H, in such a way thatx corresponds to 0, the essential subbundleE is
represented by the constant subbundleV, the kernel of a projectorQ, and the essentially
vertical subsetsA ⊂ U are those for whichQA is pre-compact.

Let H = Hu⊕Hs , with projectionsPu, P s , be the splitting into the linear unstable
and the stable spaces of the hyperbolic rest point 0. EndowH with an adapted norm
‖ · ‖ (see Appendix C), and denote byHu(r), Hs(r) the closedr-balls of Hu and
Hs , respectively. Up to reducing the neighborhoodU, we may assume thatU =
Hu(r)×Hs(r), wherer > 0 is so small that all the results of Appendix C hold.

By (C1), Hu is a compact perturbation ofV. Therefore, we may assume thatQ is
a compact perturbation ofP s . By Remark1.2 and by the boundedness ofU, a subset
A ⊂ U is essentially vertical if and only ifP sA is pre-compact. In particular, the
graph of a map� :Hu(r) → Hs(r) is essentially vertical if and only if the map� is
compact.
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Let �0 :Hu(r)×Hs(r) be a 1-Lipschitz map. By the graph transform method (Propo-
sition C.5), for every t�0 the set{

�(t, 
) | 
 ∈ graph�0 and�([0, t] × {
}) ⊂ Hu(r)×Hs(r)
}

is the graph of a 1-Lipschitz map�t : Hu(r) → Hs(r), and�t converges uniformly to
a map�u for t → +∞, with graph�u = Wu

loc,r (0), the local unstable manifold of 0.
If �0 is a compact map—for example�0 = 0—the fact that the familyF is positively
invariant implies that�t is a compact map for everyt�0. By the uniform convergence,
�u is also compact, so the local unstable manifoldWu

loc,r (0) is an essentially vertical
set. By TheoremC.7, Wu

loc,r (0) = Wu(x) ∩ U , proving (i).
The local stable manifoldWs

loc,r (0) is the graph of a 1-Lipschitz map�s : Hs(r) →
Hu(r). Let A ⊂ U be an essentially vertical subset, that isP sA is pre-compact. Then

A ∩Ws
loc,r (0) = graph�s |P sA

is also pre-compact. By TheoremC.7, Ws
loc,r (0) = Ws(x) ∩ U , proving (ii).

Let (pn) ⊂ U be a sequence converging to 0, andtn�0 such that�(tn, pn) ∈ �U .
By LemmaC.4,

lim sup
n→∞

f (�(tn, pn)) < f (0),

lim
n→∞ dist(�(tn, pn),W

u
loc,r (0) ∩ �U) = 0.

The first limit proves part of assertion (iii). By the second limit, we can find a sequence
(qn) ⊂ Wu

loc,r (0) such that‖�(tn, pn)−qn‖ is infinitesimal. In particular‖P s�(tn, pn)−
P sqn‖ is infinitesimal. By (i), the sequence(P sqn) is compact. So also the sequence
(P s�(tn, pn)) is compact. This proves that the set{�(tn, pn) | n ∈ N} is essentially
vertical, concluding the proof of (iii).
The fact that�s is 1-Lipschitz implies that

‖Pu
− �s(P s
)‖�
√
2 dist(
,graph�s) ∀
 ∈ U. (6.1)

Indeed, if
 ∈ U and c > 1 we can find
 ∈ graph�s such that

‖
− 
‖�c dist(
,graph�s).

SincePu
 = �s(P s
) and since�s is 1-Lipschitz,

‖Pu
− �s(P s
)‖ � ‖Pu
− Pu
‖ + ‖�s(P s
)− �s(P s
)‖
� ‖Pu
− Pu
‖ + ‖P s
− P s
‖�

√
2‖
− 
‖

� c
√
2 dist(
,graph�s)

and sincec > 1 is arbitrary, (6.1) follows.
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Now assume thattn�0 are such that�(tn, pn) ∈ �U . By Lemma C.4 applied
to −F ,

lim inf
n→∞ f (�(tn, pn)) > f (0),

lim
n→∞ dist(�(tn, pn),W

s
loc,r (0) ∩ �U) = 0.

The first limit proves part of assertion (iv). LetA ⊂ U be an essentially vertical set,
that is P sA is pre-compact. If the setA ∩ {�(tn, pn) | n ∈ N} is infinite (otherwise
there is nothing to prove), its elements form a subsequence(�(tnk , pnk )) such that
the sequence(P s�(tnk , pnk )) is compact. By the continuity of�s , also the sequence
(�s(P s�(tnk , pnk ))) is compact. By (6.1),

‖Pu�(tnk , pnk )− �s(P s�(tnk , pnk ))‖ �
√
2 dist(�(tnk , pnk )),graph�

s)

�
√
2 dist(�(tnk , pnk )),W

s
loc,r (0) ∩ �U)

is infinitesimal, so also(P u�(tnk , pnk )) is compact. We deduce that(�(tnk , pnk )) is
compact, concluding the proof of (iv).�

Proof of Theorem 6.5.Let f be a non-degenerate Lyapunov function forF such that
(F, f ) satisfies (PS). Up to taking a subsequence of(pn) and changing(sn) andx, we
may assume that for no choice of a sequence(rn) ⊂]−∞,0], the sequence(�(rn, pn))

has a subsequence which converges to a rest pointz with f (z) < f (x). Indeed, since
there are finitely many rest pointsz such thatf (y)�f (z)�f (x), the set

Z :=
{
z ∈ rest(F )

∣∣∣ f (z)�f (x) and there exists(nk) ⊂ N increasing ands′k �0

such that lim
k→∞ �(s′k, pnk ) = z

}
is finite, and non-empty because it containsx. Let x′ = limk→∞ �(s′k, pnk ) be a point
of Z where f attains its minimum. Then the latter requirement is verified with(pnk ),
(s′k), andx′.
Similarly, by taking a further subsequence of(pn), and by changing(tn) and y, we

may assume that for no choice of a sequence(rn) ⊂ R, the sequence(�(rn, pn)) has
a subsequence which converges to a rest pointz with f (y) < f (z) < f (x). If either x
or y is a cluster point for(pn) there is nothing to prove, so we may assume that(pn)

is bounded away fromx and y.
By Lemma6.7(iii), there exists a closed neighborhoodU ⊂ M of x such thatpn /∈ U ,

and choosings′n ∈]sn,0[ such that�(s′n, pn) ∈ �U (for n large), we have{
�(s′n, pn) | n ∈ N

}
is essentially vertical, (6.2)

lim sup
n→∞

f (�(s′n, pn)) < f (x). (6.3)
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By Lemma6.7(iv), there exists a closed neighborhoodV ⊂ M of y such thatpn /∈ V ,
and choosingt ′n ∈]0, tn[ such that�(t ′n, pn) ∈ �V (for n large), we have{

�(t ′n, pn) | n ∈ N
}

A ∩ {
�(t ′n, pn) | n ∈ N

}
is pre-compact∀A ⊂ M,A ess. vert. (6.4)

lim inf
n→∞ f (�(t ′n, pn)) > f (y). (6.5)

(PS) condition implies that(t ′n − s′n) is bounded: otherwise by Remark6.2, (6.3) and
(6.5), we would obtain a sequence(rn) ⊂ R such that(�(rn, pn)) has a subsequence
converging to a rest pointz, with f (y) < f (z) < f (x), contradicting our previous
assumption. Therefore,t ′n − s′n�T for every n ∈ N.
Since the essentially vertical familyF is positively invariant, (6.2) implies that the

set {
�(t ′n, pn) | n ∈ N

} ⊂ �([0, T ] × {
�(s′n, pn) | n ∈ N

}
)

is essentially vertical. But then we can chooseA = {
�(t ′n, pn) | n ∈ N

}
in (6.4), and

we obtain that the sequence(�(t ′n, pn)) is compact. By the boundedness oft ′n and by
the fact that the vector fieldF is complete, we conclude that also the sequence(pn)

is compact. �

Remark 6.8. An argument similar to the one used above shows that, ifF satisfies the
assumptions of Theorem6.5, x ∈ rest(F ) and a ∈ R, then the setWu(x) ∩ {f �a} is
essentially vertical.

6.3. Examples

Let us see what Theorem6.5 says in the cases of finite Morse indices or co-indices.

Example 6.9 (Vector fields whose rest points have finite Morse index or co-index).
Notice that the trivial subbundleE = (0) (relevant in the case of rest points with
finite Morse index, see Example2.3) has a strong integrable structure (choose any
atlas ofM). The family consisting of all pre-compact subsets ofM is a family of
essentially vertical subsets forE = (0), and it is obviously closed under the action
of the flow.
Similarly, the trivial subbundleE = TM (relevant in the case of rest points with

finite Morse co-index) has a strong integrable structure (again, consider an arbitrary
atlas ofM). The family consisting of all subsets ofM is a family of essentially vertical
subsets forE = TM, clearly closed under the action of the flow.
We have already seen that in the caseE = (0) (resp.E = TM) (C1) is equivalent

to the fact that all the rest points ofF have finite Morse index (resp. co-index).
Therefore the conclusion of Theorem6.5 holds when (i) theC1 vector field F

is Morse and gradient-like, (ii) either all the rest points ofF have finite Morse
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index, or they have finite Morse co-index, (iii)F satisfies (PS), and (iv)F is
complete.

Now let us look back at Example2.3.

Example 6.10(Perturbations of a non-degenerate quadratic form). Assume thatM =
H is a Hilbert space, and consider a function of the form

f (
) = 1
2〈L
, 
〉 + b(
),

whereL ∈ L(H) is self-adjoint invertible, and the gradient of the functionb ∈ C2(H)

is a compact map. LetF be the (negative) gradient vector field off,

F(
) = −gradf (
) = −L
− gradb(
).

If gradb has linear growth, i.e.‖gradb(
)‖�c(1+ ‖
‖) for every 
 ∈ H , then F is
complete, its flow� maps bounded subsets ofR ×H into bounded subsets ofH, and
it satisfies

�(t, 
) = e−tL
−
∫ t

0
e(s−t)Lgradb(�(s, 
)) ds. (6.6)

Consider the constant subbundleV = V −(L), and the orthogonal projectionQ with
kernel V. This bundle has the trivial strong integrable structure modeled on(H, V )

consisting of the identity map:A = {I }. The family F consisting of all bounded
subsetsA of H such thatQA is pre-compact is an essentially vertical family forA.
Moreover identity (6.6) together with the fact that gradb is a compact map implies
that F is invariant for�.
The assumption that gradb has linear growth can be easily dropped. Indeed, the

vector field

F̃ (
) = −h(
)gradf (
), whereh(
) = 1

1+ ‖gradf (
)‖2

is bounded, hence complete, and its flow̃� maps bounded subsets ofR × H into
bounded subsets ofH. Notice thatf is a non-degenerate Lyapunov function forF̃ , and
sinceDf [F̃ ] = −‖gradf ‖2/(1+ ‖gradf ‖2), the Palais–Smale sequences for(F̃ , f )

(in the sense of Definition6.1) are exactly the Palais–Smale sequences forf (in the
usual sense). The flow̃� satisfies

�̃(t, 
) = e−	(t,
)L
−
∫ t

0
h(�̃(t, 
))e(	(s,
)−	(t,
))Lgradb(�̃(s, 
)) ds,



362 A. Abbondandolo, P. Majer /Advances in Mathematics 197 (2005) 321–410

where	 : R ×H → R is the function

	(t, 
) =
∫ t

0
h(�̃(s, 
)) ds.

Then |	(t, 
)|� |t |, and the fact that gradb is a compact map again implies that the
family F is invariant for �̃.
We conclude that the thesis of the compactness Theorem6.5 holds, whenL is

invertible and self-adjoint,b ∈ C2(H) has compact gradient, andf satisfies the Palais–
Smale condition.

In the case of a non-trivial subbundleE the question is how to find an essentially
vertical family which is closed under the action of the flow ofF. This question will
be addressed in the next section.

7. Flow-invariant essentially vertical families

7.1. Hausdorff measure of non-compactness

We recall that the Hausdorff distance of two subsetsA,B of a metric spaceX is the
number

distH(A,B) = max

{
sup
a∈A

inf
b∈B dist(a, b), sup

b∈B
inf
a∈A dist(a, b)

}
∈ [0,+∞].

We denote byH(X) the family of all closed subsets ofX, and byHb(X) the subfamily
consisting of bounded subsets, which is a metric space with the Hausdorff distance.
A related concept is the notion of measure of non-compactness. IfA is a subset of a
metric spaceX, its Hausdorff measure of non-compactnessis

�X(A):= inf {r>0 | A can be covered by finitely many balls of radiusr} ∈ [0,+∞].

Equivalently,�X(A) is the distance from the set of compact subsets ofX:

�X(A) = inf {distH(A,K) | K ⊂ X compact} . (7.1)

It has the following properties (see[Dei85, Section 2.7.3]):

(a) �X(A) < +∞ if and only if A is bounded;

(b) �X(A) = 0 if and only if A is totally bounded;

(c) if A1 ⊂ A2 then �X(A1)��X(A2);

(d) �X(A)��A(A)�2�X(A);
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(e) �X(A1 ∪ A2) = max{�X(A1), �X(A2)};
(f) �X(A) = �X(A);

(g) �X is continuous with respect to the Hausdorff distance.

If X is a normed vector space, denoting by coA the convex hull ofA ⊂ X, we also
have:

(h) �X(�A) = |�|�X(A), and�X(A1+ A2)��X(A1)+ �X(A2);
(i) �X(coA) = �X(A).

7.2. Admissible presentations

We shall require that the essential subbundleE of TM has a strong presentation (see
Definition 1.5) which satisfies the following finiteness and a uniformity conditions.

Definition 7.1. A strong presentation{Mi,Ni,Qi}i∈I is called an admissible presenta-
tion if the Hilbert manifoldsNi are endowed with complete Riemannian metrics, and

(i) the covering{Mi}i∈I is star-finite (i.e. everyMi has non-empty intersection with
finitely manyMj ’s);

(ii) there is r > 0 such that for everyp ∈ M there existsi ∈ I such that

Q−1
i (Br(Qi (p))) ⊂ Mi.

