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Abstract

In this paper and in the forthcoming Part Il, we introduce a Morse complex for a class
of functionsf defined on an infinite dimensional Hilbert manifoM, possibly having critical
points of infinite Morse index and co-index. The idea is to consider an infinite dimensional
subbundle—or more generally an essential subbundle—of the tangent bundle sditably
related with the gradient flow of. This Part | deals with the following questions about
the intersectionW of the unstable manifold of a critical point and the stable manifold of
another critical pointy: finite dimensionality ofW, possibility that different components &Y
have different dimension, orientability oV and coherence in the choice of an orientation,
compactness of the closure ¥, classification, up to topological conjugacy, of the gradient
flow on the closure o, in the case dinWV =2.
© 2004 Elsevier Inc. All rights reserved.
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0. Introduction

Morse theory[Mor25] relates the topology of a compact differentiable manifibld
to the combinatorics of the critical points of a smooth Morse functionM — R: if
ﬂq(M) = rankH, (M) denotes thejgth Betti number ofM, andc,(f) is the number of
critical pointsx of f with Morse indexm(x) = ¢, then the identity

dim M dimm
Do (it = Y B+ (L4000 (0.1)
q=0 q=0

holds, withQ a polynomial with positive integer coefficients. Denoting 6y(f) the
free Abelian group generated by the critical pointd of indexq, ¢ =0, 1,...,dimM,

it is readily seen that0(1) is implied! by the existence of homomorphismg: C,(f)

— Cy—1(f) making {C«(f), 0} a chain complex, whose homology groups are iso-
morphic to the singulaZ-homology groups oM:

kerd,

Hy({Ci(f), 0D = : =H,(M). (0.2)

a 6q—&-l

A chain complex with the above properties is indeed provided by a suitable cellular
filtration of M. More precisely, if we fix a Riemannian structure bhsuch that the
corresponding gradient flow df i.e. the integral flowp: R x M — M of the vector

field —gradf, is Morse—Smalé, then the open subsets

M9 = U ([0, +00[xUy), ¢=0,1,...,dmM

xecrit(f)
m(x)<q

for U, a suitable small neighborhood af constitute a cellular filtration oM, such
that

Hy(M9, M7~ = Cy(f).
So we get the boundary homomorphism
0y :Cy(f)=Hy(M9, M4~ — Hy (M9, MT%)=Cya(f) (0.3)

and the classical isomorphism between the homology of the cellular chain complex
(0.3) and the singular homology d#l (see[Dol80, Section V.1] implies ©.2).

1The two facts would actually be equivalent if we were using coefficients in a field, instead of the
ring Z.

2Here one needs just that the unstable manifél¥ (x) and the stable manifoldV*(y) have empty
intersection, for every pair of distinct critical points y with m(x) <m(y).
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The boundary homomorphisi@), constructed above has also the following combina-
torial description, in terms of the intersections between the unstable maniigids)
and the stable manifold#*(y) of pairs of critical points® Since dimW(x) = m(x)
and dimW*(y) = dim M — m(y), the intersectionW*(x) N W*(y) is a submanifold of
dimensionm (x)—m(y). An arbitrary choice of an orientation for each unstable manifold
W!"(x) determines a co-orientation (i.e. an orientation of the normal bundle) for each
stable manifoldW* (x), and thus an orientation for each intersecfioW*(x) N W*(y).
Whenm(x) = q andm(y) =g — 1, W*(x) N W¥(y) consists of finitely many gradient
flow lines, each of which can be counted #4 or as—1, depending on whether its
orientation agrees with the direction of the gradient flow or not. The algebraic sum
of these numbers gives an integefx, y), and d, can be expressed in terms of the
generators ofC,(f) and C,_1(f) as

Ogx = Z n(x,y)y forx ecrit(f), mx)=gq. (0.4)

yecrit(f)
m(y)=¢qg—1

The Morse compleXC.(f), 0.} depends on the choice of the Riemannian structure on
M (a different Riemannian structure would produce a different gradient flow) and on
the choice of the orientations of the unstable manifolds, but the isomorphism class of
such a chain complex depends just on the funcfion

The approach described above was essentially clear to the pioneers of Morse theory,
such as ThonjTho49] and Milnor [Mil63,Mil65], and to people in dynamical systems,
such as Smal¢Sma60,Sma61,Sma6énd Franks[Fra79,Fra8Q] but it has received
increasing attention after the works of Wittdivit82] and Floer[Flo89]. See the
systematic study by Schwaf8ch93] and Weber's thesiBVeb93] The observation on
the invariance of the isomorphism class of the Morse complex is due to Cornea and
Ranicki [CR03], together with more striking rigidity results.

Already in the sixties, Morse theory had been generalized to infinite dimensional
Hilbert manifolds (manifolds modeled on a Hilbert space) by PdR&d63] and Smale
[Sma64a,Smab64bhnd had been successfully applied to many variational problems (see
the expository papers of BofBot82,Bot88] the books of KlingenberdKli78,Kli82],
of Mawhin and Willem[MW89], of Chang[Cha93] and references therein). Indeed,
the compactness dfl can be replaced by a compactness assumptior, dine well
known Palais—Smale condition ((PS) for short): any sequedipge C M such that
f(pn) is bounded and|Df (p,)| is infinitesimal must be compact. M is a Hilbert
manifold endowed with a complete Riemannian structure, #nd C%(M,R) is a
Morse function, bounded below and satisfying (PS), then the Morse relatioBssfill
hold, the difference being that nov@.Q) is an equality between formal power series,
with coefficients inN U {oo}.

3Here one needs that“(x) and W4 (y) meet transversally just whem(x) —m(y)<1.

4Indeed by transversality, a normal bundle Bf“(x) N WS(y) in W¥(x) is also the restriction of a
normal bundle ofW*(y) in M, so it is oriented, and together with the orientationVsf (x), it determines
an orientation of W*(x) N W¥(y). Notice that the manifoldM needs not be orientable.
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However, 0.1) takes into account only critical points with finite Morse index, the
ultimate reason being that the closed ball of an infinite dimensional Hilbert space
is retractable onto its boundary, so that critical points with infinite Morse index are
invisible to homotopy theory. It was Flo¢Flo88a,Flo88b,Flo88c,Flo89¥ho observed
that the Morse complex approach is suitable to deal with critical points of infinite Morse
index and co-index: even if the unstable and stable manifolds are infinite dimensional,
one may still hope the dimension of their intersection to be finite. In this case, one
could try to see @.4) not as a description, but rather as the definition of a chain
complex. In this way, Floer was able to develop the analogue of Morse theory in
a case where the gradient flow ODE is replaced by a Cauchy—Riemann type PDE,
which does not even determine a local flow (so that there are no stable and unstable
manifolds). The resulting theory, known as Floer homology, plays now a central role
in symplectic geometry (se¢lZ94,Sal99]and references therein).

In the present paper, and in the forthcoming Part I, we introduce and study the
Morse complex for gradient-like flows on infinite dimensional Hilbert manifolds. The
results we present are a far reaching generalization of a previous work on a special
class of functionals on Hilbert spac§sM01]. See alsqAvdV99] for a construction
of the Morse complex for the energy functional of an elliptic system, and Chapter 6
in Jost’s book[Jos02]for a general approach to the Morse complex. More precisely,
we give an answer to the following questions.

(i) When is W*(x) N W*(y) a finite dimensional manifold?

(i) How can we give coherent orientations to the manifoldig (x) N W9 (y)?
(iif) When is the closure oW (x) N W¥(y) compact?

(iv) Having definedd, by (0.4), how do we prove thaf,_1 o 6, = 0?

(v) Which form of transversality is generic?

(vi) How do we recover the classical infinite dimensional Morse theory?
(vii) How can we compute the homology of the Morse complex?

In the present paper, we address questions (i)—(iv), leaving questions (v)—(vii) to Part
[I. We wish to emphasize the fact that these questions are only formally analogue to
corresponding issues in Floer homology. Indeed, since in our case the gradient-like
vector field determines &% local flow, some of the problems above can be dealt by
dynamical systems techniques. On the other hand, finite dimensionality and compactness
results do not come from elliptic estimates, but involve different ideas. In particular, the
study of some infinite dimensional Grassmannians, of ordinary differential operators on
Hilbert spaces, and the use of Hausdorff measures of non-compactness turn out to be
important tools.

We conclude this introduction by giving an informal description of our results.

0.1. Finite dimensional intersections

Let f be aC? Morse function on a paracompact Hilbert manifdltl Let F be a
Cc! Morse vector field onM, having f as a non-degenerate Lyapunov function: this
means thatDf (p)[F(p)] < O for every p € M which is not a rest point oF, that the
Jacobian ofF at every rest poink—denoted byV F (x)—is a hyperbolic operator, and
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that the quadratic formD2f(x) is coercive onV~(VF(x)), the negative eigenspace
of VF(x), while —D?f(x) is coercive on the positive eigenspate (V F(x)). Under
these assumptions; is a rest point ofF if and only if it is a critical point off.
Typically, F = —gradf, the negative gradient df with respect to some Riemannian
metric onM, or F = —h gradf, for some positive functiorhn.