An admissible presentation forE determines a strong integrable structureA (see
Proposition1.4). Moreover, it determines a useful family of essentially vertical subsets
of M. Indeed, letF be the family of subsetsA ⊂ M such that:

A can be covered by finitely manyMi ’s; (7.2)

for every i ∈ I, Qi (A ∩Mi) is pre-compact. (7.3)

Proposition1.4 implies that this is a family of essentially vertical sets for the strong
integrable structureA.
Given an admissible presentation ofE as above, we shall assume the following

condition on the vector fieldF:

(C3) (i) there isb > 0 such that‖DQi ◦ F‖∞�b for every i ∈ I ;
(ii) for every i ∈ I and q ∈ Ni , there exists� = �(q) > 0 andc = c(q)�0 such
that

�TNi
(DQi (F (A)))�c �Ni

(Qi (A)) ∀A ⊂ Q−1
i (B�(q)). (7.4)

Here the tangent bundleTNi is given the standard metric induced by the Riemannian
structure ofNi . Notice that no Riemannian metric onM is involved in this condition.
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Remark 7.2. If (C3)-(ii) holds, we can replace the pointq ∈ Ni by a compact set
K ⊂ Ni in (7.4): for every i ∈ I and every compact setK ⊂ Ni , there exists
� = �(K) > 0 andc = c(K)�0 such that

�TNi
(DQi (F (A)))�c �Ni

(Qi (A)) ∀A ⊂ Q−1
i (N�(K)),

whereN�(K) denotes the�-neighborhood ofK.

Remark 7.3. If E is a Hilbert space andQ :M → E is a C1 map, one often makes
no distinction between the tangential mapDQ : TM → T E = E × E, (p, 
) �→
(Q(p),DQ(p)[
]), and its second componentDQ : TM → E, (p, 
) �→ DQ(p)[
].
WhenNi = E is a Hilbert space, we are allowed to replace the tangential map ofQi by
its second component in (7.4), writing �E(DQi (F (A))) instead of�E×E(DQi (F (A)))

on the left-hand side of the inequality. Indeed, ifS ⊂ T E = E × E, andP1, P2 :E ×
E → E are the projections onto the first and the second factor, we have

max{�E(P1S), �E(P2S)}��E×E(S)��E(P1S)+ �E(P2S).

The main result of this section is the following proposition.

Proposition 7.4. Let {Mi,Ni,Qi}i∈I be an admissible presentation for the essential
subbundleE of TM. Assume that the vector field F is complete and satisfies condition
(C3). Then the essentially vertical familyF defined by(7.2) and (7.3) is positively
invariant for the flow of F.

We start with the following local result.

Lemma 7.5. Let Q :M → E be aC1 map into a Hilbert space. LetA ⊂ M be such
that Q(A) is pre-compact, and let t∗�0 be such that[0, t∗]×A ⊂ �(F ). Assume that
there existsc�0 such that

�E(DQ(F (A′)))�c �E(Q(A′)) ∀A′ ⊂ �([0, t∗] × A).

ThenQ(�([0, t∗] × A)) is pre-compact.

Proof. Let n = )ct∗* + 1, and set	 = t∗/n, so that	c < 1. For k ∈ N, 0�k�n,
setAk = �([0, k	] × A). Since

Q(�(t, p)) = Q(p)+ t · 1
t

∫ t

0
DQ(�(s, p))[F(�(s, p))] ds,

we have

Q(Ak+1) = Q(�([0, 	] × Ak) ⊂ Q(Ak)+ [0, 	]co(DQ(F (Ak+1))).
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So, by properties (c), (h), and (j) of the Hausdorff measure of non-compactness, for
0�k�n− 1 we have,

�E(Q(Ak+1)) � �E(Q(Ak))+ 	�E(co(DQ(F (Ak+1))))

= �E(Q(Ak))+ 	�E(DQ(F (Ak+1)))��E(Q(Ak))+ 	c�E(Q(Ak+1)).

Since	c < 1,

�E(Q(Ak+1))�
1

1− 	c
�E(Q(Ak)), k = 0,1, . . . , n− 1

and the fact that�E(Q(A0)) = 0 implies that�E(�([0, t∗] × A)) = �E(Q(An)) = 0,
as claimed. �

Example 7.6. The conclusion of the above lemma is not implied by the weaker as-
sumption thatQ(F (S)) should be compact for every setS such thatQ(S) is compact,
as the following example shows.
Let H = :2(Z), let {ek | k ∈ Z} be its standard orthonormal basis, letH− =

span{ek | k�0}, H+ = span{ek | k > 0}, and letQ be the orthogonal projector onto
H−. Then there exists a smooth bounded vector fieldF :H → H whose restriction to
any set of the form

{
 ∈ H | |
− 
0| < r} +H−, 
0 ∈ H+, r < 1, (7.5)

has finite rank, and whose flow� has the property that

Q�1(
{

 ∈ H+ | |
|�1

}
)

is not compact. In particular,F(A) is compact and finite dimensional whenever�H−
(QA) < 1.
To construct such a vector field, fork ∈ N∗ choose two functionsfk, gk ∈ C∞(R)

such thatfk(s) = √
s + 1/k for s ∈ [0,2], ‖fk‖∞�2, gk(1) = 1, gk(s) = 0 for

s�1− 1/k, 0�gk �1. Let � ∈ C∞(R) be a function with compact support such that
�(s) = 1 for |s|�2, and set

F(
) := �(|
|)
∞∑
k=1

gk(
 · e−k)fk(
 · ek)ek, 
 ∈ H.

The restriction of the vector fieldF to a set of the kind (7.5) has image contained in

the finite dimensional subspace span
{
ek | k ∈ N, 
 · ek + 1/k > 1− r

}
. On the other
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hand, an easy computation shows that

�(t, e−k) = e−k +
(
t2

4
+ t√

k

)
ek, k�1, 0� t�1,

so the set{Q�(t, e−k) | k�1} does not have compact closure, for anyt ∈ [0,1].

Lemma 7.7. Let {Mi,Ni,Qi}i∈I be an admissible presentation of the essential sub-
bundleE of TM. Let F be aC1 complete vector field satisfying

‖DQi ◦ F‖∞�b ∀i ∈ I

for someb�0.

(i) If Q−1
i (Br(Qi (p))) ⊂ Mi , then�(s, p) ∈ Mi for every |s|�r/b, and

dist(Qi (�(s, p)),Qi (p))�b|s|. (7.6)

(ii) If a setA ⊂ M can be covered by finitely manyM ′
i s, thenA = ⋃

i∈I0 Ai , where

Ai =
{
p ∈ A ∩Mi | Q−1

i (Br(Qi (p))) ⊂ Mi

}
(7.7)

and I0 ⊂ I is finite.
(iii) If a setA ⊂ M can be covered by finitely manyMi ’s, then�([0, t] × A) can be

covered by finitely manyMi ’s, for every t�0.

Proof. (i) Let J be the maximal interval of numberss for which �(s, p) ∈ Mi . Then

dist(Qi (�(s, p)),Qi (p)) �
∣∣∣∣∫ s

0

∣∣∣∣ dd�
Qi (�(�, p))

∣∣∣∣ d�

∣∣∣∣
=

∣∣∣∣∫ s

0
|DQi ◦ F(�(�, p))| d�

∣∣∣∣ �b|s| ∀s ∈ J.

Together with the fact that the closure ofQ−1
i (Br(Qi (p))) is contained inMi , this

implies that] − r/b, r/b[⊂ J and (7.6).
(ii) SinceA is covered by finitely manyMi ’s and the covering{Mi}i∈I is star-finite,

the indicesi ∈ I for which Ai $= ∅ form a finite subsetI0. By the uniformity property
of the presentation (Definition7.1(iv)), A = ⋃

i∈I0 Ai .
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(iii) If Ai are the sets defined in (7.7), statement (i) implies that�([0, r/b[×Ai) ⊂ Mi

for every i ∈ I0. Therefore�([0, r/b[×A) is covered by the finite covering{Mi}i∈I0,
and the conclusion follows by induction.�

Proof of Proposition 7.4. By Lemma7.7(iii), �(0, t] ×A is covered by finitely many
M ′

i s, so it is enough to show that the interval

T (A) = {t�0 | Qi (�([0, t] × A)) is pre-compact inNi, ∀i ∈ I }

coincides with[0,+∞[. Since 0∈ T (A), we can argue by connectedness proving that
T (A) is both open and closed in[0,+∞[.
We claim thatT (A) is open in[0,+∞[. Let t ∈ T (A). By Lemma7.7(ii), �([0, t]×

A) = ⋃
i∈I0 Ai , where

Ai =
{
p ∈ �([0, t] × A) ∩Mi | Q−1

i (Br(Qi (p))) ⊂ Mi

}
(7.8)

and I0 ⊂ I is finite. Clearly,T (A) = [0, t] + ⋂
i∈I0 T (Ai), so it is enough to prove

that supT (Ai) > 0, for everyi ∈ I0.
Let i ∈ I0. SinceQi (Ai) is pre-compact, (C3)-(ii), together with Remark7.2, implies

that there existc�0 and� > 0 such that

�TNi
(DQi ◦ F(S))�c�Ni

(Qi (S)) ∀S ⊂ Q−1
i (N�(Qi (Ai))). (7.9)

Moreover,Qi (Ai) is covered by finitely many coordinate neighborhoods: there exist
q1, . . . , qn ∈ Qi (Ai), 0< �� min{�, r}, Qi (Ai) ⊂ ⋃n

j=1B�/2(qj ), and local charts

�j : dom(�j ) → E,

with B�(qj ) ⊂ dom(�j ), �j (B�(qj )) ⊂ dom(�−1
j ), and �−1

j , D�j Lipschitz. Then

Ai = ⋃n
j=1A

j
i , with A

j
i = Ai ∩ Q−1

i (B�/2(qj )). Again, it suffices to show that

supT (A
j
i ) > 0.

Let 1�j �n, and setU = Q−1
i (B�(qj )). Since ��r and qj ∈ Qi (Ai), by the

definition of Ai we have

U ⊂ Q−1
i (Br(qj )) ⊂ Mi. (7.10)

Let p ∈ A
j
i ⊂ Mi . Let [0, 	(p)[, 0< 	(p)� +∞, be the maximal interval of positive

numberss for which �(s, p) ∈ U . By Lemma7.7(i),

dist(Qi (�(s, p)), qj )�dist(Qi (�(s, p)),Qi (p))+ dist(Qi (p), qj )�bs + �/2
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for every s ∈ [0, 	(p)[. Together with (7.10) this implies that	(p)��/(2b). Therefore,

�([0, �/(2b)[×A
j
i ) ⊂ U. (7.11)

Let Q := �j ◦ Qi : U → E. Since ��� and qj ∈ Qi (Ai), U is contained in

Q−1
i (N�(Qi (Ai))). By (7.9), for any S ⊂ U ,

�E((DQi ◦ F)(S)) � �E×E((DQ ◦ F)(S)) = �E×E(D�j ◦DQi (F (S)))

� lip(D�j )�TNi
(DQi ◦ F(S))�c lip(D�j )�Ni

(Qi (S))

= c lip(D�j )�N1
(�−1

j (Q(S)))�c lip(D�j ) lip(�
−1
j )�E(Q(S)).

By (7.11), we can takeS = �([0, �/(2b)[×A
j
i ) in the above inequality, and Lemma

7.5 implies thatQ(�([0, �/2b[×A
j
i )) is pre-compact inE.

SinceB�(qj ) ⊂ dom(�j ) and�j (B�(qj )) ⊂ dom(�−1
j ), the set

Qi (�([0, �/(2b)[×A
j
i )) = �−1

j (Q(�([0, �/(2b)[×A
j
i )))

is a compact subset ofNi . Therefore, supT (A
j
i )��/(2b) > 0, as we wished to prove.

There remains to show that the intervalT (A) is closed. Lett = supT (A). By
Lemma7.7(ii), �([0, t] × A) = ⋃

i∈I0 Ai , whereAi is defined in (7.8) and I0 ⊂ I is
finite. It is enough to prove thatQi (Ai) has compact closure inNi , for any i ∈ I0.
Fix i ∈ I0, and let qk = Qi (�(t, pk)), where pk ∈ A and �(t, pk) ∈ Ai , be a

sequence inQi (Ai). By Lemma7.7(i), �(t − 	, pk) ∈ Mi for any 0�	 < r/b, and

dist(Qi (�(t − 	, pk)), qk)�b	. (7.12)

Since t = supT (A), the sequence(Qi (�(t − 	, pk)))k∈N is compact for any 0< 	 <

r/b. Then (7.12) and the completeness ofNi imply that also the sequence(qk) is
compact, proving thatQi (Ai) is pre-compact. �

7.3. Properties of condition (C3)

Condition (C3) is stronger than (C2), and like (C2) it is a convex condition. Indeed,
the following result holds.

Proposition 7.8. Let {Mi,Ni,Qi}i∈I be an admissible presentation of the essential
subbundleE . The following facts hold:

(i) condition (C3) implies condition(C2);
(ii) the vector fields F satisfying(C3) form a module over the ringC1(M) ∩ C0

b (M)
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Proof. (i) Let i ∈ I , p ∈ Mi , and setq := Qi (p). Up to the composition withC1

local charts

� : dom(�) ⊂ Mi → H, p ∈ dom(�), � : dom(�) ⊂ Ni → E, q ∈ dom(�),

such that�, andD� are bi-Lipschitz, we may assume thatQi is aC1 semi-Fredholm
map with indQi �0 from an open set of the Hilbert spaceH into the Hilbert spaceE.
By (C3)-(ii) and Remark7.3, there exist� > 0 andc�0 such that

�E(DQi (F (A)))�c�E(Qi (A)) ∀A ⊂ Q−1
i (B�(q)). (7.13)

Let T ∈ L(H,E) be a linear map with finite rank such thatDQi (p)+ T is surjective.
SinceT has finite rank,

�E(Qi (A)) = �E((Qi + T )(A)), �E(DQi (F (A))) = �E(D(Qi + T )(F (A))). (7.14)

The mapQi + T is a local submersion atp, so up to considering a change of variable
at p, we may assume that the restriction ofQi to a neighborhoodU of p coincides
with a linear surjective mapQ from H to E, which by (7.13) and (7.14) verifies

�E(QF(A))�c�E(QA) ∀A ⊂ Q−1(B�(q)) ∩ U. (7.15)

By composing with a linear right inverse ofQ, we may also assume thatE is a
closed subspace ofH and thatQ is a linear projector ontoE. In these coordinates,
the essential subbundleE is locally represented by the constant subbundle kerQ, with
projectorP = I−Q. By (7.15), the map(I−P)F(p+P) is compact in a neighborhood
of 0, so its differential at 0,

D((I − P)F(p + P))(0) = (I − P)DF(p)P = (LFP )(p)P,

is a compact operator, proving (C2).
(ii) Let F1 andF2 beC1 tangent vector fields onM, and leth1, h2 ∈ C1(M)∩C0

b (M).
Let i ∈ I . Clearly, if F1 andF2 satisfy (C3)-(i) with constantsb1 andb2, h1F1+h2F2
satisfy (C3)-(i) with constant‖h1‖∞b1+ ‖h2‖∞b2.