The unstable and stable manifolds of a critical poinare C! submanifolds of
dimension the Morse index and co-index xfWhen the critical pointx andy have
infinite index and co-index, respectively, the intersectiBf(x) N W*(y) can be infinite
dimensional: consider for example the restriction of a continuous linear foom a
Hilbert spaceH to the unit sphereS of H. Its critical points are a maximum poimxt
and a minimum point-x, and W*(x) N W*(—x) = S\ {x, —x}.

What is more striking, ik andy are critical points of with infinite Morse index and
co-index, the dimension of the intersection between their unstable and stable manifolds
(with respect to the negative gradient flow fpfdepends on the metric dvi: indeed, if
all the critical points of a Morse functiohhave infinite Morse index and co-index, and
a:crit(f) — Z is any function, therM supports a metrig—uniformly equivalent to
a given one—such that the corresponding negative gradient floivheb the property
that for every pair of critical points, y the intersectionW“(x) N W*(y) is transverse
and has dimension(x) — a(y) (see[AMO04b]).

Therefore, some extra structure on the manifbldis needed: we will assume the
existence of a subbundl® of TM, which can be used to make comparisons. More
precisely, the object of our study will be a quart@, F, f,V), wheref is a non-
degenerate Lyapunov function for the Morse vector fiEldand the subbundl® of
TM is compatible toF, meaning that:

(C1) for every rest poink, V*(VF(x)), the positive eigenspace of the Jacobian of
F at x, is a compact perturbation of(x) (this means that the corresponding
orthogonal projectors have compact difference);

(C2) denoting byP a projector ontoV, (LrP)(p)P(p) is a compact linear operator
on T,M, for every p € M (here LyP denotes the Lie derivative of the tensBr
along the vector field~).

Assumption (C1) allows us to define thelative Morse index of a rest point x with
respect toV to be the integer

m(x,V) = dmVT(VF(x)), V(x))
= dimVT(VF(x)NVx)T —dimVH(VE@)T NV (&x).

Notice thatm(x, V) can be negative. A subbundl = P(T M) is invariant for the
differential of the integral flow of a vector fielK if and only if (LxP)P = O.
Assumption (C2) says thaVt is essentially invariantfor the linearized flow ofF,
meaning that the differential of the flow & maps) into a compact perturbation of
V. Assumptions (C1) and (C2) are automatically fulfilled when all the critical points
have finite index, by choosindy = (0): in this casem(x, (0)) is the usual Morse
index.
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Ouir first result will be that if (C1) and (C2) hold, arié“ (x), W*(y) meet transver-
sally, then their intersection is finite dimensional, and

dim W (x) N W*(y) = m(x, V) —m(y, V), (0.5)

which is the first step for the construction of the Morse complex. A useful tool, in
the proof of this result and in transversality questions, will be the study, presented in
[AMO3b], of the Fredholm properties of the differential operator

d
T AWD: C3(R, H) - CQ(R, H),

where the subscript 0 means vanishing at infinity, Arid a continuous path of bounded
operators on the Hilbert spad#, converging to hyperbolic operators for— +oco.

As we shall see, the usefulness of conditions (C1) and (C2) lies in the fact that they
are bothstable and convex

In many cases, the choice of the subbun®liefor which (C1) and (C2) hold, is
suggested by the problem itself: for example, this is the case of semi-linear equations,
wheref is a lower order perturbation of a nhon-degenerate quadratic form on a Hilbert
space, and of many functionals coming from geometric problems, such as the energy of
curves on a semi-Riemannian manifold. In other cases, (C1) and (C2) just hold locally:
one finds an open coverlr{g/j | j e J} of M and subbundle¥; of TU;, which satisfy
(C1), (C2), and are such tha |y, nu; is a compact perturbauon af; |y, nU;j s for any
i,j €J. That is, (C1) and (C2) hold with respect to amsential subbundleln such
a situation the intersection of the unstable and stable manifolds are finite dimensional,
but no formula like 0.5 can possibly hold. Indeed, we will show an example of a
Morse function onS! x H, H an infinite dimensional Hilbert space, with two rest points
x,y, such that different components of the transverse interse®ivg) N W*(y) have
different dimension. This is a purely infinite dimensional phenomenon, related to the fact
that the general linear group of an infinite dimensional Hilbert space is contractible (see
[Kui65]). Formula 0.5 will hold in the intermediate situation in which ditv;, V;) = 0
for everyi, j € J: in this case we will say that (C1) and (C2) hold with respect to a
(0)-essential subbundle

These facts are closely related to Cohen, Jones, and Segal's use of polarizations to
understand the homotopy theory which lies behind Floer homolG@gs95]

0.2. Coherent orientations

As we have seen, whehNl is finite dimensional—or more generally when the rest
points have finite Morse index#"(x) N W*(y) is orientable. In the case of infinite
Morse indices and co-indices, howevéy(x) N W*(y) needs not be orientable: in-
deed we will provide an example showing that such a transverse intersection can be
diffeomorphic toZ x R, whereZ is any manifold.

The existence of a subbundigsatisfying (C1) and (C2) will imply that all the inter-
sectionsW!(x) N W¥(y) are orientable, and it will allow us to define their orientations
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in a coherent way. The starting point is the fact that Fredholm pairs (i.e. @3&in&) of

closed linear subspaces of a Hilbert spekceith dim VNW < oo, codim(V+4+W) < o0)

can be oriented: an orientation ¢¥, W) is by definition an orientation of the finite
dimensional spacéV N W) x (H/(V + W))*. Actually, a determinant bundle can be
defined on the space of Fredholm pairs, extending the determinant bundle on the space
of Fredholm operators, defined by Quillg@ui85]. Together with the fact that the
fundamental group of the space of Fredholm p&lr's W) with dimV = dim W = oo,

is Z», this implies that the notion of orientation of a Fredholm pair shares all the good
properties of orientations of finite dimensional spaces.

For every rest poink, one fixes an orientation of the Fredholm p@lk W*(x), V(x)).
Assumptions (C1) and (C2) guarantee tiid,W*(x), V(p)) is a Fredholm pair, for
every p € W*(x). Hence, the orientation chosen atpropagates to all the stable
manifold of x. The way of orientingW“(x) N W*(y) is then similar to what we have
described in the case of a finite dimensiohal

If conditions (C1) and (C2) hold with respect to a (0)-essential subbundle, coherent
orientations cannot be defined, and one obtains just a Morse complexXZwitlveffi-
cients. Bott periodicity theorenfBot59] can be used to find the obstructions to have
a Morse complex with integer coefficients: they are given by the homotopy groups
m; (M), with i =1, 2, 3, 5mod 8.

0.3. Relative compactness of the intersections

When the rest poink has a finite Morse index, the (PS) conditrand the com-
pleteness of the flow imply that the intersecti@ift (x) N W*(y) has compact closure
in M. When the indices are infinite, even if (C1-2) guarantee t&tx) N W*(y)
is finite dimensional, we cannot conclude that its closure is compact: for instance,
it may consist of infinitely many isolated curves, with no cluster points besides
andy.

The reason is that (C1-2) are local assumptions, while compactness involves a global
condition: we shall need a global version of condition (C2). Let us assume for simplicity
that the subbundl&’ of TM has aglobal presentationthat is a submersio®@: M — N
into a complete Riemannian Hilbert manifol such thatV(p) = ker DQ(p). We will
denote bypy (A) the Hausdorff measure of non-compactness of the subeét metric
spaceX, that is the infimum of all positive humberssuch thatA can be covered by
finitely many balls of radius. The new assumption is:

(C3) (i) DQo F is bounded;
(i) for every g € N there exist > 0 andc >0 such thai; y(DO(F(A)))<cfy
(Q(A)), for any A in a Q~1(Bs(g)).
This condition implies (C2) by differentiation. Condition (C3) is also stable and
convex, in a sense to be specified.

5In this contest, a (PS) sequence is a sequefge C M such that(f(pn)) is bounded and
(Df (pn)LF(pn))) is infinitesimal.
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We shall prove that conditions (C1) and (C3), together with (PS) and the completeness
of the flow, imply thatw*(x) N W*(y) has compact closure iM, for every pair of
critical pointsx, y.

This compactness result will be proved in the more general setting of a flow which
preserves aressentially vertical family# of subsets ofM, with respect to astrong
integrable structurefor an essential subbundt of TM. When ¢ is the essential class
of a subbundley with a global presentatio, one choosesF to be the family of
subsetsA ¢ M such thatQ(A) is pre-compact. More-generally, one can deal with a
suitable presentation of consisting of an open coveringV;};c; of M and of semi-
Fredholm maps with non-negative ind€X : M; — N;, such that€(p) = [kerDQO(p)]
for every p € M;.

0.4. The boundary homomorphism

Assume that'M, F, f,V) satisfies (C1-3) and (PS), and that the stable and unstable
manifolds of rest points meet transversally. koe Z, we can defineC, (F) to be the
free Abelian group generated by the rest potsith m(x, V) = ¢. In order to define
the homomorphisni, : C,(F) — C,_1(F), we just need the last condition

(C4) for anyq € Z, f is bounded below on the set of critical poin®f relative Morse
index m(x,V) = q,

which guarantees that the sum appearingG#)(is finite.

The boundary property),_1 o d, = 0 comes from the possibility of describing
exactly the flow on the closure of each componentf(x) N W*(y), whenm(x, V) —
m(y,V) = 2: such a flow is either topologically conjugated to the exponential flow
(t,z) — e’z on the Riemann spher€ U {oo}, or it is topologically conjugated to the
shift flow (¢, (u, v)) = (u +1t,v+1) on [—o0, +00] x [—00, +00]. In the latter case,
the orientation of this component is the product orientation of its sides. These results
will be proved by hyperbolic dynamical systems techniques, which in this case seem
more natural than the gluing method used in Floer homology.

The resulting compleXC.(F), d,} is said theMorse complexf F. If F1 and F» are
two Morse vector fields having the same non-degenerate Lyapunov furfictt@Morse
complexes ofFy and of F, are isomorphic. In particular, their homology depends only
on the Lyapunov functior, and it will be said theMorse homologyof f and denoted

by H.(f).
0.5. Transversality

The transversality of the intersection of stable and unstable manifolds will be achieved
by perturbing the vector fieléf. Small perturbations in a suitable class of vector fields
keep the conditions (C1-4) and (PS) valid: in this sense, these conditions were said
to be stable. When one restricts the attention to the class of gradient vector fields,
transversality can be achieved by using rank 2 perturbations of the given Riemannian
metric. A difference with respect to the finite dimensional case is the regularity require-
ment. Indeed, high regularity d¥ is needed to apply Sard—Smale theorem, and such a
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regularity cannot be obtained by smoothing the vector fielthecauseC**1 functions
on an infinite dimensional Hilbert space are @t dense (sedNS73,LL86). As a
consequence, we shall assuifiee C2(M), and we will achieve transverse intersections
of W*(x) and W*(y) wheneverm(x, V) —m(y, V) <2, which is what we need for the
construction of the Morse complex.

0.6. Relationship with classical infinite dimensional Morse theory

In the case off bounded below, satisfying (PS), and with critical points of finite
Morse index, we shall prove that the Morse homology & isomorphic to the singular
homology ofM, a result which agrees with the Morse relations proved by Palais. This
will be a simple generalization of the cellular filtration argument described for the
compact case.

From this fact, it is easy to determine the Morse complex of some classes of vector
fields having rest points of infinite Morse index and co-index. For instance{ i
M~ x M is the product of two infinite dimensional Hilbert manifolds, endowed with
a complete product Riemannian structure, and the Morse fungtiod — R has the
special form

fo=.pH=rteH -1, (0.6)

where fT:MT™ — R, f~: M~ — R are bounded below and satisfy (PS), then

F——( gradf~ gradf* )
~ \1+|gradf=[?" 1+ |igradf=]?

satisfies (C1-3) with respect to the subbuntle= TM~ x (0), with global presen-
tation the submersio®® : M — M™, (p~, p*) — pT. Notice thatF has the form
F(p~,pH) =F"(p7), FT(p™)). It is easy to see that the Morse complexFois

Cy(F)=(Co(FNHQCL(F))y= P Cpr(FHRC(F) VgeZ
(¢=.q)eN?
qt—q"=q

and the Morse homology dfis

Hy(f)=(Ho(M1) @ H_.(M™))g= @ Hq+(M+) ® Hy-(M™) Vgez. (0.7)
(¢~ .q")eN?
9t —q"=q
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0.7. Computation of the homology and functoriality

In the case of infinite Morse indices and co-indices, the topologyMofs not
immediately related to the Morse homologyfoHowever, the homology groups, (/)
are still considerably stable.

The key ingredient to compute the Morse homology groups will be the fact that
Morse homology is a functor from the class of Morse functions with a gradient-like
vector field satisfying (C1-4) and (PS), seen as a small category with the usual order
relation, to the category of Abelian groups: to every inequajify f1 is associated a
homomorphism

b o1 s He(f0) = Hi(f1),

in such a way thathy, r, 0 o5, = ¢, @Nd ¢4, = id (actually, ¢y, ;r = id, for
0(s)=s a strictly increasing smooth function). The idea for the definition¢of »,

comes from the following observation: every chain homomorphiﬁsmcg, afj} —
{CL, a}} comes from a boundary operatdy: CO @ Cii1— CJ 4 ®Cy, the cone of

W, namely

0

0q = (6q ? ) (0.8)
v _aq+1

With this in mind, we will construct a Morse functiofi: R x M — R, of the form

f (s, p) = x(s) fo(p) + (1 — x()) f1(p) + ¢(s),

with y a monotone smooth function such that) = 1 for <0, and y(s) = 0 for
s>1, while ¢(s) = 2s% — 352 + 1 has a non-degenerate maximum at 0 and a non-
degenerate minimum at 1. The functibis a non-degenerate Lyapunov function for a
Morse vector field onR x M satisfying (C1-4) and (PS), and the boundary operator
in the associated Morse complex has the foh8)( This allows us to defing , » as
the homomorphism induced by the chain homomorphyjsm

We wish to emphasize that this functorial approach is possible thanks to the fact that
the conditions (C1-4), and (PS) naturally pass from the functififysfi to the cone
function f in this sense, these conditions were said to be convex.

In particular, two functionsfp and f1 such thatc := | f1 — foll is finite, have
always isomorphic Morse homologies, as implied by the functoriality applied to the
inequalities

fo—c<fi<fot+e, fi—c<fo<fite.

For example, letf: M~ x MT™ — R be a Morse function satisfying (PS) and such
that F = —gradf/(1 + |lgradf||?) satisfies (C1-4) with respect to the subbunifle=
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TM~ x (0). If f has bounded distance from a function of the folr), still satisfying
the same assumptions, the Morse homology of given by 0.7). More generally, if
there existsc > 0 such that

1 1
— TP —ef T —e<f T PO T — (D) + o
we deduce the existence of a surjective homomorphism

Hy(f)—> € HyMH)@H;- (M),
(¢=.¢")eN
qt—q =q

which implies lower estimates on the number of critical pointd of a given relative
Morse index.

1. Essential subbundles of a Hilbert bundle

In this section, we will fix some basic facts about the Grassmannian of a Hilbert
space and some related constructions. We refer to Appendix A for more details.

1.1. Hilbert Grassmannians

If E and F are Banach space&(E, F) will denote the space of bounded linear
operators fromnk to F, while £.(E, F) will denote the subspace consisting of compact
operators. In the casé = E, we will simply write L(E) and L.(E).

Let H be an infinite dimensional separable real Hilbert space. The orthogonal projec-
tion onto a closed linear subspatec H will be denoted byPy, while the orthogonal
complement of/ will be indicated byV+. We will denote by G¢H) the Grassmannian
of H, that is the space of all closed linear subspacebl,oéndowed with the operator
norm topology. By Gk ~(H) we will denote the connected component of (B8)
consisting of subspaces of infinite dimension and infinite codimension. The other con-
nected components of Gi) are the subsets Gk, (H), the set of linear subspaces of
H of dimensionn, and Gk ,(H), the set of linear subspaces ldfof codimensiomn.

1.2. Compact perturbations and essential Grassmannians
GivenV, W € Gr(H), we will say thatV is acompact perturbatiorof W if Py — Py

is a compact operator. In this case, tiedative dimensiornof V with respect toW is
the integer

dim(V, W) =dimvnwt —dimvinw.
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Given m € N, the (m)-essential Grassmanniar,)(H) is the quotient space of
Gr(H) by the equivalence relation

{(V, W) € Gr(H)?|V is a compact perturbation o,
and dimV, W) € mZ}.

By Gr}‘m)(H) we will denote the quotient of Gy~ (H) by the same equivalence
relation. The space Gy (H) is called just theessential Grassmanniaof H. If [W] e
Groy(H) and V e Gr(H) is a compact perturbation of an element (hence every
element) of the clasgW], then dimV,[W]) := dim(V, W) is well defined as an
integer modulom.