Let p ∈ Mi , and setq := Qi (p). Let � : U → E, q ∈ U ⊂ Ni , be a local chart
such that

D� : T U → �(U)× E ⊂ E × E
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is bi-Lipschitz of constant 2. By property (h) of the Hausdorff measure of non-
compactness, ifA ⊂ Q−1

i (U),

�TNi
(DQi ◦ (h1F1+ h2F2)(A))�2�E×E(D� ◦DQi ◦ (h1F1+ h2F2)(A))

�2‖h1‖∞�E×E(D� ◦DQi ◦ F1(A))+ 2‖h2‖∞�E×E(D� ◦DQi ◦ F2(A))

�4‖h1‖∞�TNi
(DQi ◦ F1(A))+ 4‖h2‖∞�TNi

(DQi ◦ F2(A)).

Therefore, ifF1 andF2 satisfy (7.4) with constants�1, c1 and�2, c2, thenh1F1+h2F2
satisfies (7.4) with constants� = min{�1, �2} and c = 4‖h1‖∞c1 + 4‖h2‖∞c2. This
proves thath1F1+ h2F2 satisfies (C2)-(ii). �
It seems useful to find sufficient conditions implying (C3)-(ii), which do not make

use of the measures of non-compactness but are stated only in terms of Lipschitzianity
and compactness of some maps. To this purpose, assume thatM is endowed with a
Riemannian metric.
The following proposition says that under mild Lipschitz assumptions onQ−1

i and
F, condition (C3)-(ii) holds if and only if the mapsDQi ◦F : Q−1

i ({q}) → TqNi have
pre-compact image. Example7.6 suggests that without Lipschitz assumptions onF the
last condition is not sufficient for the conclusion of Proposition7.4 to hold.

Proposition 7.9. Assume that every mapNi → H(Mi), q �→ Q−1
i ({q}), is locally

Lipschitz, and that for everyq ∈ Ni there exists� > 0 such that the mapDQi ◦ F
is Lipschitz onQ−1

i (B�(q)). Then (C3)-(ii) holds if and only ifDQi ◦ F maps every
fiber Q−1

i ({q}) into a pre-compact set.

Remark 7.10. The assumption on the local Lipschitzianity ofQ−1
i , required in the

above proposition involves a uniform lower bound on the non-zero singular values of
DQi . More precisely, letQ : M → N be aC1 submersion between Riemannian Hilbert
manifolds, withM complete andN connected. If there is� > 0 such that

inf
(
�(DQ(p)∗DQ(p)) \ {0}) �� ∀p ∈ M, (7.16)

then the mapN → H(M), q �→ Q−1({q}), is 1/
√

�-Lipschitz.

In order to prove this statement, letq0, q1 ∈ N and k > 1/
√

�. Let p0 ∈ Q−1({q0})
and let v : [0,1] → N be aC1 curve such thatv(0) = q0, v(1) = q1. SinceQ is a
submersion, for anyt0 ∈ [0,1] and everyp ∈ Q−1({v(t0)}), there exists aC1 local
lifting u of v verifying u(t0) = p and u′(t0) ∈ (kerTpQ)⊥. Assumption (7.16) easily
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implies that|u′(t0)|�(1/
√

�)|v′(t0)|, so

|u′(t)|�k|v′(t)| (7.17)

for any t in a neighborhood oft0. By a standard maximality argument, it follows that
there exists a Lipschitz liftingu : [0,1] → M of v with u(0) = p0 and verifying (7.17)
a.e. in [0,1]. Therefore,

dist(p0,Q−1({q1}))�
∫ 1

0
|u′(t)| dt�k

∫ 1

0
|v′(t)| dt.

Hence taking the infimum overk andv we obtain dist(p0,Q−1({q1}))�1/
√

� d(q0, q1),
and by symmetry distH(Q−1({q0}),Q−1({q1}))�1/

√
� d(q0, q1), as claimed.

Proof of Proposition 7.9. Let i ∈ I . Since�Ni
({q}) = 0, condition (C3)-(ii) trivially

implies thatDQi ◦ F maps every fiberQ−1
i ({q}) into a pre-compact set, for every

q ∈ Ni .
Let us prove the converse statement. Letq ∈ Ni and let� > 0 be so small that the

maps

B�(q) → H(Q−1
i (B�(q)), q ′ �→ Q−1

i ({q ′}),
Q−1

i (B�(q)) → TNi, p �→ DQi ◦ F(p)

are Lipschitz. Then also the maps

H(B�(q)) → H(Q−1
i (B�(q)), � �→ Q−1

i (�),

H(Q−1
i (B�(q))) → H(T Ni), A �→ DQi ◦ F(A)

are Lipschitz. Letc be the Lipschitz constant of their composition

H(B�(q))
Q−1

i−→ H(Q−1
i (B�(q))

DQi◦F−→ H(T Ni).

Let A ⊂ Q−1
i (B�(q)) be the set for which we wish to prove (7.4). We may assume

thatA = Q−1
i (�) for some closed subset� ⊂ B�(q). If �0 ⊂ B�(q) is a finite set, our

assumption implies thatDQi ◦ F(Q−1
i (�0)) is pre-compact. So by (7.1),

�TNi
(DQi (F (A))) = �TNi

(DQi (F (Q−1
i (�))))

� distH(DQi ◦ F◦Q−1
i (�),DQi ◦ F◦Q−1

i (�0))�c distH(�,�0).
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By the density of the space of finite sets in the space of compact sets, by (7.1), and
by property (d) of�, we obtain

�TNi
(DQi (F (A)))�c inf

�0⊂B�(q))
�0 finite

distH(�,�0) = c inf
�0⊂B�(q)
�0 compact

distH(�,�0)

= c �B�(q)
(�)�2c �Ni

(�) = 2c �Ni
(Qi (A)),

which proves (C3)-(ii). �

Example 7.11(Product manifolds). Let us consider again the situation of Example2.4:
M = M−×M+ is given a product complete Riemannian structure, andV = TM−×(0).
Consider the projection onto the second factorQ : M → M+, (p−, p+) �→ p+, and
the admissible presentation of the subbundleV,{Q|B−×B+ | B− × B+ ⊂ M− ×M+ is bounded

}
.

Writing the tangent vector fieldF as F(p−, p+) = (F−(p−, p+), F+(p−, p+)) ∈
Tp−M

− × Tp+M
+, there holdsDQ ◦ F(p−, p+) = F+(p−, p+). Assume that (i)

F+ is bounded, and (ii) for everyp+ ∈ M+ and for every bounded setB− ⊂ M−
there exists� > 0 such thatF+ is Lipschitz onB− × B�(p

+), and that the map
M− → Tp+M

+, p− �→ F+(p−, p+) is compact. Then Proposition7.9 implies thatF
satisfies (C3).

8. Broken flow lines

Let x and y be rest points of the gradient-like Morse vector fieldF. Let us assume
thatWu(x) ∩Ws(y) has compact closure. Consider a sequence of flow lines from the
rest pointx to the rest pointy, and the sequence of their closures:

Sn = �(R × {pn}) = �(R × {pn}) ∪ {x, y}, pn ∈ Wu(x) ∩Ws(y).

SinceWu(x) ∩Ws(y) is compact, up to a subsequence we may assume thatpn → p,
and the continuity of� would give us the convergence

�(·, pn) → �(·, p)

uniformly on compact subsets ofR. However, it may happen thatp /∈ Wu(x), or
p /∈ Ws(y), so �(·, p) could be a flow line connecting two other rest points, and
the convergence would not be uniform onR. We will show that in this case a sub-
sequence of(Sn) converges to a broken flow line in the Hausdorff distance. The dis-
cussion is independent on conditions (C1-3), and involves only the compactness of
Wu(x) ∩Ws(y).
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Definition 8.1. Let x, y ∈ rest(F ). A broken flow linefrom x to a y is a set

S = S1 ∪ · · · ∪ Sk,

where k�1, Si is the closure of a flow line fromzi−1 to zi , wherex = z0 $= z1 $=
· · · $= zk−1 $= zk = y are rest points.

When k = 1, a broken flow line is just the closure of a genuine flow line. Let us
fix a Lyapunov functionf for F. If S is a broken flow line as in the above definition,
the following inequalities must hold:

f (x) > f (z1) > · · · > f (zk−1) > f (y). (8.1)

It is easy to check that a compact setS ⊂ M is a broken flow line fromx to y if and
only if (i) x, y ∈ S, (ii) S is �-invariant, (iii) the intersection

S ∩ {p ∈ M | f (p) = c}

consists of a single point ifc ∈ [f (y), f (x)], and it is empty otherwise. Now we can
state the compactness result for the gradient flow lines.

Proposition 8.2. Assume that the Morse vector field F has a Lyapunov function f, and
that x, y are rest points such thatWu(x) ∩Ws(y) is compact. Let(pn) ⊂ Wu(x) ∩
Ws(y), and set Sn := �(R × {pn}) ∪ {x, y}. Then (Sn) has a subsequence which
converges to a broken flow line from x to y, in the Hausdorff distance.

Proof. The space of compact subsets of a compact metric space is compact with respect
to the Hausdorff distance, so(Sn) has a subsequence(S′n) which converges to a compact
set S ⊂ Wu(x) ∩Ws(y). Then x, y ∈ S, and sinceS′n is �-invariant, so isS. Since
S′n ⊂ f−1([f (y), f (x)]), we obtain that the set

S ∩ {p ∈ M | f (p) = c} (8.2)

is empty for everyc /∈ [f (y), f (x)].
Let c ∈ [f (y), f (x)]. Then (S′n) has a subsequence(S′′n) such that

S′′n ∩ {p ∈ M | f (p) = c}

converges to some point in (8.2), which is then non-empty. If the set (8.2) contains two
pointsp, q, the fact that(Sn) is a sequence of flow lines allows us to find a sequence
(pn) converging top, and numberstn ∈ R such that�(tn, pn) → q. By reversing if
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necessary the role ofp and q, we may assume thattn�0 for everyn, and we deduce
the convergence:∫ tn

0
Df (�(t, pn))[F(�(t, pn))] dt = f (�(tn, pn))− f (pn) → f (q)− f (p) = 0.

Then the fact that the rest points off are isolated easily implies that eithertn → 0,
or the sequence of sets�([0, tn] × {pn}) converges to a rest point. In both cases, we
obtain thatp = q. This shows that set (8.2) consists of a single point. HenceS is a
broken flow line fromx to y. �

9. Intersections of dimension 1 and 2

Assume that the gradient-like Morse vector fieldF satisfies (C1-2) with respect to
a (0)-essential subbundleE of TM, so that the relative indexm(x, E) is a well-defined
integer, for anyx ∈ rest(F ).
We say thatF satisfies theMorse–Smale property up to order k, if Wu(x) and

Ws(y) have transverse intersection for every pair of rest pointsx, y such thatm(x, E)−
m(y, E)�k. The Morse–Smale condition up to order 0 implies that, for a broken flow
line as in Definition8.1,

m(x, E) > m(z1, E) > · · · > m(zk−1, E) > m(y, E). (9.1)

In this section, we shall assume thatF has the Morse–Smale property up to order
2, and we shall describe the intersectionsWu(x) ∩Ws(y) whenm(x, E)−m(y, E) is
either 1 or 2. As in the last section, we shall assume that such an intersection has
compact closure. By Theorem3.3, Wu(x) ∩Ws(y) is a submanifold of dimension 1,
respectively 2. The flow� defines a free action of the groupR ontoWu(x) ∩Ws(y),
so the quotient, that is the set of the flow lines fromx to y, is a manifold of dimension
0, respectively 1.
Assume thatx, y are rest points with

m(x, E)−m(y, E) = 1. (9.2)

We claim thatWu(x)∩Ws(y) consists offinitely manyconnected components. Indeed
each connected component is a flow line fromx to y, and the setC of their closures is
discrete in the Hausdorff distance. On the other hand, (9.1) and (9.2) imply that these
are the only broken flow lines fromx to y. So by Proposition8.2, C is also compact,
hence finite.
Note that the restriction of the flow� to the closure of a component ofWu(x)∩Ws(y)

is conjugated to the shift flow onR = [−∞,+∞]:

R × R + (t, u) �→ u+ t ∈ R.
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Now assume thatx, z are rest points with

m(x, E)−m(z, E) = 2. (9.3)

The quotient of each connected componentW by this action,W/R, being a connected
one-dimensional manifold, is either the circle or the open interval. In other words a
connected componentW of Wu(x) ∩Ws(z) is described by a one-parameter family of
flow lines u�, where� ranges inS1 or in ]0,1[.
In the first case one can easily verify thatW = W ∪ {x, z} is homeomorphic to a

2-sphere, and that the restriction of� to W is conjugated to the exponential flow on
the Riemann sphereS2 = C ∪ {∞}:

R × S2 + (t, �) �→ et� ∈ S2.

In the second case, by Proposition8.2, W \W contains broken flow lines, which have
just one intermediate rest point, by (9.1) and (9.3). Then the flow� restricted toW is
semi-conjugated to the product of two shift-flows onR. More precisely, the situation
is described by the following theorem.

Theorem 9.1. Assume that the gradient-like Morse vector field F satisfies(C1-2) with
respect to a(0)-essential subbundleE of TM. Assume that F has the Morse–Smale
property up to order2. Let x, z be rest points such thatm(x, E)−m(z, E) = 2, and let
W be a connected component ofWu(x)∩Ws(z) such thatW is compact, andW/R is
an open interval. Then there exists a continuous surjective map

h : R × R → W

with the following properties:

(i) �t (h(u, v)) = h(u+ t, v + t), for every (u, v) ∈ R × R, t ∈ R;
(ii) h(R2) = W , and there exist rest pointsy, y′ with m(y, E)=m(y′, E)=m(x, E)− 1,

andW1, W2, W ′
1, W

′
2 connected components ofWu(x) ∩Ws(y), Wu(y) ∩Ws(z),

Wu(x) ∩ Ws(y′), Wu(y′) ∩ Ws(z), respectively, such thatW1 ∪ W2 $= W ′
1 ∪ W ′

2,
and

h(R × {−∞}) = W1, h({+∞} × R) = W2,

h({−∞} × R) = W ′
1, h(R × {+∞}) = W ′

2.

(iii) the restrictions of h toR2, to {±∞}×R, and toR× {±∞}, are diffeomorphisms
of classC1;

(iv) if moreover the(0)-essential subbundleE can be lifted to a subbundleV, then

degh = −degh|{−∞}×R · degh|R×{+∞} = degh|R×{−∞} · degh|{+∞}×R,
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wheredegdenotes theZ-topological degree, referred to the orientations defined in
Section5.