1.3. Essential subbundles

Fix somek € N U {oo}. Let B be a topological space & = 0, or a C* Banach
manifold if k>1, and let# — B be anH-bundle onB, that is aC* fiber bundle
with base spaceB, total spaceH, typical fiber the Hilbert spacéd, and structure
group GL(H). Since the Hilbert spackl is infinite dimensional, the group GH) is
contractible (segKui65]), so the above bundle is always trivial.

We can associate to th@&* Hilbert bundle’Y — B the C* fiber bundles

Gr(H) = ) Gr(Hp) - B, Gromy(H) = | Gromy(Hp) > B, meN.
beB beB

The spaces GH) and Gy, (H) admit natural analytic structures, so the above bundles
have C* structures. ACk section of GtH) — B is just aC* subbundle ofi{ — B.
Similarly, a C* section of G, (#) — B will be called aCc* (m)-essential subbundle

of X — B, or just aC* essential subbundl the casen = 1.

1.4. Lifting properties

The following questions arise naturally: when is @m)-essential subbundle; € N,
liftable to a true subbundle? when is &mn)-essential subbundley >1, liftable to an
(hm)-essential subbundle, fégre N ? We shall discuss these questions in the nontrivial
case of subbundles with infinite dimension and codimension.

Since the Hilbert bundlé{ — B s trivial, the (m)-essential subbundle we wish to
lift can be identified with a map

E:B— Grz‘m)(H)
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and we are looking at the lifting problems

Groo,00(H) Gr{yy (H)
7 i 7
p P J{
Ve Ve
Ve Ve
s & N s £
B —— Grg, (H) B — Grj, (H)

In the first diagram, the vertical map is a fibration from a contractible space, so the
(m)-essential subbundig is liftable to a true subbundle if and only if the m&gs null-
homotopic. It can be proved that }gu)r(H) is simply connected, while the fundamental
group of Gy, (H) for m>1 is infinite cyclic. Furthermorem;(Grg,)(H))=mi—1
(BO(c0)) for i =2, where BQoo) denotes the classifying space of the infinite real
orthogonal group. Hence, using Bott periodicity theorem, we deduce &hiat null
homotopic if and only the homomorphism

Ev:mi(B) — m(GI,,) ()

vanishes for every = 1, 2, 3, 5mod 8. In particular, everym)-essential subbundle is
liftable to a true subbundle wher (B) = 0 for everyi =1, 2,3, 5mod 8.

In the second diagram, the vertical arrow is a covering map, and the image of the
induced homomorphism

71(Gr ) (H)) — m1(Gr,, (H)) = Z

is the subgrouphZ, so the (m)-essential subbundIl€ is liftable to a (hm)-essential
subbundle if and only i€, (n1(B)) C hZ. In particular, every(m)-essential subbundle
is liftable to a(0)-essential subbundle whe® is simply connected.

In this paper, we will be mainly interested in subbundles and essential subbundles
of the tangent bundl@M of a Hilbert manifoldM (that is a paracompact manifold
modeled on the Hilbert spacH). Notice that, sinceM is locally contractible, any
(m)-essential subbundl€& is locally liftable to a true subbundle, which will be called
a local representativeof £.

1.5. Integrable essential subbundles i
An essential subbundl€ of TM is calledintegrableif M admits an atlas whose

chartsp:dom(p) C M — H map £ into the essential subbundle represented by a
constant closed linear subspakec H:

Vp edom(p) Do(p)E(p) =[V]. (1.1)
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If ¢ andy are two such charts, the transition map= ¢ oy : dom(z) c H — H
satisfies

Dt(&)V is a compact perturbation df V¢ € dom(z).
By PropositionA.4, the above fact is equivalent to
ODt(&)(I — Q) is a compact operatorve € dom(z), (1.2)

Q being a projector with kerneél. An atlas.A of M satisfying (.1) and {.2) form an
integrable structure modeled ofH, V) for the essential subbundie

Conversely, an atlas d¥l whose transition maps satisfit.®) defines an integrable
essential subbundle afM. Such an essential subbundle is liftable to (an-essential
subbundlem € N, if and only if

dim(Dt(&)V,V)=0 modm

for every transition mag and everyé € dom(z).

Considering integrable essential subbundles will be important starting from
Section 6. Actually, we will be interested in the following stronger version of
integrability.

Definition 1.1. Let V be a closed linear subspace of the Hilbert spateand let
Q € L(H) be a projector with kerneV. A strong integrable structure modeled on
(H, V) for the essential subbundl of TM is atlas.A of M such that:

(i) for every ¢ € A and everyp € dom(p), Do(p)E(p) = [V1;
(i) for every ¢,y € A the transition map = ¢ oy 1 : dom(r) c H — H satisfies

QA is pre-compact if and only ifDt(A) is pre-compact,

for every boundedd c dom(z).

Since the seQA is pre-compact if and only if the projection &f into the quotient
spaceH/V is pre-compact, the above definition does not depend on the choice of the
projectorQ, but only on the subspacdé

Let ¢ be a transition map satisfying condition (ii) of the above definition, and let
¢ € dom(z). Then the restriction of the mapr: to the set donit) N (¢ + V) is a
compact map (i.e. it maps bounded sets into pre-compact sets). Therefore its differential
at &, namely the linear operatap Dt(&)|y is compact, implying 1.2). Hence a strong
integrable structure is also an integrable structure. The notion of a strong integrable
structure is strictly more restrictive, because a nonlinear map whose differential at every
point is compact need not be compact.



336 A. Abbondandolo, P. Majer/Advances in Mathematics 197 (2005) 321-410

Remark 1.2. Assume thalW is a compact perturbation of the closed linear subspace
V. Notice that ifA Cc H

PwLAcple+(PV_PW)A

Then if A is boundedPy, 1 A is pre-compact if and only ifPy, 1A is pre-compact.
Therefore, a strong integrable structure modeled BnV) is also a strong integrable
structure modeled onH, W).

1.6. Presentations of an essential subbundle

A natural way to construct an integrable subbundleTbf is to consider the kernel
of a submersion, or of a family of submersions with matching kernels. We wish to
describe the essential version of this construction.

The following lemma can be considered the essential version of the fact that in
suitable charts a submersion is a linear projection.

Lemma 1.3. Let M and N be manifolds modeled on the Hilbert spaces H and E
respectively. LetQ: M — N be a C¥, k>1, semi-Fredholm map with constant non-
negative index. Then there exists a projec@re L(H) such that denoting by V its
kerne| there holds: for everyp € M there exists aC* chart o:U — H, pe U C M,
such that

() @(U) is bounded
(i) for everyé e o(U), kerD(Q o ¢~ 1)(¢) is a compact perturbation of Myith

dim(ker D(Q o o~ 1)(¢), V) = dim cokerDQ(p~1(&));

(i) for everyA c o(U), Q(¢~1(A)) is pre-compact if and only if QA is compact

In most applications, the index a will be +oo.

Proof. The matter being local, we may assume thlkits an open subset of the Hilbert
spaceH, that p = 0, thatN is an open subset of the Hilbert spdgeand thatQ(0) = 0.
Since indDQ(0) >0, there isT € L(H, E) with finite rank such thatbQ(0) + T is
surjective. By the open mapping theoremQ(0)+ 7 has a linear bounded right inverse
R € L(E,H). Let Q := R(DQ(0) + T) € L(H) be the associated linear projection,
and setV := kerQ. Since the index of© is constant (i.e. it does not take different
values on different connected componentsMj)f by applying a linear conjugacy the
sameQ andV can be used for every point € M.

The mapR(Q+T): M — ranQ is a local submersion at 0, with differential at 0 equal
to Q. Therefore, there exists a neighborhobdc M of 0 and aC* diffeomorphism
¢@:U — H such thatp(0) = 0, De(0) = I, ¢U) and Q(U) bounded (so that (i)
holds), and

R(Q+T)op X&) = Q¢ Vée o). (1.3)
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Differentiating we getRD(Q o ¢~ 1)(é) + RT Do~ 1(¢é) = Q. SinceR is injective and
sinceT has finite rank, PropositioA.3 implies that

kerD(Q o ¢ 1) (¢) = kerRD(Q 0 9~ 1)(¢)

is a compact perturbation of k¢ =V, and

dim(kerD(Q o ™) (&), V) = —dim(ranRD(Q o ¢~ 1)(¢), ranQ)
= —dim(ranD(Q o ¢ 1) (), E)
= dim cokerDQ(p 1 (&) Do (&)

= dim cokerD Q(¢p1(¢)),
proving (ii). By (1.3), for every A C ¢(U),
QA C RQ(¢~H(A)) +ranRT, Q¢ (A)) C (DQ(0) + T)QA +ranT,

so claim (iii) follows from the fact thatp(U) and Q(U) are bounded, and from the
fact thatT has finite rank. O

Proposition 1.4. Consider an open coveringV;};<; of M, a family of infinite dimen-
sional Hilbert manifolds{N;};c; modeled on Eand a family of semi-FredholnC¥,
k=1, maps Q,: M; — N; with the same constant non-negative indswch that for
anyi, j €I and for anyA C M; N M},

Q;(A) is pre-compact if and only if Q;(A) is pre-compact. (1.4)
Then the family{kerDQ;(p) | p € M;}, i € I, defines ac¥~1 essential subbund|€
of TM. The atlasA consisting of all the chartgy of M satisfying propertiesi)—(iii)

of Lemmal.3 applied to all the map<Y; is a strong integrable structure modeled on
(H, V) for £. This atlas is such that for every € A and everyA c dom(¢) C M;,

Q@(A) is pre-compact if and only if Q;(A) is pre-compact. (1.5)
Moreover for every p € M; N M; the operator DQ;(p) DQ;(p)* € L(Tg;N,,
To,(pNi) is Fredholm and £ is liftable to an (m)-essential subbundlen € N, if and

only if

ind (DQ;(p) DQj(p)*) =0modm Vi, jel, Vpe M NM,;.