Concerning (ii), note that it may happen thaty = y′, and in this case even that
W1 = W ′

1 or W2 = W ′
2, but the last two identities cannot hold simultaneously. When

y $= y′, h is injective, so it is a conjugacy. Statement (iv) expresses the coherence we
need between the orientations of the one- and two-dimensional intersections of unstable
and stable manifolds. The picture is completed by the following proposition.

Proposition 9.2. Assume that the gradient-like Morse vector field F satisfies(C1-2)
with respect to a(0)-essential subbundleE of TM. Assume that F has the Morse–Smale
property up to order2. Let x, y, z be rest points such thatm(x, E) = m(y, E) + 1 =
m(z, E)+2, and letW1, W2 be connected components ofWu(x)∩Ws(y), Wu(y)∩Ws(z),
respectively. Then there exists a unique connected component W ofWu(x) ∩ Ws(z)

such thatW1 ∪W2 belongs to the closure of
{
�(R × {p}) | p ∈ W

}
with respect to

the Hausdorff distance.

Both Theorem9.1 and Proposition9.2 will be proved in Section 11. The main tool
in the proof is the graph transform method, which allows us to study suitable portions
of Wu(x) andWs(z) in a neighborhood of another rest pointy ∈ Wu(x) ∩Ws(z).

10. The boundary homomorphism

Let (M, E) be a pair consisting of a complete Riemannian Hilbert manifoldM of
classC2, and of aC1 (0)-essential subbundle ofTM having an admissible presentation.
Let F be aC1 Morse vector field onM, admitting a non-degenerate Lyapunov function
f. We shall assume (PS), (C1-3), the Morse–Smale property up to order 2, and

(C4) for everyq ∈ Z, f is bounded below on restq(F ) = {x ∈ rest(F ) | m(x, E) = q}.

10.1. Morse complex with coefficients inZ

We first consider the situation in whichE is the (0)-essential class of a subbundleV
of TM. In this case we can fix arbitrary orientations of the Fredholm pairs(Hs

x ,V(x)),
for every x ∈ rest(F ).
Let x and y be rest points withm(x, E) − m(y, E) = 1, and letW be a connected

component ofWu(x) ∩ Ws(y). ThenW is a flow line, and it is endowed with the
orientation described in Section5. We can define the number

�(W) := deg[�(·, p) : R → W ]
for p ∈ W . In other words�(W) equals+1 or−1 depending on whetherF(p) ∈ TpW

is positively or negatively oriented. We define also

�(x, y) :=
∑
W

�(W),

where the sum ranges over all the connected components ofWu(x) ∩Ws(y).
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Now let x andz be rest points withm(x, E)−m(z, E) = 2, and letS(x, z) be the set
of broken flow lines fromx to z with one intermediate rest point (necessarily unique
and of indexm(z, E) + 1). By (PS) and by the Morse assumption there are finitely
many rest pointsy with f (y) ∈]f (z), f (x)[. By Theorem6.5 and Proposition8.2,
the setS(x, z) is finite. By Theorem9.1 and Proposition9.2, there is an involution
W1 ∪W2 �→ W ′

1 ∪W ′
2 without fixed points on the setS(x, z), and

�(W ′
1)�(W

′
2) = −�(W1)�(W2). (10.1)

Let q ∈ Z and letCq(F ) be the free Abelian group generated by the rest points of
index q:

Cq(F ) = spanZrestq(F ).

Note thatCq(F ) may have infinite rank.
Assumption (C4) allows us to define the homomorphism

�q : Cq(F ) → Cq−1(F )

by setting for everyx ∈ restq(F )

�qx =
∑

y∈restq−1(F )

�(x, y)y. (10.2)

The Abelian groupsCq(F ) together with the homomorphisms�q are the data of a
chain complex. Indeed we have:

Theorem 10.1.For everyq ∈ Z, �q−1 ◦ �q = 0.

Proof. Let x ∈ restq(F ) and z ∈ restq−2(F ). The coefficient ofz in �q−1�qx is

∑
y∈restq−1(F )

�(x, y)�(y, z) =
∑

W1∪W2∈S(x,z)

�(W1)�(W2),

which is zero by (10.1). �
We will call {Cq(F ), �q}q∈Z the Morse complex ofF. Clearly, the construction

depends on the choice of the subbundleV and on the orientation of each Fredholm
pair (Hs

x ,V(x)). Changing the subbundleV by a compact perturbation changes the
Morse complex by a shift of the indices (whenM is connected). A change of the
orientation of(Hs

x ,V(x)) produces an isomorphic Morse complex.
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10.2. Morse complex with coefficients inZ2

In the general case of a (0)-essential subbundleE , statement (iv) of Theorem9.1 is
not available, but we can still define a Morse complex withZ2 coefficients. Indeed,
defining �(x, y) ∈ Z2 to be the number of connected components ofWu(x) ∩Ws(y)

counted modulo 2, andCq(F ) to be theZ2-vector space generated by the rest points
of index q, (10.2) defines a complex ofZ2-vector spaces.

11. Proof of the conjugacy theorem

11.1. Construction of h near a broken flow line

The main point in the proof of Theorem9.1 and Proposition9.2 is to constructh
near a broken flow line.

Proposition 11.1.Assume that the Morse vector field F has a non-degenerate Lyapunov
function f, satisfies(C1-2) with respect to a(0)-essential subbundleE of TM, and
satisfies the Morse–Smale condition up to order2. Let x, y, z be rest points such that
m(x, E) = m(y, E) + 1 = m(z, E) + 2. Let W1 and W2 be connected components
of Wu(x) ∩ Ws(y) and Wu(y) ∩ Ws(z), respectively. Then there exists a continuous
injective map

h : � := {
(u, v) ∈ R × R | v�u

} → Wu(x) ∩Ws(z)

with the following properties:

(i) �t (h(u, v)) = h(u+ t, v + t), for every (u, v) ∈ �, t ∈ R;
(ii) h(� ∩ R2) ⊂ Wu(x) ∩Ws(z), h(R × {−∞}) = W1, h({+∞} × R) = W2, and the

restrictions of h to�∩R2, to R× {−∞}, and to {+∞}×R, are diffeomorphisms
of classC1;

(iii) there exists� > 0 such that for anyp ∈ Wu(x) ∩Ws(z), if S = �(R × {p}) has
Hausdorff distance less than� from W1 ∪W2, then S ⊂ h(�);

(iv) if moreover the(0)-essential subbundleE can be lifted to a subbundleV, then

degh = −degh|R×{−∞} · degh|{+∞}×R,

wheredegdenotes theZ-topological degree, referred to the orientations defined in
Section5.

Let us identify a neighborhood ofy in M with a neighborhood of 0 in the Hilbert
spaceH, identifying y with 0. We endowH with an equivalent Hilbert product〈·, ·〉
which is adapted to∇F(y) = DF(0) (see Appendix C), and we setHu := Hu

y ,
Hs := Hs

y , so thatHu ⊕ Hs is the splitting ofH given by the decomposition of the
spectrum of∇F(y) into the subset with positive real part and the one with negative
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real part. LetPu andP s denote the corresponding projectors. We shall often identify
H = Hu⊕Hs with Hu×Hs . By Hu(r), resp.Hs(r), we shall denote the closedr-ball
centered in 0 of the linear subspaceHu, resp.Hs . We setQ(r) := Hu(r)×Hs(r). If
X andY are metric spaces and� > 0, Lip�(X, Y ) will denote the space of�-Lipschitz
maps fromX into Y, endowed with theC0 topology.
Let p1 ∈ W1 andp2 ∈ W2. Choose�0 > 0 so small that the sets

X := Wu(x) ∩ f−1(f (p1)) ∩ B�0(p1), Z := Ws(z) ∩ f−1(f (p2)) ∩ B�0(p2),

do not contain rest points, and

X ∩Wu(x) ∩Ws(y) = {p1}, Z ∩Wu(y) ∩Ws(z) = {p2}.

Then X and Z are submanifolds of classC1, and the Morse–Smale condition implies
that X is transverse toWs(y), andZ is transverse toWu(y).

Lemma 11.2. For any � > 0 there existr0 > 0, � > 0, t0�0, and two continuous
families

{�t }t∈[0,+∞] ⊂ Lip�(H
u(r0),H

s(r0)), {	t }t∈[−∞,0] ⊂ Lip�(H
s(r0),H

u(r0)),

such that each�t and each	t is C1, and:

(i) �t0+t (X ∩ B�(p1)) ∩Q(r0) = graph�t , for every t ∈ [0,+∞[;
(ii) Wu(y) ∩Q(r0) = graph�+∞;
(iii) �−t0+t (Z ∩ B�(p2)) ∩Q(r0) = graph	t , for every t ∈] −∞,0];
(iv) Ws(y) ∩Q(r0) = graph	−∞;
(v) for any �1 > 0 there existr1 ∈]0, r0] and t1�0 such that

�t |Hu(r1) ∈ Lip�1(H
u(r1),H

s(r1)), 	−t |Hs(r1) ∈ Lip�1(H
s(r1),H

su(r1))

for any t� t1.

Proof. Let r be as small as required by PropositionsC.5 and C.6. Since Tp1X ⊕
Tp1W

s(y) = Tp1M, the path of subspacesD�t (p1)Tp1X converges toTyWu(y) for
t →+∞, by Theorem B.2(iii). Therefore, we can finds1�0 such that�(s1, p1) is in
the interior ofQ(r), andD�s1

(p1)Tp1X ⊂ Hu ×Hs is the graph of a linear operator
from Hu to Hs of norm strictly less than 1. By the implicit function theorem, there
exists� > 0 such that�s1

(X ∩ B�(p1)) is the graph of a 1-Lipschitz map� : U →
Hs(r), whereU ⊂ Hu(r) is open. Moreover, graph� ∩ Ws(y) = {�(s1, p1)}, so by
PropositionC.5(v), there exists2�0 and�′ ∈ Lip1(H

u(r),H s(r)) such that

graph�′ = �s1+s2
(X ∩ B�(p1)) ∩Q(r),
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where we have also used PropositionC.6. Let

� : [0,+∞] × Lip1(H
u(r),H s(r)) → Lip1(H

u(r),H s(r))

be the graph transform map provided by PropositionC.5. By PropositionC.5(iv), there
exist r0 ∈]0, r] and s3�0 such that�(t, �′) ∈ Lip�(H

u(r0),H
s(r0)) for any t�s3.

Setting t0 := s1 + s2 + s3 and �t = �(t − s3, �′) for t ∈ [0,+∞], statements (i), (ii),
and the first part of (v) follow immediately from PropositionsC.5 andC.6.
Changing the sign oft and considering the evolution ofZ, we obtain a family of

maps{	t } satisfying (iii), (iv), and the second part of (v).�

Proof of Proposition 11.1. Let � be a positive number strictly less than 1, and let
r0, �, t0, �t , 	t be as in the lemma above. Since� < 1, the contracting mapping principle
implies the existence of a Lipschitz continuous map

� : Lip�(H
u(r0),H

s(r0))× Lip�(H
s(r0),H

u(r0)) → Q(r0),

which associates to(�, 	) the unique intersection of the graphs of� and 	, i.e. the
unique fixed point of the contraction

Hu(r0)×Hs(r0) + (
, 
) �→ (	(
), �(
)) ∈ Hu(r0)×Hs(r0).

For (u, v) ∈ [0,+∞] × [−∞,0], set

Xu =
{

�u+t0
(X ∩ B�(p1)) ∩Q(r0) if u ∈ [0,+∞[,

Wu(y) ∩Q(r0) if u = +∞,
,

Zv =
{

�v−t0
(Z ∩ B�(p2)) ∩Q(r0) if v ∈] −∞,0],

Ws(y) ∩Q(r0) if v = −∞.

Then we defineh(u, v) to be the unique point of the intersectionXu ∩ Zv. The map
h is well defined and continuous on[0,+∞] × [−∞,0] because it can be written as
the composition

[0,+∞] × [−∞,0] + (u, v) �→ (�u, 	v)
�−→ Q(r0) ↪→ M.

SinceX andZ are contained in level sets off, and they contain no rest points,Xu∩Xu′ =
∅ if u $= u′, andZv ∩ Zv′ = ∅ if v $= v′. So h is injective. By definition, for every
(u, v) ∈ [0,+∞] × [−∞,0], and−u� t� − v,

�t (h(u, v)) = h(u+ t, v + t) (11.1)
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and we can use formula (11.1) to extendh to a continuous injective map on

� = {
(u, v) ∈ R × R | v�u

}
,

still verifying (11.1), proving (i). SinceX ⊂ Wu(x) andZ ⊂ Ws(z), for every(u, v) ∈
� ∩ R2 the pointh(u, v) belongs toWu(x) ∩Ws(z). Since

h(u,−∞) = �(u, p1) and h(+∞, v) = �(v, p2),

h|R×{−∞} and h|{+∞}×R are diffeomorphisms of classC1 onto W1 andW2. SinceX
and Z are of classC1 and so is�, the implicit function theorem implies thath|�∩R2

is a diffeomorphism of classC1, proving (ii). Notice that, differentiating the identities

�t (h(u, v)) = h(u+ t, v + t), �t (h(u,−∞)) = h(u+ t,−∞),

�t (h(+∞, v)) = h(+∞, v + t),

with respect tot in t = 0, we obtain

F(h(u, v)) = �h
�u

(u, v)+ �h
�v

(u, v), F (u,−∞) = �h
�u

(u,−∞),

F (+∞, v) = �h
�v

(+∞, v) (11.2)

for every u ∈ R, v ∈ R.
Sincey is a rest point, andp1 ∈ Ws(y), p2 ∈ Wu(y), we can find� ∈]0, �] so small

that, if �(t1, p) ∈ B�(p1) and�(t2, p) ∈ B�(p2), we have

t2− t1�2t0, �(t1+ t0, p) ∈ Q(r0), �(t2− t0, p) ∈ Q(r0). (11.3)

If p ∈ Wu(x) ∩Ws(z) and S := �(R × {p}) has Hausdorff distance less than� from
W1 ∪W2, we can findt1, t2 ∈ R such that�(t1, p) ∈ B�(p1) and �(t2, p) ∈ B�(p2).
By PropositionC.6, the set oft ∈ R such that�(t, p) ∈ Q(r0) is connected, so by
(11.3),

�

(
t1+ t2

2
, p

)
= �

(
(t1+ t0)+ (t2− t0)

2
, p

)
∈ Q(r0). (11.4)

Then, settingu := (t2− t1)/2− t0�0 andv := −u�0, we obtain

�

(
t1+ t2

2
, p

)
∈ �u+t0

(X ∩ B�(p1)) ∩ �v−t0
(Z ∩ B�(p2)). (11.5)
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So, by (11.4) and (11.5), �((t1+ t2)/2, p) ∈ Xu∩Zv, that is�((t1+ t2)/2, p) = h(u, v).
By (i) the whole flow line throughp is in h(�) which, being closed, must contain also
S, proving conclusion (iii).
In order to prove (iv), we shall need the following.