Proof. Let us prove that for anyp € M; N M; the subspace kévQ,(p) is a
compact perturbation of kédQ;(p). SinceDQ;(p) has finite corank, we can find@



338 A. Abbondandolo, P. Majer/Advances in Mathematics 197 (2005) 321-410

embedded finite dimensional open digkC N; with D compact, such tha@;(p) €
D and the mapQ; is transverse td. Then Qlfl(D) is a C1 submanifold ofM,
and by our assumption the me@ﬂgi_l(mli_ is compact. Therefore its differential,
namely the restriction oD Q; to the subspac%Q[l(D) D kerDQ;(p) is compact.
In particular, the restriction oD Q;(p) to kerDQ;(p) is compact, and similarly the
restriction of DQ;(p) to kerDQ;(p) is compact. Hence Propositioh5 implies that
kerDQ;(p) is a compact perturbation of k&Q;(p), as we wished to prove, and
that

ind(DQ;(p) DQ;(p)*) = dimcokerDQ;(p) — dim cokerDQ;(p)

+dim(kerDQ; (p), kerDQ;(p)). (1.6)

Now let ¢ andy, dom(¢) C M;, dom(y) C M;, be two charts satisfying conditions
(i)—(iii) of Lemma 1.3 applied to Q; and Q;, respectively (possibly = j). Let t =
Qo x//_l be the transition map. IA ¢ dom(r) = y(dom(p) N dom(y)), by Lemma
1.3(iii) QA is pre-compact if and only in(npfl(A)) is pre-compact, by1(4) if and
only if Q,-(nrl(A)) = Qi(¢p~1(1(A))) is pre-compact, and again by Lemrhe(iii) if
and only if Ot(A) is pre-compact. This proves condition (ii) of Definitidnl, and
proves that the atlagl satisfies 1.5).

Finally, let p € M;. By LemmaZl.3ii), there is a neighborhood, of p and acC*
submersioné,, = Q¢:U, — ranQ into a Hilbert space such that for agye U,
ker DQ;(q) is a compact perturbation of kaép(q), and

dim(ker DQ; (), ker DO, (q)) = dim cokerDQ;(q). (1.7)

Then the family{kerDQ; | i € I} defines the same&*~1 essential subbundle GfM
as the one defined by the family

[kerDQ, | p € M}. (1.8)
If geU,NUyNM;NM;, by (1.6) and (1.7) we obtain (see formula’(2))

dim(ker DQ,(¢), ker @,/ (¢)) = dim(ker DQ,,(¢), ker DQ; (¢))
+dim(kerDQ;(q), kerDQ;(q)) + dim(ker DQ;(g), kerDép/(q))

=ind(DQ;(q) DQ;(g)™),
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so (1.8) defines an(m)-essential subbundle &fM if and only if

ind(DQ,(q) DQ;(¢)*) =0 modm Vi,jel, Vge MinM;. O

The above proposition suggests the following:

Definition 1.5. A strong presentation of the essential subburdllef TM consists of an
open coveringM;};c; of M, a family of manifoldsn;, i € I, modeled on the Hilbert
spaceE, a family of semi-FredholmC! maps Q; : M; — N; with the same constant
non-negative index such that:

(i) for everyi € I and everyp € M;, the kernel of DQ;(p) belongs to the essential
class&(p);

(i) for every i, j € I and everyA C M; N M;, Q;(A) is pre-compact if and only if
Q;(A) is pre-compact.

Proposition1.4 states among other facts that a strong presentatiofi détermines
a strong integrable structure fer.

2. Morse vector fields and subbundles
2.1. Definitions and basic facts

Let M be a paracompact manifold of claé¥, modeled on the infinite dimensional
separable real Hilbert spa¢é Let F be a tangent vector field of clags' on M. This
field determines a local flow oM,

¢ € CLQF), M), 0,9, p) = F($(t, p)), &, p)=p,

whereQ(F) Cc R x M is the maximal set of existence for the solutions of this ordinary
differential equation. We will also use the notatign(p) = ¢(z, p).

A rest pointof F is a pointx € M such thatF(x) = 0. The set of rest points df
is denoted by regitF). If x € rest(F), the Jacobian oF at x, VF(x), is the bounded
linear operator orf, M defined as

VF(x)¢ = LxF(x) for X a tangent vector field such th&t(x) = ¢ e T\ M,

where Lx F denotes the Lie derivative df along X. Indeed, the fact that'(x) = 0
implies thatL x F(x) depends only on the value of at x.

We recall that an operatdr € L(H) is saidhyperbolicif a(L)NiR = . In this case,
the decomposition of the spectrum bfinto the subset with positive real part and the
one with negative real part determines lainvariant splitting H = V(L) @ V= (L).
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A point x € rest(F) is said hyperbolicif the operatorV F(x) is hyperbolic. In this
case, thdinear unstable spacéf) and thelinear stable spaced;, are defined as

H!:=VY(VF(x)), H}:=V (VF(x)).

A vector field F all of whose rest points are hyperbolic is saidMarse vector field
A Lyapunov functiorfor the vector fieldF is a function f € Cc1(M) such that

Df(p)IF(p)] <0 Vpe M\ rest(F). (2.1)

In particular,z — f(¢(t, p)) is strictly decreasing ifp ¢ rest(F). Note that every
critical point of f must be a rest point of. If x is a hyperbolic rest point foF, then
it is a critical point off, as it easily follows from a first-order expansion efat x.

If the vector field F is Morse, we shall ask the Lyapunov function to hen-
degeneratef is twice differentiable at every rest poirtand, denoting byD? f (x) the
second differential of at x, seen as a symmetric bounded bilinear form, we have that
&> D?f(x)[E, ] is coercive onH?, while ¢ — —D?f(x)[¢&, £] is coercive onHY.

The Morse vector fieldr is said gradient-like if it has a non-degenerate Lyapunov
function.

2.2. The relative Morse index

ForV a subbundle oM of classC?, consider the following compatibility condition
betweenF and V:

(C1) for everyx rest point ofF, the linear unstable spadé’ is a compact perturbation
of V(x).
If (C1) holds, therelative Morse indexof x € rest(F) is the integer

m(x, V) = dim(Hy, V(x))
and the sets
rest, (F) := {x erest(F) |m(x,V) =q}, q¢€Z,

constitute a partition of rest).

Condition (C1) clearly depends only on the essential clasg.dfherefore, it makes
sense to talk about vector fields which satisfy (C1) with respect to an essential sub-
bundle. More precisely, the€* Morse vector fieldF satisfies (C1) with respect to the
essential subbundIé& if for every rest pointx of F the unstable spac# belongs to
the essential clasS(x). In this more general situation, there is no relative Morse index.
However, if the essential subbundfecomes from an(m)—essential subbundle—still
denoted byé—then the relative Morse index of € rest(F) is an integer modulo
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m—denoted bym(x, £). In particular, if £ is a (0)-essential subbundle, the relative
Morse index is still integer valued.

2.3. Essentially invariant subbundles

We shall say that th&! subbundleV is invariant with respect to F ap € M if

(LFP)(p)P(p) =0, (2.2)

whereP is a projector ontd’ of TM: P is a C! section of the Banach bundle of linear
endomorphisms of M such that for every € M, P(p) € L(T,M) is a projector onto
V(p). This notion does not depend on the choice of the projeBtobut only on the
subbundley. Indeed, ifP and Q are two projectors ont®’, we have the identity

(LFQ)Q=U - QLFP)PQ, (2.3)

which can be verified by taking the Lie derivative of the identitlr® = Q = Q2.
This definition is motivated by the well-known fact th&.2) holds for anyp € M if
and only if the subbundl®’ is invariant under the action of the local flog, that is
D¢, (p)V(p) = V(,(p)) for every (¢, p) € Q(F).