Lemma 11.3. There existu0�0, v0�0, and a continuous map

W : [u0,+∞] × [−∞, v0] → Gr(H),

such that (W(u, v),V(h(u, v))) is a Fredholm pair for every(u, v) ∈ [u0,+∞] ×
[−∞, v0], and:
(i) Th(u,v0)W

s(z) = RF(h(u, v0))⊕W(u, v0), for everyu ∈ [u0,+∞];
(ii) W(u,−∞) = Th(u,−∞)W

s(y), for everyu ∈ [u0,+∞];
(iii) D�v−v0

(h(+∞, v0))W(+∞, v0) = W(+∞, v), for everyv ∈] −∞, v0];
(iv) W(u0, v) + Th(u0,v)W

u(x) = H for every v ∈ [−∞, v0], and there exists a non-
vanishing continuous vector fieldG : [−∞, v0] → H along v �→ h(u0, v) such
that

W(u0, v) ∩ Th(u0,v)W
u(x) = RG(v), G(−∞) = �h

�u
(u0,−∞),

G(v0) = �h
�u

(u0, v0),

for everyv ∈ [−∞, v0].

Proof. Recalling that by (C1)(Hs,V(y)) is a Fredholm pair, we can find�1 ∈]0, �]
so small that

∀S ∈ L(Hs,Hu) such that‖S‖�2�1, (graphS,V(y)) is a Fredholm pair. (11.6)

Moreover, we may assume that settingL := ∇F(y) = DF(0),

4�21
1− �21

+ 2�1 <
1

‖L‖2‖L−1‖2 . (11.7)

Let r1 and t1 be the positive numbers given by Lemma11.2(v): there holds

‖D�t (
)‖��1, ‖D	t (
)‖��1 (11.8)

for any t� t1, 
 ∈ Hu(r1), 
 ∈ Hs(r1). Since

F(
) = L
+ o(
) for 
 → 0, (11.9)
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the quadratic form

g(
) = −1
2〈L
, 
〉

is a Lyapunov function forF in a neighborhood of 0. Therefore there existsu1�0
such that the functionu �→ g(h(u,−∞)) is strictly decreasing in[u1,+∞[. So when
v →−∞ the functions

[u1,+∞[+ u �→ g(h(u, v)) ∈ R

converge uniformly to a strictly decreasing function. Therefore, using also (11.6), the
fact thatWs(y) is tangent toHs at y = 0, (11.7), (11.8), and (11.9), it is easy to
check that there areu0�0 andv0�0 such that:

(a) Dg(h(h0, v0))
[

�h
�u (u0, v0)

]
= �

�ug(h(u, v0))|u=u0 < 0;

(b) g is a Lyapunov function forF on h([u0,+∞] × [−∞, v0]);
(c) if S ∈ L(Hs,Hu) has norm‖S‖��1, and (u, v) ∈ [u0,+∞] × [−∞, v0], then

(graphS,V(h(u, v))) is a Fredholm pair;
(d) for any v ∈ [−∞, v0] there holds‖Puh(u0, v)‖��‖P sh(u0, v)‖, and

‖F(h(u0, v))‖�2‖L‖ ‖P sh(u0, v)‖,
‖F(h(u0, v))− Lh(u0, v)‖��‖P sh(u0, v)‖,

where � > 0 is so small that

4�1
1− �21

(�1+ �)+ 2�1+ � <
1

‖L‖2‖L−1‖2 ; (11.10)

(e) for any (u, v) ∈ [u0,+∞] × [−∞, v0] we have

‖D�u(P
uh(u, v))‖��1, ‖D	v(P

sh(u, v))‖��1.

We will defineW(u, v) to be the graph of suitable linear mapsS(u, v) ∈ L(Hs,Hu).
We start by definingS on three edges of the square[u0,+∞] × [−∞, v0]. For u ∈
[u0,+∞] we set

S(u, v0) = D	v0(P
sh(u, v0)), S(u,−∞) = D	−∞(P sh(u,−∞))

and for v ∈] −∞, v0] we set

S(+∞, v) = D	v(P
sh(+∞, v)).
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By (e),‖S‖��1. The mapS is clearly continuous on[u0,+∞]×{v0} and on[u0,+∞]×
{−∞}. If v ∈] −∞, v0],

graphS(+∞, v) = D�v−v0
(h(+∞, v0))[graphS(+∞, v0)],

so S is continuous on{+∞}×] − ∞, v0]. By Theorem B.2(iii),S(+∞, v) converges
to S(+∞,−∞) for v →−∞, so

S : ([u0,+∞] × {−∞, v0}) ∪ ({+∞} × [−∞, v0]) → L(Hs,Hu)

is a continuous map. We can extend the mapS by convexity to a continuous map on
[u0,+∞] × [−∞, v0] in such a way that‖S(u, v)‖��1 everywhere, and we set

W(u, v) = graphS(u, v).

By (c), (W(u, v),V(h(u, v))) is always a Fredholm pair, and by constructionW satisfies
the requirements (i)–(iii).
There remains to check (iv). Letv ∈ [−∞, v0]. The tangent space to the unstable

manifold of x at h(u0, v) is

Th(u0,v)W
u(x) = RF(h(u0, v))⊕ graphD�u0(P

uh(u0, v)).

Since S(u0, v) ∈ L(Hs,Hu) andD�u0(P
uh(u0, v)) ∈ L(Hu,Hs) have norm not ex-

ceeding�1 < 1, we have

W(u0, v)+ Th(u0,v)W
u(x) = H.

Moreover, a simple computation shows that the intersection

W(u0, v) ∩ Th(u0,v)W
u(x)

= graphS(u0, v) ∩
(
RF(h(u0, v))⊕ graphD�u0(P

uh(u0, v))
)

is a one-dimensional space spanned by the vector

G̃(v) = (G̃u(v), G̃s(v)) ∈ Hu ×Hs,

where

G̃u(v) = S(u0, v)G̃
s(v),

G̃s(v) = (I − T (v)S(u0, v))
−1(P sF (h(u0, v))− T (v)P uF (h(u0, v))),
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and T (v) = D�u0(P
uh(u0, v)). Indeed,‖T S‖��21 < 1, so I − T S is invertible, and

‖(I − T S)−1‖� 1

1− �21
, ‖(I − T S)−1− I‖� �21

1− �21
.

By (d) we have the estimates

‖G̃s‖� 1

1− �21
(‖P sF (h)‖ + �1‖PuF(h)‖)� 2

1− �21
‖F(h)‖� 4

1− �21
‖L‖ ‖P sh‖,

|〈LPuh, G̃u〉|��‖L‖ ‖G̃u‖ ‖P sh‖���1‖L‖ ‖G̃s‖ ‖P sh‖� 4��1
1− �21

‖L‖2‖P sh‖2,

‖G̃s − P sF (h)‖ � ‖G̃s − (P sF (h)− T PuF(h))‖ + ‖T PuF(h)‖

� �21
1− �21

‖P sF (h)− T PuF(h)‖ + 2�1‖L‖ ‖P sh‖

�
(

4�21
1− �21

+ 2�1

)
‖L‖ ‖P sh‖,

‖G̃s − LP sh‖�‖G̃s − P sF (h)‖ + ‖P sF (h)− P sLh‖

�
((

4�21
1− �21

+ 2�1

)
‖L‖ + �

)
‖P sh‖.

Thus

Dg(h)[G̃] = −〈Lh, G̃〉 = −〈LPuh, G̃u〉 − 〈LP sh, G̃s〉

� 4��1
1− �21

‖L‖2‖P sh‖2− 〈LP sh,LP sh〉 + ‖L‖ ‖P sh‖ ‖G̃s − LP sh‖

�
((

4�1
1− �21

(�1+ �)+ 2�1+ �

)
‖L‖2− 1

‖L−1‖2
)
‖P sh‖2

and by (11.10) we get

Dg(h(u0, v))[G̃(v)] < 0 ∀v ∈ [−∞, v0]. (11.11)
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On the other hand, by (a),

Dg(h(u0, v0))

[
�h
�u

(u0, v0)

]
< 0 (11.12)

and by (11.2) and (b),

Dg(h(u0,−∞))

[
�h
�u

(u0,−∞)

]
= Dg(h(u0,−∞))[F(h(u0,−∞))] < 0. (11.13)

By construction,h(u, v0) ∈ graph	v0 ∩Wu(x), for everyu�0, so

�h
�u

(u0, v0) ∈ graphD	v0(P
sh(u0, v0)) ∩ Th(u0,v0)W

u(x) = W(u0, v0) ∩ Th(u0,v0)W
u(x).

Moreover,

�h
�u

(u0,−∞) ∈ Th(u0,−∞)W
s(y) ∩ Th(u0,−∞)W

u(x) = W(u0,−∞) ∩ Th(u0,−∞)W
u(x).

Then (11.11)–(11.13) imply that a vector fieldG satisfying the requirements of (iv)
can be defined by multiplying̃G by a suitable positive function.�

Remark 11.4. In some particular cases, such as whenF is linear in a neighborhood
of y = 0, a mapW satisfying the requirements of the above lemma can be defined
simply as

W(u, v) = graphD	v(P
sh(u, v)),

providing us with a drastic simplification of the proof. However in general, the above
expression does not define a continuous mapW, the reason being that the graph
transform� of PropositionC.5 needs not be continuous with respect to theC1 topology.

We are now ready to prove assertion (iv) of Proposition11.1. The continuous maps

	W1 : [u0,+∞[→ Gr1,∞(TM), u �→ Th(u,−∞)W1 = RF(h(u,−∞)),

	W2 :] −∞, v0] → Gr1,∞(TM), v �→ Th(+∞,v)W2 = RF(h(+∞, v)),

	W : [u0,+∞[×] −∞, v0] → Gr2,∞(TM), (u, v) �→ Th(u,v)W,
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have continuous liftingŝ	W1, 	̂W2 to Or(Gr1,∞(TM)), and 	̂W to Or(Gr2,∞(TM)),
corresponding to the orientations ofW1, W2, andW, defined in Section5. Moreover,
the continuous map

� : [u0,+∞]×] −∞, v0] → Fp(TM), (u, v) �→ (Th(u,v)W
s(z),V(h(u, v))),

has a continuous liftinĝ� to Or(Fp(TM)), which is determined by the orientationoz
of (Hs

z ,V(z)).
By Lemma11.3(ii), W(+∞,−∞) = Hs

y , so the continuous map

� : [u0,+∞] × [−∞, v0] → Fp(TM), (u, v) �→ (W(u, v),V(h(u, v))),

has a unique continuous liftinĝ� to Or(Fp(TM)) such that�̂(+∞,−∞) = oy . By
Lemma 11.3(iv), there is a continuous curveX : [−∞, v0] → Gr(TM) such that
W(u0, v) = RG(v)⊕X (v) for every v ∈ [−∞, v0], and we can define the continuous
map

� : [−∞, v0] → Fp(TM), v �→ (X (v),V(h(u0, v))).

ThenX (v) is a linear supplement ofTh(u0,v)W
u(x) in Th(u0,v)M, so Theorem B.2(iii)

implies that

lim
t→−∞ D�t (h(u0, v))X (v) = Hs

x ,

uniformly in v ∈ [−∞, v0]. Therefore, the orientationox of (Hs
x ,V(x)) determines a

continuous lifting�̂ : [−∞, v0] → Or(Fp(TM)) of �.
Denote byh1 and byh2 the restrictions ofh to R × {−∞} and to {+∞} × R. If

X is an n-dimensional real vector space and
 is a non-zero element of�n(X), the
same symbol
 will also denote the orientation ofX induced by
. When n = 1, we
shall identify �1(X) with X. If o is an orientation ofX, −o will denote the other
orientation.
By Lemma11.3(i), (iv), and by (11.2),

Th(u0,v0)W
s(z) = RF(h(u0, v0))⊕ RG(v0)⊕ X (v0) = Th(u0,v0)W ⊕ X (v0),

so by the definition of the orientation ofW ⊂ Wu(x) ∩Ws(z),

�̂(u0, v0) = 	̂W(u0, v0)
∧

�̂(v0) = (degh)

(
�h
�u

(u0, v0) ∧ �h
�v

(u0, v0)

)∧
�̂(v0). (11.14)
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Moreover,Th(+∞,v0)W
s(z) = Th(+∞,v0)W2 ⊕ W(+∞, v0), so by Lemma11.3(iii) and

by the definition of the orientation ofW2 ⊂ Wu(y) ∩Ws(z),

�̂(+∞, v0) = 	̂W2(v0)
∧

�̂(+∞, v0) = (degh2)
�h
�v

(+∞, v0)
∧

�̂(+∞, v0)

= (degh2) SF (h(+∞, v0)
∧

�̂(+∞, v0),

where we have taken (11.2) into account. By Lemma11.3(i),

�(u, v0) = (RF(h(u, v0))⊕ �1(u, v0), �2(u, v0))

for every u ∈ [u0,+∞], so by the continuity of the product on the orientation bundle
we obtain

�̂(u0, v0) = (degh2) F (h(u0, v0))
∧

�̂(u0, v0).

Hence by (11.2),

�̂(u0, v0) = (degh2)

(
�h
�u

(u0, v0)+ �h
�u

(u0, v0)

)∧
�̂(u0, v0). (11.15)

By Lemma11.3(ii), (iv), and by (11.2),

Th(u0,−∞)W
s(y) = W(u0,−∞) = RG(−∞)⊕ X (−∞) = Th(u0,−∞)W1⊕ X (−∞),

so by the definition of the orientation ofW1 ⊂ Wu(x) ∩Ws(y),

�̂(u0,−∞) = 	̂W1(u0)
∧

�̂(−∞)) = (degh1)
�h
�u

(u0,−∞)
∧

�̂(−∞)

= (degh1)G(−∞)
∧

�̂(−∞).

Then by the identity

�(u0, v) = (RG(v)⊕ �1(v), �2(v)) ∀v ∈ [−∞, v0]

and by the continuity of the product on the orientation bundle we obtain

�̂(u0, v0) = (degh1)G(v0)
∧

�̂(v0) = (degh1)
�h
�u

(u0, v0)
∧

�̂(v0). (11.16)
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Identities (11.15) and (11.16), together with the associativity of the product of orienta-
tion, imply that

�̂(u0, v0) = (degh2)(degh1)

(
�h
�u

(u0, v0)+ �h
�v

(u0, v0)

)∧(
�h
�u

(u0, v0)
∧

�̂(v0)

)

= (degh2)(degh1)

((
�h
�u

(u0, v0)+ �h
�v

(u0, v0)

)
∧ �h

�u
(u0, v0)

)∧
�̂(v0)

= −(degh2)(degh1)

(
�h
�u

(u0, v0) ∧ �h
�v

(u0, v0)

)∧
�̂(v0)

and comparing the above identity with (11.14) we obtain

degh = −(degh1)(degh2),

proving (iv). �

11.2. Conclusion

Proof of Theorem9.1. Fix a valuec ∈]f (z), f (x)[. By assumption,W∩{f = c}�W/R

is an open interval, so it is parameterized by aC1 diffeomorphism � : R → M.
By Proposition8.2, there exist an increasing, unbounded sequence(sn) and a broken
gradient flow lineS+ from x to z such that

lim
n→∞ �(R × {�(sn)}) = S+ (11.17)

in the Hausdorff distance, and also such that�(sn) converges to a pointp ∈ S+. Since
� is a homeomorphism,p is not inW, and sinceW is closed inWu(x)∩Ws(z), p is not
in Wu(x)∩Ws(z) either. SoS+ contains a rest pointy of intermediate level. As already
noticed, the Morse–Smale property and the fact thatm(x, E) = m(z, E)+ 2 imply that
m(y, E) = m(z, E) + 1, and that there existW+

1 andW+
2 , connected components of

Wu(x) ∩Ws(y) and ofWu(y) ∩Ws(z), such thatS+ = W+
1 ∪W+

2 . Proposition11.1
provides us with a map

h+ : �+ := {
(u, v) ∈ R × R | v�u

} → Wu(x) ∩Ws(z),

verifying properties (i)–(iv). In particular by (iii) and (11.17), h+(�+ ∩ R2) ⊂ W , and
by (iv),

deg(h+) = −deg(h+|R×{−∞}) · deg(h+|{+∞}×R). (11.18)
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By Proposition11.1(i), for any t�0,

lim
s→−∞ f (h+(s + t, s)) = lim

s→−∞ f (�(s, h+(t,0))) = f (x) > c,

lim
s→+∞ f (h+(s + t, s)) = lim

s→+∞ f (�(s, h+(t,0))) = f (z) < c,

�
�s

[
f (h+(s + t, s))

] = �
�s

[
f (�(s, h+(t,0))

]
= Df (�s(h

+(t,0)))[F(�s(h
+(t,0))] < 0,

so by the implicit function theorem there exists a function
+ ∈ C1([0,+∞[,R) such
that

f (h+(
+(t)+ t, 
+(t))) = c ∀t�0.

Then h+(
+(t)+ t, 
+(t)) ∈ W ∩ {f = c}, and

�+(t) := �−1(h+(
+(t)+ t, 
+(t)))

defines aC1 function �+ : [0,+∞[→ R. An application of�v−
+(u−v) to h+(
+(u−
v)+ t, 
+(u− v)) = �(�+(u− v)) yields to the representation

h+(u, v) = �(v − 
+(u− v), �(�+(u− v))), (u, v) ∈ �+ ∩ R2. (11.19)

Sinceh+ is a diffeomorphism, the vectors�h+/�u and�h+/�v are linearly independent,
so

(� ◦ �+)′ = (1+ 
′+)
�h+

�u
+ 
′+

�h+

�v

never vanishes, and from the fact that� is a diffeomorphism we deduce that�′+(t) $= 0
for every t�0. Moreover, from Proposition11.1(iii), �(R × {�(sn)}) ⊂ h+(�+) for n
large, which implies that�(R × {�(sn)}) = �(R × {h+(tn,0)}) = �(R × {�(�+(tn))})
for some tn�0. Since� is injective and meets any flow line at most once, the last
equality implies that�+(tn) = sn →+∞. Therefore,

�′+ > 0, lim
t→+∞ �+(t) = +∞. (11.20)

The same construction, starting with a sequences′n → −∞, yields to a rest pointy′

with m(y′, E) = m(z, E) + 1 such that�(R × {�(s′n)} converges toS− = W−
1 ∪W−

2 ,
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for some connected componentsW−
1 andW−

2 of Wu(x)∩Ws(y′) andWu(y′)∩Ws(z),
respectively. As before we obtain a map

h− : �− := {(u, v) ∈ R × R : v�u} → W,

where we also used the orientation reversing change of variables�− + (u, v) �→
(v, u) ∈ �+. Hence

deg(h−) = deg(h−|{−∞}×R) · deg(h−|R×{+∞}) (11.21)

and we have the representation

h−(u, v) = �(v − 
−(u− v), �(�−(u− v))), (u, v) ∈ �− ∩ R2. (11.22)

for suitableC1 functions
− and �− on ] −∞,0], with

�′− > 0 lim
t→−∞ �−(t) = −∞. (11.23)

Proposition11.1(iii) together with (11.19) and (11.22), implies thatS− $= S+, as
claimed in (ii). Now we can choose twoC1 functions 
, � : R → R, with �′ > 0,
coinciding with
−, �− in a neighborhood of−∞ and with
+, �+ in a neighborhood
of +∞. The map

h(u, v) := �(v − 
(u− v), �(�(u− v))), (u, v) ∈ R2,

has a continuous extension toR × R and clearly satisfies all requirements (i)–(iv).
�

Proof of Proposition 9.2. The conclusion follows immediately from Proposition
11.1(iii). �

Appendix A. Infinite dimensional Grassmannians

The aim of this appendix is to gather the definitions and the relevant properties of
some infinite dimensional Grassmannians. Unless otherwise stated, detailed proofs can
be found in[AM03a] (but see also[Pal65,Luf67,Qui85,SW85,PS86,CJS95,Shu96]).

A.1. The Hilbert Grassmannian and the space of Fredholm pairs

By L(E, F ), respectivelyLc(E, F ), we will denote the space of continuous linear,
respectively compact linear, maps from the Banach spaceE to the Banach spaceF.
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If F = E we will use the abbreviationsL(E) and Lc(E). The norm of the operator
T ∈ L(E, F ) will be denoted by‖T ‖. By �(L) and by �ess(L) we will denote the
spectrum and the essential spectrum of the operatorL ∈ L(E), that is the spectrum of
[L] in the Calkin algebraL(E)/Lc(E).
Let H be a real infinite dimensional separable Hilbert space. The orthogonal projec-

tion onto a closed subspaceV ⊂ H will be denoted byPV , while V ⊥ will denote the
orthogonal complement ofV in H.
Let Gr(H) be theGrassmannian of H, i.e. the set of closed linear subspaces ofH.

The assignmentV �→ PV is an inclusion of Gr(H) into L(H), onto the closed subset
of the orthogonal projectors ofH. We can therefore define, for anyV,W ∈ Gr(H) the
distance

dist(W1,W2) := ‖PW1 − PW2‖,

which makes Gr(H) a complete metric space. It can be proved that Gr(H) is an analytic
Banach submanifold of the Banach spaceL(H): indeed, the subspace of symmetric
idempotent elements of aC∗-algebra is always an analytic Banach submanifold.
The connected components of Gr(H) are the subsets

Grn,k(H) := {V ∈ Gr(H) | dimV = n, codimV = k} , n, k ∈ N ∪ {∞}, n+ k = ∞.

The orthogonal group O(H) is contractible, by a well known result by Kuiper[Kui65],
and it acts transitively on each of these components. These facts imply that Gr∞,∞(H)

is contractible, while Grn,∞(H) and Gr∞,n(H) have the homotopy type of BO(n), the
classifying space of the orthogonal group ofRn.
A pair (V ,W) of closed subspaces ofH is said aFredholm pair if V ∩W is finite

dimensional, andV +W is finite codimensional (see also[Kat80, Section IV]). In this
situation, theindex of (V ,W) is the number

ind (V ,W) = dimV ∩W − codim(V +W).

The set of Fredholm pairs inH will be denoted by Fp(H): it is open in Gr(H)×Gr(H),
and the index is a continuous function on Fp(H). The connected components of Fp(H)

are the subsets

Grn,∞(H)×Gr∞,m(H), Gr∞,n(H)×Grm,∞(H), n,m ∈ N,

Fp∗k(H) := {
(V ,W) ∈ Fp(H) | V,W ∈ Gr∞,∞(H), ind (V ,W) = k

}
, k ∈ Z.

The space of Fredholm pairs consisting of infinite dimensional spaces will be denoted
by

Fp∗(H) :=
⋃
k∈Z

Fp∗k(H).
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It can be proved that Fp∗k(H) has the homotopy type of BO(∞), the classifying
space of the infinite real orthogonal group O(∞) = limn→∞ O(n). So Fp∗(H) is
homotopically equivalent toZ × BO(∞), and by the Bott periodicity theorem we get

�i (Fp
∗(H)) =


Z for i ≡ 0,4 mod 8,
Z2 for i ≡ 1,2 mod 8,
0 for i ≡ 3,5,6,7 mod 8.

(A.1)

We conclude this section with a result about the existence of hyperbolic rotations,
which will be useful in Appendix B.

Proposition A.1. Let V,W ∈ Gr∞,∞(H) be such thatdist(V ,W) < 1. Then there
existsA ∈ L(H) self-adjoint, invertible, with �ess(A) ∩ R− $= ∅, �ess(A) ∩ R+ $= ∅,
such thateAV = W .

Proof. Since dist(V ,W) < 1, W = graphL, with L = PV⊥(PV |W)−1 ∈ L(V , V ⊥).
Consider the self-adjoint bounded operator

S =
(

� 
L∗

L 1/�

)
, 0< � < 1, 
 ∈ R,

in the splittingH = V ⊕ V ⊥. Then

(S − �)(S − 1/�) = 
2
(
L∗L 0
0 LL∗

)
.

We fix a � < 1/‖L‖, so the positive self-adjoint operator on the right-hand side has its
spectrum in[0,1[, for every
 ∈ [0, �]. The spectral mapping theorem implies that

{(s − �)(s − 1/�) | s ∈ �(S)} ⊂ [0,1[,

so we have

�(S) ⊂]0, �] ∪ [1/�,1/�+ �[ ⊂ ]0,1[ ∪ ]1,+∞[

for any 
 ∈ [0, �]. For 
 = 0, �ess(S) = {�,1/�}, so by the semi-continuity of the
essential spectrum

�ess(S)∩]0,1[$= ∅, �ess(S)∩]1,+∞[$= ∅,

for any 
 ∈ [0, �]. In particular for 
 = �, A = logS is a well-defined operator
satisfying the requirements.�
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A.2. The determinant and the orientation of Fredholm pairs

Let n ∈ N. The Grassmannian ofn-dimensional linear subspaces Grn,∞(H) is the
base space of a non-trivial real line bundle, the determinant bundle

Det(Grn,∞(H)) → Grn,∞(H),

whose fiber atX ∈ Grn,∞(H) is the line Det(X) := �dimX(X), the component of the
exterior algebra ofX consisting of tensors of top degree. Such a line bundle has a
natural analytic structure. ItsZ2 reduction is the non-trivial double covering

Or(Grn,∞(H)) → Grn,∞(H),

called the orientation bundle, whose fiber atX is the set Or(X) consisting of the two
elements of Det(X) \ {0}/R+. If oX is an element of Or(X), the other element will be
denoted by−oX. If n,m ∈ N, the space

S(n,m) = {
(X, Y ) ∈ Grn,∞(H)×Grm,∞(H) | X ∩ Y = (0)

}
is the base space of the line bundle

Det(S(n,m)) → S(n,m),

whose fiber at(X, Y ) is the line Det(X)⊗Det(Y ), and the exterior product of tensors
of top degree defines an analytic morphism

∧ : Det(S(n,m)) → Det(Grn+m,∞(H)), �X ⊗ �Y �→ �X ∧ �Y

which lifts the analytic map(X, Y ) → X + Y . This operation is associative. The
morphism of line bundles∧ induces a morphism of coverings, denoted by the same
symbol, between the orientation bundles:

∧ : Or(S(n,m)) → Or(Grn+m,∞(H)),

where the first space is the total space of the covering overS(n,m) whose fiber at
(X, Y ) is Or(X)×Or(Y ). The product of orientations satisfies the identity

oX ∧ oY = (−oX) ∧ (−oY ) = −(−oX) ∧ oY = −oX ∧ (−oY )

and it is associative.
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These constructions have a natural extension to the space of Fredholm pairs. The
determinant bundle overFp(H) is the line bundle

Det(Fp(H)) → Fp(H),

whose fiber at(V ,W) is the line

Det(V ,W) := Det(V ∩W)⊗ Det

((
H

V +W

))∗
.

Although the intersectionV ∩W and the sumV +W do not depend even continuously
on (V ,W), it can be shown that the above bundle has an analytic structure. This line
bundle is also non-trivial, and itsZ2 reduction is the non-trivial double covering

Or(Fp(H)) → Fp(H),

called theorientation bundle overFp(H), whose fiber at(V ,W) is the set Or(V ,W)

consisting of the two elements of Det(V ,W) \ {0}/R+. If o(V,W) is an element of
Or(V ,W), the other element will be denoted by−o(V,W). Note that the fundamental
group of each component of Fp∗(H) is Z2, so the restriction of the orientation bundle
to Fp∗(H) is the universal covering of Fp∗(H).
If n ∈ N, the space

S(n,Fp) = {
(X, (V,W)) ∈ Grn,∞(H)× Fp(H) | X ∩ V = (0)

}
is the base space of the line bundle

Det(S(n,Fp)) → S(n,Fp),

whose fiber at(X, (V,W)) is the line Det(X) ⊗ Det(V ,W), and there is an analytic
morphism

∧ : Det(S(n,Fp)) → Det(Fp(H)), �X ⊗ �(V ,W) �→ �X

∧
�(V ,W)

which lifts the analytic map(X, (V,W)) → (X + V,W). Also this operation is asso-
ciative, meaning that

�X

∧
(�Y

∧
�(V ,W)) = (�X ∧ �Y )

∧
�(V ,W)

for any �X ∈ Det(X), �Y ∈ Det(Y ), �(V ,W) ∈ Det(V ,W), where X, Y are finite
dimensional subspaces ofH, and (V ,W) is a Fredholm pair such thatX ∩ Y = (0),
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(X+ Y )∩ V = 0. The morphism of line bundles
∧

induces a morphism of coverings,
denoted by the same symbol, between the orientation bundles:

∧ : Or(S(n,Fp)) → Or(Fp(H)),

where the first space is the total space of the covering overS(n,Fp) whose fiber at
(X, (V,W)) is Or(X)×Or(V ,W). This map satisfies the identity

oX
∧
o(V,W) = (−oX)

∧
(−o(V,W)) = −(−oX)

∧
o(V,W) = −oX

∧
(−o(V,W))

and it is associative, meaning that

oX
∧
(oY

∧
o(V,W)) = (oX ∧ oY )

∧
o(V,W)

for anyoX ∈ Or(X), oY ∈ Or(Y ), o(V,W) ∈ Or(V ,W), whereX, Y are finite dimensional
subspaces ofH, and(V ,W) is a Fredholm pair such thatX∩Y = (0), (X+Y )∩V = 0.