Similarly, we shall say tha®y is essentially invariant with respect to F at i
(LFP)(p)P(p) is a compact endomorphism df,M. Again, @2.3) shows that this
notion depends only oi¥. By PropositionA.4, V is essentially invariant with respect
to F at everyp € M if and only if D¢,(p)V(p) is a compact perturbation of(¢,(p)),
for every (¢, p) € Q(F). The second compatibility condition betwe€nandV is:

(C2) v is essentially invariant with respect o at any pointp € M.

Also this condition can be stated for an essential subbundle. Indeed, an essential sub-
bundle £ of TM will be said invariant with respect to F at pf a local representative

of £ at p is essentially invariant with respect # at p. This notion does not de-
pend on the choice of the local representative€oét p: if V and VW are two such

local representatives on some neighborhabdf p, and P, Q are the orthogonal pro-
jectors ontoV, W, with respect to some Riemannian structure Mnwe have that

P(g) — Q(g) € LA(T;M) for any g € U, so (Lr(P — Q)(p) € LA(Tp,M), and the
identity

(LFP)P = (LFQ)Q = (LFP)(P - Q)+ (Lr(P—Q))Q,
shows that(LP)P is compact if and only if(LrQ)Q is compact. Hence, we shall
say that theC vector fieldF satisfies (C2) with respect to th@' essential subbundle
& of TM if £ is invariant with respect té at everyp € M.

Proposition 2.1. Let £ be aC! essential subbundle of TM. Then the seiCdfvector
fields on M which satisfyC2) with respect tof is a C1(M)-module
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Proof. Everything follows from the formulas

(Lx+yP)P = (LxP)P + (LyP)P,
(LyxP)PE = h(LxP)YPE+ DR[PE(P — DX VYéeTM,

whereh € CY(M). O

Examples We conclude this section with some simple examples.

Example 2.2 (Vector fields whose rest points have finite Morse index or finite
Morse co-index Consider the classical situation of a Morse vector fi€ldall of
whose rest points have finite Morse index. Then (C1) and (C2) hold with respect to
the trivial subbundley = (0). With such aV indeed, (C2) is fulfilled by any vector
field, while (C1) is equivalent to asking the unstable space of every rest point to be
finite dimensional. In this case;(x, (0)) is the usual Morse index of the rest pobt
Similarly, a Morse vector field all of whose rest points have finite Morse co-index
satisfies (C1) and (C2) with respect to the trivial subbundle TM, and —m(x, T M)
is the co-index of the rest point

Example 2.3 (Perturbations of a non-degenerate quadratic fprrAssume thatM =
H is a Hilbert space, and consider a function of the form

f(&) = 3(LE &)+ b(0),

where L € L(H) is self-adjoint invertible, and> € C?(H). Let F be the (negative)
gradient vector field of,

F(¢) = —gradf(§) = —L<¢ — gradb(¢)

and consider the constant subbundie= V~(L). In this case, condition (C2) means
asking that

(Lgradf Pv)(&) Pv = [Py, Hessf ({)]Py = [Py, Hes(O)] Py

should be compact for ever§ € H. In particular, if we assume that the Hessian of

b at every point is compact, condition (C2) holds. Since the negative eigenspace of
a compact perturbation df is a compact perturbation of (PropositionB.1), also
condition (C1) holds.

Example 2.4 (Product manifolds Assume that = M~ x M7 is the product of two
Hilbert manifolds, and consider the subbuntle= TM~ x (0) of TM. Fix some Rie-
mannian structure oM~ and onM™, and consider the product Riemannian structure
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on M. Let F = —gradf be the negative gradient of a Morse function l&n Then F
satisfies (C1) with respect t8 if and only if for every critical pointx the Hessian of
f at x decomposes as Heggx) = L, + K, where L, is self-adjoint, invertible, and
V~=(Ly) = V(x), while K, is a compact endomorphism @f M. Moreover,F satisfies
(C2) with respect toV if and only if for every p € M the operator

(LEP)(P)P(p) = (Vgradf P(p) + [P(p), Hessf (p)DP(p)
is compact, wheré” denotes the orthogonal projection onto

Example 2.5 (Semi-Riemannian geodesiggM04a]). Let Q be ann-dimensional man-
ifold, endowed with a semi-Riemannian structimethat is a symmetric non-degenerate
bilinear form onTQ. Denote by(n™,n~) the signature ofh, n™ +n~ = n. The
semi-Riemannian structurh induces a Levi-Civita covariant derivatiow, and the
geodesics, i.e. the solutiortp of the second order ODE;4 = 0, joining two fixed
points o, g1 € Q are the critical points of the energy functional

1 rt
r@=73 [ maw.aoar
0

on the Hilbert manifoldM := {g € W2([0, 1], Q) | ¢(0) = g0, g(1) = ¢q1} consisting
of paths inQ of Sobolev class¥12 joining ¢go and g1. Whennt # 0 andn~ # 0, all
the critical points off have infinite Morse index and co-index. Assume th&t has an
integrable subbundleV of dimensionn™ such thath is strictly negative orV, and set

V() ={{eTyM=q¢*(TQ)|{(t) e V(g(n) Vt €[0,1]} Vg e M.

The integrability ofV is reflected into the integrability o¥’, and this fact can be
used to build a class of Riemannian structuresMba-equivalent to the standart/1-2
metric—such that grag satisfies (C1) and (C2) with respect Yb In this situation, it

can also be proved that the relative Morse indefg, V) of the geodesia coincides

with the Maslov index of a suitable path of Lagrangian subspaces, obtained by looking
at the Hamiltonian system on the cotangent bundleQofienerated by the Legendre
transformH : T*Q — R of the LagrangianL : TQ — R, L) = 1/2h(, ().

3. Finite dimension of W*(x) N W¥(y)
3.1. Stable and unstable manifolds
The unstable and stable manifolds of a hyperbolic rest poiate the sets

WH(x) ={peM|]—o00,0] x{p} C QF) and ¢(¢, p) — x for r — —o0},
Wi (x) == {p e M| [0, +oo[x{p} C Q(F) and ¢(z, p) — x for r — +o0}
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and classical results in the theory of dynamical systems imply Wiatx) and W* (x)
are the images of injectiveé’! immersions ofH* and H?, respectively, and that

T,W'(x) = H",  T,W'(x)=H’.

In general, they need not be embedded submanifolds. Starting from Sédtmnever,
we will restrict our attention to gradient-like vector fields, for whigh (x) and W¥(x)
are embedded submanifolds (see also Appendix C).

Proposition 3.1. Let £ be an essential subbundle of Ténd let x be a hyperbolic
rest point of theC? vector field F on M. Then the following facts are equivalent

(i) H! belongs to the essential claggx), and £ is invariant with respect to F at
everyp € W*(x);

(if) the tangent spacd,W"(x) belongs to the essential clag¥p) for every p e
WH(x).

If either (i) or (i) holds and if £ is liftable to an(m)-essential subbundle—still denoted
by £E—then we have the identity between integers modulo m

dim(T, W"(x), E(p)) =m(x,E) Vp e W'(x).

Proof. Let p € W*(x) and defineu : [-00,0] — M by u(t) := ¢,(p) for t > —o0,
and u(—oo) = x. If Yy:U — H, x € U, is a local chart mapping the open ddt
diffeomorphically into the Hilbert spaci, then forT largey o ¢_;: gbj(U) — H is
a local chart whose domain contaimg —oo, 0]). Therefore, since both the assertions of
the theorem are invariant with respect to differentiable conjugacy, we may assume that
M is an open subset dfl. The set¢([—o0, O] x {p}) has a contractible neighborhood
U, and we can find a1 map P:U — L(H) such thatP(¢) is a projector onto a
subspace in the essential cla&&), for every ¢ e U.

Set P :=P(x), and letR:[—o0, 0] — GL(H) be such thatR(r) P = P(u(t))R(1),
R(—o0) =1, andR'(t) — O for t - —o0. Set

X(t) = R(t)"*D,(p)R(0).
Then X solvesX’ = AX, X(0) = I, where
A() = ROIR @)+ R)™XDFw(t))R(t) € L(H)

converges to the hyperbolic operaté(—oo) = DF(x) for t — —oo. Let

= {gelﬂllim X(r)ézo},
——00
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be the linear unstable space of the path of operatofsee Appendix B). Then

TunW"(x) = ROXOWy, T W"'(x) = VT (A(—00)). (3.1)

Differentiating R(t) P = P(u(z))R(t) we obtain the identity

R'()P = DPu()[Fu@)IR@) + Pu®)R' (1),

from which an easy computation gives

[A(), PIP = R(t) M (DPu(®)[F ()] + [Pw(®)), DF u(®)]) Pu())R().

So by the usual expression for the Lie derivative,

[A(t), P1P = R(t) " M(LFP)u(®)Pu(t)R() (3.2)

and the equivalence of (i) and (ii) follows forn3.Q), (3.2), and PropositiorB.3.

Assume now that comes from an(m)-essential subbundle. Sind&“(x) is con-
nected and the relative dimension is a continuous function, for epegyW*(x) we
have the following identity between integers moduto

dim(7, W (x), E(p)) = dim(T, W*(x), E(x)) = dim(H", Ex)) = m(x,E). O

Recall that a pair of closed subspac@s, W) of the Hilbert spaceH is said a
Fredholm pairif V. N W has finite dimension and + W has finite codimension, in
which case we define the index oV, W) to be

ind(V,W)=dmV NWwW —codim(V + W).

The space of Fredholm pairs bf, denoted by F@H), is an open subspace of @Gf) x
Gr(H), and the index is a continuous function. # — B is a C* Hilbert bundle,
there is an associated* bundle

Fp(r) = | Fp(Hs) — B.
beB

The above proposition has the following corollary.
Corollary 3.2. Assume that the Morse vector field F satisfié§81-2) with respect to

a subbundley of TM. Then for every rest point x

(i) for any p € W*(x), T,W"(x) is a compact perturbation ofV(p), and
dim(T, W"(x), V(p)) = m(x, V),
(ify for any p € W¥(x), (T,W*(x),V(p)) is a Fredholm pair of index-m(x, V).
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Proof. Assertion (i) follows immediately from Propositicdi1 and from the continuity
of the relative dimension. By (C1) and Propositiar2, (T, W*(x), V(x)) = (H}, V(x))
is a Fredholm pair of index

ind (T, W*(x), V(x)) = ind (H;, H!) + dm(V(x), H{) = —m(x, V).

Therefore, (T, W*(x), V(p)) is a Fredholm pair of the same index for apyin a
neighborhoodU of x in the intrinsic topology of the immersed submanifold* (x).
The backward evolution o) by ¢ is the wholeW?*(x), so assertion (ii) follows from
the fact that the tangent bundle &f*(x) is invariant, and) is essentially invariant
under the action ofp. O

3.2. Intersections

Recall that two immersed submanifoldé, O ¢ M have atransverse intersection
if for every p € NN O there holdsT,N + 7,0 = T, M. In this case,N N O is an
immersed submanifold oM, and 7,(N N O) = T,N N T,0. Similarly, N,O ¢ M
have aFredholm intersectionf for every p e NN O, (T,N,T,0) is a Fredholm pair
of subspaces of ,M. We are now ready to state the result about the dimension of the
intersection of the unstable and the stable manifolds.

Theorem 3.3.Letk € N, let £ be a (k)-essential subbundle of TMind assume that
the Morse vector field F satisfi€€1-2) with respect tof. Let x, y be two rest points
of F. ThenW*(x) and W*(y) have Fredholm intersectigrwith the number

ind (T, W"(x), T,W*(y)), pe€W'x)NnW(y),

depending only on the homotopy class of the curve> ¢(z, p) in the space of
continuous paths: : R — M such thatu(—oo) = x, u(+o00) = y. Furthermore

ind (T, W"(x), T,W*(y)) =m(x,&) —m(y,E) modk (3.3)

for every p € W (x) N W*(y).

In particular, if W“(x) and W*(y) have non-empty transverse intersecfidhen
W (x) N WS(y) is an immersed finite dimensional submanifold of thle dimension
of the componen®,, of W"(x) N W*(y) containing p depends only on the homotopy
class of the curve — ¢(t, p), and

dmWw, =m(x, &) —m(y,&) modk.
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In particular, whenF satisfies (C1-2) with respect to @)-essential subbundI€,
then all the components of the transverse intersecittix) N W9(y) have the same
dimensionm(x, £) — m(y, £).

Proof of Theorem 3.3.Let us fix two pointspo, p1 € W*(x) N W¥(y) such that their
orbits are homotopic in the space of pathsR — M with u(—o00) = x, u(+00) = y.
In other words, there exists a continuous map

h:Rx[0,1] > M,

such thath(—oo, s) = x, h(+00,s) =y, h(t,i) = ¢(, p;), fori =0, 1.

The mapR x [0, 1] — Gry) (T M), (t,s) = E(h(t, x)), is liftable to a mapW: R x
[0,1] — Gr(T M) such that¥W(—o0, -) and W(+o0, -) are constant maps. By Propo-
sition 3.1, Tj,5W"(x) is a compact perturbation ofV (¢, s) and dim(Ty, ¢« W"(x),
Wi, s)) = dim(H}, W(—o0, -)), for anyt < +oo. Using an argument analogous to
the proof of Corollary3.Zii), it is easy to see tha{Ty..W*(y), W(t, s)) is a Fred-
holm pair of index—dim(Hy/, W(+oo0, 1)), for anyt > —oo. Then by Propositio.2,
(Thie.sy W (), Thesy WH(x)) is a Fredholm pair of index digHY, W(—o0, -)) — dim
(H;‘, W(+o0, ). In particular,(T,,W*(y), T, W"(x)) and (T,, W¥(y), T,, W*(x)) are
Fredholm pairs of the same index

iNd (T, W* (), Tpo W"(x)) = ind (Tp, W’ (), Tpy W"(x))

dim(H}, W(—o00, -)) —dim(H), W(+4o0, -))

and the above formula implie8.@). Finally, the statements which assume transversality
follow from the fact that, under such an assumption,

ind (T, W*(x), T,W*(y)) = dimT,W*(x) N T,W*(y). O

Remark 3.4. We wish to remark that (C1-2) are asymmetric conditiond= ifatisfies
(C1-2) with respect to a subbundig there need not exist a subbundié such that— F
satisfies (C1-2) with respect td). Such an asymmetry is reflected into Coroll&,
which states thaf’ W (x) is a compact perturbation d/—a closed condition—while
TW*(x) is in Fredholm pair withY—an open condition. If we symmetrize (C1-2)
we obtain the following stronger assumptions:Afis a projector onTM, with image

VY and kernelV, there holds (C1'):H} is a compact perturbation df(x), H; is a
compact perturbation ofV(x) for everyx e rest(F), and (C2’):(LrP)(p) is compact

for any p € M. This setting—actually its essential version—is closer to the setting of
a polarized manifold (sefCJS95).
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4. Which manifolds can be obtained asWw"(x) N W*(y)
4.1. Arbitrary gradient-like vector fields

Let F be a gradient-like Morse—Smale vector field on the Hilbert manifdidwith
Lyapunov functionf. If x,y € rest(F) and f(y) < ¢ < f(x), the setZ = W%(x) N
W5 (y) N f~1({c}) is a submanifold (non-necessarily closed), being the transverse in-
tersection inf~1({c}) of the submanifoldsW*(x) N f~1({c}) and W*(y) N f~1({c}),
and ¢ subordinates a diffeomorphism frofd x Z onto W (x) N WS (y).

WhenM is finite dimensional, there are limitations on the topological typ&,oé.g.
if M is compact and there are no rest pointwith f(y) < f(z) < f(x), thenZ is the
transverse intersection ifi—1({c}) of two spheres. WheM is infinite dimensional, and
the rest pointse, y have infinite Morse index and co-index, there are no limitations at
all on the topological type oZ, the reason being that any manifold can be obtained
as the transverse intersection of two infinite dimensional spheres.

More precisely, for any Hilbert manifol& (finite dimensional or not) there is a
gradient like Morse vector fielé on the Hilbert spacéd, with a non-degenerate Lya-
punov functionf, having exactly two rest points, y with f(y) < 0 < f(x), such
that W*(x) N £~1({0}) and W*(y) n f~1({0}) are infinite dimensional spheres inter-
secting transversally inf ~1({0}) at a closed submanifold diffeomorphic #® Notice
that in this case, the closure &f“(x) N W*(y) is (W"(x) N W*(y)) U {x, y}, which is
homeomorphic to the suspension a&f

The construction relies on the following lemma.

Lemma 4.1. Let Z be a closed infinite codimensional submanifold of a Hilbert manifold
M. Then there exists a smooth map M — H such that O is a regular value and

Z = ¢ 1{0}).

Proof. A suitable tubular neighborhood of Z is diffeomorphic to the normal bundle

of Z. SinceZ has infinite codimension, such a bundle is trivial. Therefore, there exists
a submersiony: U — H such thatl/fl({O}) = Z. Since H \ B, B denoting the open
unit ball of H, is diffeomorphic toH (see[Bes66), it is easy to define a smooth map
¢:M — H which agrees withyy on a neighborhood/’ ¢ U of Z and such that
(M \U') Cc H\ B, so thatp~1({0}) = Z. O

Let Fy be the vector field o x H

Fo(&,m) = (& —xUIEDHm),

where y € C®(R) is decreasingy(s) = 1 for s<3 and y(s) = 0 for s>2. The
vector field Fp has a unique rest point = (0, 0), with W*(0) = H x {0}, and has a
non-degenerate Lyapunov function

fo(€.m) = L—[1€11% + %D In2.
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Let B be the open unit ball oH and letS be its boundary. We can embetias a
closed infinite codimensional submanifold 8f By the above lemma, there exists a
smooth mapy : § — H such that 0 is a regular value aitl= ¢~1({0}). Let C1
and C be two copies of the Hilbert manifold with boundaByx H, and consider the
Hilbert manifold M := C1 Ug C2, where the gluing mag® is

©:0C1=SxH—>SxH=0C2 (&n) v (&n+e@).