A.3. The Grassmannian of compact perturbations

We shall say that the closed linear subspaceW is a compact perturbationof V if its
orthogonal projectorPW is a compact perturbation ofPV . The subspaceW is a compact
perturbation ofW if and only if the operatorsPV⊥PW and PW⊥PV are compact. The
notion of compact perturbation produces an equivalence relation, and theGrassmannian
of compact perturbations of V,

Gr(V ,H) := {W ∈ Gr(H) | W is a compact perturbation ofV }

is a closed subspace of Gr(H). If V has finite dimension (respectively, finite codimen-
sion), then

Gr(V ,H) =
⋃
n∈N

Grn,∞(H)

(
resp.=

⋃
n∈N

Gr∞,n(H)

)
.

In the more interesting case,V has both infinite dimension and infinite codimension.
In such a situation, Gr(V ,H) is a closed proper subset of Gr∞,∞(H). It is an analytic
Banach manifold, although just aC0 Banach submanifold of Gr(H). This space is also
called restricted Grassmannianby some authors (see[SW85,PS86,CJS95]).
If W is a compact perturbation ofW, then (V ,W⊥) is a Fredholm pair, and the

relative dimension of V with respect to Wis the integer

dim(V ,W) := ind (V ,W⊥) = dimV ∩W⊥ − dimV ⊥ ∩W.
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WhenV andW are finite dimensional (resp. finite codimensional), we have dim(V ,W) =
dimV − dimW (resp. dim(V ,W) = codimW − codimV ).

Proposition A.2 ([AM03a, Proposition 5.1]). If (V , Z) is a Fredholm pair and W is a
compact perturbation of V, then (W,Z) is a Fredholm pair, with

ind (W,Z) = ind (V , Z)+ dim(W, V ).

In particular, if V,W, Y are compact perturbations of the same subspace,

dim(Y, V ) = dim(Y,W)+ dim(W, V ). (A.2)

Nor the notion of compact perturbation, neither the relative dimension depend on the
choice of an equivalent inner product inH.

Proposition A.3 ([AM01, Proposition 2.3]). LetH1, H2 be Hilbert spaces and letT , S ∈
L(H1, H2) be operators with closed range and compact difference. ThenkerT is a
compact perturbation ofkerS, ranT is a compact perturbation ofranS, and

dim(ranT , ranS) = −dim(kerT , kerS).

Proposition A.4. Let T ∈ GL(H), V ∈ Gr(H), and let P be a projector onto V. Then
TV is a compact perturbation of V if and only if the operator(I − P)T P is compact.

Proof. By choosing a suitable inner product onH, we may assume thatP = PV

is an orthogonal projector. The operatorL := T P + T ∗−1(I − P) is invertible, and
PTV = T PL−1. Therefore,TV is a compact perturbation ofV if and only if the operator

(PT V − PV )L = (I − P)T P − PT ∗−1
(I − P) =: S

is compact.
Now, if S is compact, so is(I − P)T P = SP . On the other hand, since the set

{X ∈ GL(H) | (I − P)XP ∈ Lc(H)}

is a subgroup of GL(H), if (I − P)T P is compact so is(I − P)T −1P . Therefore,

S = (I − P)T P −
(
(I − P)T −1P

)∗
is compact. �
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Let V ∈ Gr∞,∞(H). The connected components of Gr(V ,H) are the subsets

Grn(V ,H) := {W ∈ Gr(V ,H) | dim(W, V ) = n} , n ∈ Z.

These components are pairwise diffeomorphic. Each of these components has the ho-
motopy type of BO(∞), so the homotopy groups of Gr(V ,H) are those listed in
(A.1).
We conclude this section with a result about the kernel of semi-Fredholm operators.

Proposition A.5. LetA,B ∈ L(H1, H2) be continuous linear operators between Hilbert
spaces, with finite-codimensional range. Assume that the restrictionsA|kerB andB|kerA
are compact. ThenkerA is a compact perturbation ofkerB, the operatorAB∗ ∈ L(H2)

is Fredholm, and

ind (AB∗) = dim cokerB − dim cokerA+ dim(kerA, kerB). (A.3)

Proof. SinceA has closed range, there existsS ∈ L(H2, H1) such thatSA = P(kerA)⊥ .
Then P(kerA)⊥PkerB = SAPkerB is compact, and symmetrically so isP(kerB)⊥PkerA.
Therefore, kerA is a compact perturbation of kerB. Moreover,AP(kerB)⊥ = A−APkerB
is a compact perturbation ofA, so it has closed range ran(AP(kerB)⊥) = ran(AB∗).
Since (AB∗)∗ = BA∗, the exactness of the sequences

0→ kerB∗ ↪→ ker(AB∗) B∗−→ kerA ∩ (kerB)⊥ → 0,

0→ kerA∗ ↪→ ker(BA∗) A∗−→ kerB ∩ (kerA)⊥ → 0,

implies thatAB∗ is Fredholm and that (A.3) holds. �

A.4. Essential Grassmannians

If m ∈ N, we define the(m)-essential GrassmannianGr(m)(H) to be the quotient
space of Gr(H) by the equivalence relation

{(V ,W) ∈ Gr(H)×Gr(H) | V is a compact perturbation ofW

and dim(V ,W) ∈ mZ} .

The (1)-essential Grassmannian is simply calledessential Grassmannian. If E ∈ Gr(m)

(H) andV ∈ Gr(H) is commensurable to the subspaces belonging to the equivalence
classE,

dim(V ,E) := dim(V ,W), W ∈ E,

defines an element ofZ/mZ.
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The essential Grassmannian Gr(1)(H) is homeomorphic to the space of symmetric
idempotent elements of the Calkin algebraL(H)/Lc(H), hence it inherits the structure
of a complete metric space, and of an analytic submanifold of the Calkin algebra.
Every set Grn,∞(H) or Gr∞,n(H), n ∈ N, represents an isolated point in Gr(0)(H),

which has thus countably many isolated points. Ifm�1, the sets

⋃
n∈mZ+k

Grn,∞(H) and
⋃

n∈mZ+k

Gr∞,n(H), k = 0,1, . . . , m− 1,

represent 2m isolated points in Gr(m)(H). The remaining part of Gr(m)(H) is connected,
being the quotient space of Gr∞,∞(H), and it is denoted by Gr∗(m)(H).
The space Gr∗(0)(H) is simply connected, while the fundamental group of Gr∗

(m)(H)

for m�1 is infinite cyclic. If m�1 dividesk ∈ N, the natural projection

Gr∗(k)(H) → Gr∗(m)(H)

is a covering map. It is the universal covering of Gr∗
(m)(H) if k = 0, it induces the

homomorphismq �→ (k/m)q between fundamental groups ifk $= 0. For m = 1 we
obtain a covering map with a basis having the structure of an analytic Banach manifold
and of a complete metric space, hence the same structures can be lifted to Gr(k)(H),
for any k $= 1.
Finally, the natural projection

Gr∞,∞(H) → Gr∗(m)(H) (A.4)

is a C0 fiber bundle.6 Its total space is contractible, and its typical fiber is

⋃
[n]∈Z/mZ

Grn(V ,H), whereV ∈ Gr∞,∞(H),

a disjoint union all of whose components have the homotopy type of BO(∞). Therefore,
the exact homotopy sequence of a fibration yields to the isomorphisms

�i (Gr∗(m)(H))��i−1(Gr(V ,H)) =


Z for i ≡ 1,5 mod 8,
Z2 for i ≡ 2,3 mod 8,
0 for i ≡ 0,4,6,7 mod 8

for i�2.

6Although map (A.4) is analytic, it has no differentiable trivializations.
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Appendix B. Linear ordinary differential operators in Hilbert spaces

This appendix summarizes some results about linear ordinary differential operators in
Hilbert spaces. See[AM03b] for a detailed exposition (see also[RS95,LT03]for related
results in the framework of unbounded operators, and for an extensive bibliography).
Let H be a real Hilbert space. A bounded linear operatorL ∈ L(H) is saidhyperbolic

if its spectrum does not meet the imaginary axis. In such a case, letH = V +(L) ⊕
V −(L) be theL-invariant splitting ofL into closed subspaces, corresponding to the
decomposition of the spectrum ofL into positive and negative real part.

Proposition B.1 ([AM01, Proposition 2.2]). Let L,L′ ∈ L(H) be hyperbolic opera-
tors. If L′ is a compact perturbation of L, then V +(L′) is a compact perturbation of
V +(L), and V −(L′) is a compact perturbation ofV −(L).

Let A : [0,+∞] → L(H) (resp.A : [−∞,0] → L(H)) be a piecewise continu-
ous path such thatA(+∞) (resp.A(−∞)) is hyperbolic. We shall denote byXA :
[0,+∞[→ GL(H) (resp.XA :] −∞,0] → GL(H)) the solution of the linear Cauchy
problemX′

A(t) = A(t)XA(t), XA(0) = I . The linear stable spaceof A (resp. thelinear
unstable spaceof A) is the linear subspace ofH

Ws
A =

{

 ∈ H | lim

t→+∞ XA(t)
 = 0

}
(
resp. Wu

A =
{

 ∈ H | lim

t→−∞ XA(t)
 = 0

})
.

The main properties of the linear stable space are listed in the following:

Theorem B.2 ([AM03b, Proposition 1.2 and Theorems 2.1, 3.1])Let A : [0,+∞] →
L(H) be a piecewise continuous path such thatA(+∞) is hyperbolic. ThenWs

A is a
closed subspace of H, which depends continuously on A in theL∞([0,+∞[,L(H))

topology. The following convergence results fort →+∞ hold:

(i) Ws
A is the only closed subspace W such thatXA(t)W converges toV −(A(+∞));

(ii) ‖XA(t)|Ws
A
‖ converges to0 exponentially fast.

The above limits are locally uniform in A, with respect to theL∞ topology. Moreover,
if V ∈ Gr(H) is a linear supplement ofWs

A,

(iii) XA(t)V converges toV +(A(+∞));
(iv) inf


∈V
|
|=1

|XA(t)
| diverges exponentially fast.

The above limits are locally uniform inV ∈ Gr(H), and in A, with respect to theL∞
topology. Finally:

(v) Ws
−A∗ = (Ws

A)
⊥.
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The analogous statements for the linear unstable space can be deduced from the
above theorem, taking into account the identityXA(t) = XB(−t) for B(t) = −A(−t).
The following proposition characterizes those pathsA for which the evolution of the
linear stable space remains in a fixed essential class:

Proposition B.3 ([AM03b, Proposition 3.8]). Let A : [0,+∞] → L(H) be a piece-
wise continuous path such thatA(+∞) is hyperbolic. Let V be a closed subspace of
H, and let P be a projector onto V. Then the following statements are equivalent:

(i) XA(t)W
s
A is a compact perturbation of V for anyt�0;

(ii) V −(A(+∞)) is a compact perturbation of V and[A(t), P ]P is compact for any
t�0.

The proof of the above proposition is based on the following fact: ifV is a closed
linear subspace ofH, then the orthogonal projectorP(t) ontoXA(t)V solves the Riccati
equation

P ′(t) = (I − P(t))A(t)P (t)+ P(t)A(t)∗(I − P(t)), (B.1)

as shown in[AM03b, formula (35)].
Now let A : [−∞,+∞] → L(H) be a continuous path such thatA(−∞) and

A(+∞) are hyperbolic. IfC0
0(R, H) (resp.C1

0(R, H)) denotes the Banach space of
continuous curvesu : R → H such thatu(t) is infinitesimal (resp.u(t) and u′(t) are
infinitesimal) for t →±∞, we can consider the bounded linear operator

FA : C1
0(R, H) → C0

0(R, H), (FAu)(t) = u′(t)− A(t)u(t).

Its main properties are listed in the following:

Theorem B.4 ([AM03b, Theorem 5.1 and Remark 5.1]). Let A : [−∞,+∞] → L(H)

be a continuous path such thatA(−∞) and A(+∞) are hyperbolic. Then:

(i) FA has closed range if and only if the linear subspaceWs
A +Wu

A is closed;
(ii) FA is surjective if and only ifWs

A +Wu
A = H ;

(iii) FA is injective if and only ifWs
A ∩Wu

A = (0);
(iv) FA is a Fredholm operator if and only if(Ws

A,W
u
A) is a Fredholm pair, and in

this caseindFA = ind (Ws
A,W

u
A).

It is easy to build examples of pathsA having two arbitrary closed linear subspaces as
linear stable space and linear unstable space, so the above theorem shows that in general
FA may not have closed range, and its kernel and cokernel may be infinite dimensional.
Even FA is Fredholm,A(t) is self-adjoint and invertible for anyt, and A(−∞) =
A(+∞), the operatorFA may still have any index. In the following proposition we
exhibit such an example with positive index. By Theorem B.2(v), we obtain an example
with negative index by considering the pathB(t) = −A(t).
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Proposition B.5. Let H be a separable infinite dimensional real Hilbert space. Let
H = H− ⊕ H+ be an orthogonal splitting, with H−, H+ ∈ Gr∞,∞(H). For any
k ∈ N there existsA ∈ C∞(R,GL(H) ∩ Sym(H)) such thatA(t) = PH+ − PH− for
t /∈ (0,1), and Ws

A +Wu
A = H , dimWs

A ∩Wu
A = k. In particular, FA is a surjective

Fredholm operator of index k.

Proof. Let W ⊂ H+ be a linear subspace of dimensionk. Since Gr∞,∞(H) is
connected, there exist closed subspacesV0 = H− ⊕ W,V1, . . . , Vm−1, Vm = H− in
Gr∞,∞(H) with dist(Vj−1, Vj ) < 1 for any j ∈ {1, . . . , m} (in fact it is possible to
takem = 4). Denote byS the open subset of Sym(H) consisting of the invertible op-
eratorsA with �ess(A)∩R± $= ∅. By PropositionA.1 we can find operatorsA1, . . . , Am

in S such thateAj /mVj−1 = Vj . Define the piecewise constant pathB : R → S as

B(t) =
{
PH+ − PH− for t < 0 or t�1,
Aj for j−1

m
� t <

j
m
, j ∈ {1, . . . , m}.

SinceXB(t) = etAj /meAj−1/m . . . eA1/m for (j − 1)/m� t�j/m, there holds

XB(1)(H
− ⊕W) = eAm/m . . . eA1/mV0 = Vm = H−.

SinceS is connected, there is a sequence(Bn) ⊂ C∞(R,S) with Bn(t) = PH+ −PH−
for t /∈ (0,1), (Bn) bounded inL∞(R,L(H)), andBn → B in L1(R,L(H)). By the
identity

XA(t) = XB(t)+
∫ t

0
XB(t)XB(	)

−1(A− B)(	)XA(	) d	,

the sequence(XBn(1)) converges toXB(1), hence

Ws
Bn

= XBn(1)
−1Ws

Bn(·+1) = XBn(1)
−1Ws

PH+−PH−

= XBn(1)
−1H− → XB(1)

−1H− = H− ⊕W.

Moreover,Wu
Bn

= Wu
PH+−PH− = H+, so for n large enoughA = Bn satisfiesWu

A +
Ws

A = H and dimWs
A ∩Wu

A = k. �

Appendix C. Hyperbolic rest points

This appendix summarizes some well known results about hyperbolic dynamics. See
[Shu87].
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C.1. Local statements

Let F be a vector field of classC1 defined on a neighborhoodU of 0 in the real
Hilbert spaceH. We denote by�(F ) the maximal subset ofR × U where the local
flow of F, i.e. the solution of

�t�(t, p) = F(�(t, p)), �(0, p) = p

is defined. We assume that 0 is a hyperbolic rest point forF, meaning thatF(0) = 0
andL := DF(0) is a hyperbolic operator, that is�(L)∩ iR = ∅. Let Hu ⊕Hs be the
splitting ofH corresponding to the partition of the spectrum ofL into the closed subsets
�(L)∩ {z ∈ C | Rez > 0} and�(L)∩ {z ∈ C | Rez < 0}. By Pu andP s = I − Pu we
shall denote the projections ontoHu andHs , and we shall often identifyH = Hu⊕Hs

with Hu ×Hs .
There exists an equivalent inner product〈·, ·〉 on H with associated norm‖ · ‖ which

is adaptedto L, meaning thatHu andHs are orthogonal, and

〈L
, 
〉��‖
‖2 ∀
 ∈ Hu, 〈L
, 
〉� − �‖
‖2 ∀
 ∈ Hs (C.1)

for some � > 0. Indeed, we may choose any positive� which is strictly less than
min |Re�(L)|, as shown by the following lemma, applied toL|Hs and to−L|Hu .

Lemma C.1. Let L be a bounded linear operator on H and let� be a real number
such that� > max Re�(L). Then there exists an equivalent inner product〈·, ·〉 on H
such that

〈L
, 
〉��〈
, 
〉 ∀
 ∈ H.

Proof. Up to replacingL by L − �I , we may assume that� = 0. Let 〈·, ·〉∗ be any
Hilbert product onH, and denote by‖ · ‖∗ both the associated norm onH and the
induced norm onL(H). By the spectral radius formula and by the spectral mapping
theorem,

lim
n→∞ ‖enL‖1/n∗ = max|�(eL)| = max|e�(L)| < 1.

Let k ∈ N be so large that‖ekL‖∗�1, and set

〈
, 
〉 :=
∫ k

0
〈etL
, etL
〉∗ dt ∀
, 
 ∈ H.
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Then 〈·, ·〉 is an equivalent inner product onH, and for any
 ∈ H

〈L
, 
〉 =
∫ k

0
〈etLL
, etL
〉∗ dt = 1

2

∫ k

0

d

dt
‖etL
‖2∗ dt

= 1

2

(
‖ekL
‖2∗ − ‖
‖2∗

)
� 1

2

(
‖ekL‖2∗ − 1

)
‖
‖2∗�0,

concluding the proof. �
If V is a closed linear subspace ofH and r > 0, V (r) will denote the closed ball of

V centered in 0 with radiusr. Moreover, we set

Q(r) := {

 ∈ H | ‖Pu
‖�r, ‖P s
‖�r

}
.

If A ⊂ X ⊂ H , the setA is saidpositively(negatively) invariant with respect to Xif for
every
 ∈ A and for everyt > 0, �([0, t]× {
}) ⊂ X implies�([0, t]× {
}) ⊂ A (resp.
for every 
 ∈ A and for everyt < 0, �([t,0] × {
}) ⊂ X implies �([t,0] × {
}) ⊂ A).

Lemma C.2. For any r > 0 small enough, the set

{

 ∈ Q(r) | ‖P s
‖�‖Pu
‖} (resp.

{

 ∈ Q(r) | ‖Pu
‖�‖P s
‖})

is positively (resp. negatively) invariant with respect toQ(r). Moreover, if 
 belongs
to the set

{

 ∈ Q(r) | ‖Pu
‖ = r

}
(resp.

{

 ∈ Q(r) | ‖P s
‖ = r

}
),

then�(t, 
) /∈ Q(r) (resp. �(−t, 
) /∈ Q(r)) for every t > 0 small enough.

Proof. By a first-order expansion ofF at 0 and by (C.1),

d

dt

∥∥Pu�(t, 
)
∥∥2∣∣∣∣

t=0
�2�‖Pu
‖2+ o(‖Pu
‖2) if ‖P s
‖�‖Pu
‖,

d

dt

∥∥P s�(t, 
)
∥∥2∣∣∣∣

t=0
� − 2�‖P s
‖2+ o(‖P s
‖2) if ‖Pu
‖�‖P s
‖.

All the statements follow from the above inequalities.�
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Given r > 0, the local unstable manifoldand thelocal stable manifoldof 0 are the
sets

Wu
loc,r (0) = {
 ∈ Q(r) | ] −∞,0] × {
} ⊂ �(F ) and�(] −∞,0] × {
}) ⊂ Q(r)} ,

Ws
loc,r (0) = {
 ∈ Q(r) | [0,+∞[×{
} ⊂ �(F ) and�([0,+∞[×{
}) ⊂ Q(r)} .

Then the local stable manifold theorem (see[Shu87, Chapter 5]) states that:

Theorem C.3. For any r > 0 small enough, Wu
loc,r (0) (respectively, Ws

loc,r (0)) is the

graph of aC1 map �u : Hu(r) → Hs(r) such that�u(0) = 0 and D�u(0) = 0 (resp.
of a C1 map �s : Hs(r) → Hu(r) such that�s(0) = 0 and D�s(0) = 0). Moreover,
for any 
 ∈ Wu

loc,r (0) (resp. for any
 ∈ Ws
loc,r (0)), there holds

lim
t→−∞ �(t, 
) = 0 (resp. lim

t→+∞ �(t, 
) = 0).

We recall that a non-degenerate local Lyapunov function for the vector fieldF at
the rest point 0 is aC1 real function defined on a neighborhood of 0 inH, such
that Df (
)[F(
)] < 0 for 
 $= 0, and which is twice differentiable at 0, with the
quadratic formD2f (0) coercive onHu, and the quadratic form−D2f (0) coercive
on Hs (necessarily,Df (0) = 0). A first order expansion ofF at 0 shows that the
restriction of the function

f (
) = −1
2〈L
, 
〉,

to a suitably small neighborhood of 0 is a non-degenerate local Lyapunov function for
F at 0.

Lemma C.4. For any r > 0 small enough, for every sequence(
n) ⊂ H converging
to 0 and for every sequence(tn) ⊂ [0,+∞[ such that�([0, tn] × {
n}) ⊂ Q(r) and
�(tn, 
n) ∈ �Q(r), there holds

dist
(
�(tn, 
n),W

u
loc,r (0) ∩ �Q(r)

) → 0.

Furthermore, if f is a non-degenerate local Lyapunov function for F at0, there holds

lim sup
n→∞

f (�(tn, 
n)) < f (0).

Finally, there existsr ′ < r such that

sup
{
f (
) | 
 ∈ �Q(r) and ∃t < 0 such that

�(−t, 
) ∈ Q(r ′)�([−t,0] × {
}) ⊂ Q(r)
}
< inf

{
f (
) | 
 ∈ Q(r ′)

}
.
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Proof. If the vector field is linear,F(
) = L
, the first conclusion is immediate:
actually for any(
n) ⊂ H converging to 0 and any(tn) ⊂ [0,+∞[, there holds

lim
n→∞ dist

(
etnL
n,H

u
)
= 0. (C.2)

By the Grobman–Hartman theorem, ifr1 > 0 is small enough the local flow� restricted
to Q(r1) is conjugated to its linearization(t, 
) �→ etL
, by a bi-uniformly continuous
homeomorphism.7 By TheoremC.3, we may also assume thatr1 is so small that
Wu

loc,r1
(0) is the graph of a uniformly continuous map�u : Hu(r1) → Hs(r1).

Let r < r1 and set
n := �(tn, 
n) ∈ �Q(r), with 
n → 0 and tn�0. By the linear
case (C.2) and by the uniform continuity of the conjugacy, there exists(
′n) ⊂ Wu

loc,r1
(0)

such that‖
n−
′n‖ is infinitesimal. Setting
′′n = (P u
n, �
u(P u
n)) ∈ Wu

loc,r (0)∩�Q(r),
by the uniform continuity of�u we have

dist
(

n,W

u
loc,r (0) ∩ �Q(r)

)
�‖
n − 
′′n‖�‖
n − 
′n‖ + ‖Pu
′n − Pu
′′n‖ + ‖P s
′n − P s
′′n‖
= ‖
n − 
′n‖ + ‖Pu
′n − Pu
n‖ + ‖�u(P u
′n)− �u(P u
n)‖ → 0,

proving the first claim. Since the local unstable manifold is tangent toHu at 0, since
Df (0) = 0 and−D2f (0) is coercive onHu, by o(r) considerations we have

sup
{
f (
) | 
 ∈ Wu

loc,r (0) ∩ �Q(r)
}
< f (0),

if r > 0 is small enough. Sincef is uniformly continuous onQ(r) for r small enough,
the second claim follows from the first one. The last claim is an immediate consequence
of the second one, arguing by contradiction.�
Given two metric spacesX andY and a positive number�, Lip�(X, Y ) will denote

the space of�-Lipschitz maps fromX to Y, endowed with theC0 topology. The
following version of the graph transform theorem is proved in[AM01, Proposition A.3
and Addendum A.5](see also[Shu87, Chapter 5]).

Proposition C.5. For any r > 0 small enough there is a continuous(nonlinear) semi-
group

� : [0,+∞] × Lip1(H
u(r),H s(r)) → Lip1(H

u(r),H s(r))

such that for every� ∈ Lip1(H
u(r),H s(r)) there holds:

(i) �(0, �) = �, and �(t + s, �) = �(t,�(s, �)), for every t, s ∈ [0,+∞];
7We recall that this conjugacy is found as a fixed point of a contractionT on a suitable space of

continuous maps (see[Shu87, Chapter 7]). Since for � ∈]0,1[ small enough, the space of�-Hölder
continuous maps isT-invariant, such a conjugacy turns out to be Hölder continuous together with its
inverse. In general, it needs not be even Lipschitz continuous.
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(ii) for every t ∈ [0,+∞[, the restriction of�t to Q(r) maps the graph of� onto the
graph of�(t, �), that is

graph�(t, �) = {�(t, 
) | 
 ∈ graph� and �([0, t] × {
}) ⊂ Q(r)} ;

(iii) graph�(+∞, �) = Wu
loc,r (0);

(iv) for any � > 0 there existsr0 ∈]0, r] and t0�0 such that the restriction of
�(t, �) to Hu(r0) is in Lip�(H

u(r0),H
s(r0)), for any t ∈ [t0,+∞] and any

� ∈ Lip1(H
u(r),H s(r)).

Furthermore:

(v) if V ⊂ Hu(r) is open and� ∈ Lip1(V ,H
s(r)) is such thatgraph�∩Ws

loc,r (0) $= ∅,
then there existst�0 and �′ ∈ Lip1(H

u(r),H s(r)) such that the restriction of�t

to Q(r) maps the graph of� onto the graph of�′, that is

graph�′ = {�(t, 
) | 
 ∈ graph� and �([0, t] × {
}) ⊂ Q(r)} .

C.2. Global statements

Now let F be aC1 vector field on the real Hilbert manifoldM, and let� : �(F ) →
M, �(F ) ⊂ R ×M, denote its local flow. Letx be a hyperbolic rest point ofF. We
can identify a neighborhood ofx in M with a neighborhood of 0 in the Hilbert space
H, identifying x with 0. We denote byH = Hu ⊕Hs the splitting ofH associated to
the hyperbolic operator∇F(x) = DF(0), and we endowH with an equivalent inner
product adapted to∇F(x), as in the previous section. Forr > 0 small enough, we set

Q(r) = Hu(r)×Hs(r), Q+(r) = �Hu(r)×Hs(r), Q−(r) = Hu(r)× �Hs(r).

LemmaC.2 and the last statement of LemmaC.4 have the following consequence.

Proposition C.6. For any r > 0 small enough there holds:

(i) if p ∈ Q(r) and �(t, p) /∈ Q(r) for somet > 0, then there existss ∈ [0, t[ such
that �(s, p) ∈ Q+(r);

(ii) if p ∈ Q(r) and �(t, p) /∈ Q(r) for somet < 0, then there existss ∈]t,0] such
that �(s, p) ∈ Q−(r).

Moreover, if F admits a globalC1 Lyapunov function which is twice differentiable and
non-degenerate at x:

(iii) if p ∈ Q+(r), then�(t, p) /∈ Q(r) for any t > 0;
(iv) if p ∈ Q−(r), then�(t, p) /∈ Q() for any t < 0.
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The unstable and stable manifolds ofx are the�-invariant subsets ofM

Wu(x) =
{
p ∈ M | ] −∞,0] × {p} ⊂ �(F ) and lim

t→−∞ �(t, p) = x

}
,

Ws(x) =
{
p ∈ M | [0,+∞[×{p} ⊂ �(F ) and lim

t→+∞ �(t, p) = x

}
.

The local stable manifold theorem (TheoremC.3) and PropositionC.6 imply:

Theorem C.7. The setsWu(x) andWs(x) are images ofC1 injective immersions

eu : Hu → M, es : Hs → M,

such thateu(0) = es(0) = x, and Deu(0) and Des(0) are the identity mappings. If
moreover F admits a globalC1 Lyapunov function which is twice differentiable and
non-degenerate at x, then for anyr > 0 small enough

Wu(x) ∩Q(r) = Wu
loc,r (0), Ws(x) ∩Q(r) = Ws

loc,r (0)

and the mapseu, es are embeddings, so thatWu(x) andWs(x) are C1 submanifolds
of M.
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