Let F be the vector field oM coinciding with Fy on C; and with —Fy on C», and
let f:M — R be the function coinciding withfo on C1 and with —fp on Ca. It is
readily seen thaF andf are well defined and smooth, and tHas a non-degenerate
Lyapunov function forF. By construction,C1 is negatively invariant for the flow of
F, C» is positively invariant, and there are exactly two rest pomts (0, 0) € C1 and
y = (0, 0) € Co. Moreover, f~1({0}) = dC1 = 0C>, and

Wi(y)NoCz = S x {0},
W (x) N 0Co = D(W(x) N 0C1) = B(S x {0}) = graphep.

Hence
WS (y) N W*(x) N dC2 = (S x {0}) Ngraphg = ¢~ *({0}) x {0} = Z x {0},

the intersection being transversal, as required. Finally, since the gluingbnisjsotopic
to the identity map or§ x H, M is diffeomorphic to(Bx H)Uiq(Bx H) = (BUjgB) x H.
Being an infinite dimensional spherBUijg B is diffeomorphic toH (again by[Bes66),
henceM is diffeomorphic toH.

4.2. Gradient-like vector fields satisfying (C1-2)

In particular, if Z has components of different dimension, the above example shows
that in the case of infinite Morse indices and co-indices, the componerigaf) N
WS (y) may have different dimension. Actually, the discussion of Sec8osuggests
that this phenomenon may happen also witesatisfies (C1-2) with respect to an
essential subbundle, providéd is not simply connected. Indeed this is the case, as it
is shown by the following example, where the vector field is actually the gradient of
a smooth function.

We recall some pieces of notation from Appendix B.Af[—oo0, +o00] — L(H) is
a path of bounded linear operators witt{—oo) and A(+o0) hyperbolic, we denote
by X4 : R — GL(H) the solution of the linear Cauchy probleit, (r) = A(t)X (),
X4(0) =1, and we consider the closed linear subspaces

le:{éeH| lim XA(t)g*zo}, WX:{56H| lim XA(t)cfzo}.
t——+00 t——00
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Let M = HxT%, with T* = R/2nZ. Let H = H-@H* be an orthogonal splitting such
that H—, H' € Gr o (H), With associated projectoi8~, P*. Let k >1 be an integer.
By PropositionB.5 there existsA € C*(R, GL(H) N Sym(H)) with A(t) = P* — P~
for t ¢]0, 1[, such thatj + W} = H and dimWj N W} = k. Consider the smooth
tangent vector field o

((PT — P7)¢, sins) for s ¢ [n/2, a(D)],

c o . 1
F(c.s) = { (A(z(s))¢, sins)  for s €]0, [, (& s) € H x T,

where 7(s) = logtan(s/2) for 0 < s < n, ando(t) = 1 1(r) = 2arctare’, r € R. So
¢’ = sine and v’ = coshr.

The rest points of, x = (0,0) and y = (0, n/2), are hyperbolic, with stable and
unstable linear spaces

H{=H x(0), H!=H"xR, H)y=H xR, H}=H"x(0). (4.1)
The flow of F, ¢:R x M — M, is readily seen to be
(@ PT=PE —o(t + 1(s))) for —m<s<0,
G 5) = (! PT-PIE ) fors=0 ors=xn (4.2)
(XAt + () Xa(z(s) "L, ot +1(s))) forO0O<s <.

As a consequence, the unstable manifoldk@nd the stable manifold of are the sets

W' (x) = (HTx] =, 0]) U U X)W x (s},

O<s<m
W) = (H x[-m0DU ] Xa(z(s)W} x {s},
O<s<m
with tangent spaces
H™ xR for (¢,5) e HYx] — =, 0],

TenW'(x) = {XA(r(S))WX ® RF(&,s) otherwise

s _|JH™ xR for (¢,5) e H- x [—=, O],
TenW () = {XA(r(s))W; ® RF (¢, s) otherwise

Therefore, the unstable manifold gfand the stable manifold of meet transversally,
and their intersection

W) MW (y) = {0)x1 =m0 U ) XaG(s) Wi N W) x (s},

O<s<m
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consists of two connected components, one of which one-dimensional, the other one
of dimensionk + 1.

We are going to show that the vector figfdsatisfies conditions (C1) and (C2) with
respect to a (non-liftable) essential subbundleTM. Consider the two subbundles of
T(H x [—=,0]) and T (H x]0, =),

Vi(é,s) = HT x (0) for (¢,s) € H x [—=, 0],
Vo(,s) = Xa(z(s))Y x (0) for (¢, 5) € Hx]O, n[,

whereY is a closed supplement 6f " W4 in W{ = H™. SinceA(t(s)) = PT — P~
for 0 < s<m/2, V2(&,5) = Y x (0) for any (&, 5) € Hx]0, n/2]. Moreover, since
H =Wj @Y, by Theorem B.2(jii),

dist(Va(&,5), HT x (0)) = dist(X4(z(s))Y, VT (A(+00))) - 0 fors — m—.

Therefore, V4 and V» define aCc? essential subbundl& of TM. In order to show that
£ is of classC?!, we have to verify that

% Px ,(zsyy = T (s)Q'(x(s)) = coshe(s)Q'(z(s)) > 0 for s — n—, (4.3)

where Q(r) = Px,)y. Forp>1 large, X4(10)Y C H™ x H™ is the graph of some
operatorL € L(HY, H™), so

11—
Xa@®Y = Xp+_p-(t —10)Xa(t0)Y = { (eoo et(?t) (5:) ‘ e H+}

from which we deduce thaD(r) — Pt = O(e~%) for + — +oo. By identity (B.1),
Q solves the Riccati equation

Q' =U-0AQ0+ QAU - Q)
and sinceA(t) = PT — P~ for t >1, we obtain
Q'(t) =2(Q(t) — PHP™(Q(t) — 1) +2(Q(t) — DP™(Q(t) — PT) = O(e™?)

for t — +o00, which proves 4.3).
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By (4.1) the vector fieldF satisfies (C1) with respect to the essential subbuédle
By (4.2),

[ @® =Py 0 for 1<s<0,
Do (& 9)ltn, O] = { (Xa(t +1(s)Xa(x(s)) 1,00 forO<s<n
for everyt € R, (¢,s) € M, n € H. Therefore, the subbundl&; is invariant with
respect toF. SinceX(t +1) X4 (1)1 = XA+ (1), also the subbundl&, is invariant
with respect toF. Hence (LrPy,)Py, = 0, for i = 1,2, andF satisfies (C2) with
respect to the essential subbundle
The smooth function
—3((PT = P7)E &) +coss  for s ¢ [n/2,6(D)],

1
=3¢
f(& )= { g(A(r(S))é, &) + coss for s €]0, 7/2[,

satisfies

—1€12 = sir? s for s ¢ [n/2, a(1)],
Df(E)IF (& 5)] = § —IA@(s)E|? —sir? s
— 2 coshe(s)(A'(x(s))¢, &) for s €]0, /2]

Since A(r) is invertible for anyt and A(z) is constant forr ¢ (0, 1), we find
Df (&, $)[F(E )]< = dl|¢||? —sinPs for [|€] <r (4.4)

for suitableé > 0, r > 0, sof is a non-degenerate Lyapunov function féron the
open setB,(0) x T Actually, on B,(0) x T! the vector fieldF is the gradient of
—f with respect to a smooth metric of the formy, ({1, {2) = (T(p){1,{2), p € M,

{1,{,€ T,M = HOR. HereT € C*(B,(0) x T!, SymnGL(H @ R)) is positive, and
verifies

T s)=1 fors¢[n/2.01)]. T(p)F(p)=—gradf(p) for pe B, (0) x T*,

where gradf denotes the gradient df with respect to the flat metric o/ x T .
Such a magr can be easily found because B4), (F(p), —gradf(p)) > 0 for every
p € B-(0) x [1/2, a(D)].

5. Orientation of W*(x) N W5(y)

The first example of the previous section shows that the transverse intersection of
an unstable and a stable manifold of two rest points with infinite Morse index and
co-index, even if finite dimensional, needs not be orientable. This intersection will be
orientable when the vector field satisfies (C1-2) with respect to a subbundi®l.of
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5.1. Orientation of Fredholm pairs

We need to recall some facts about the orientation bundle on the space of Fredholm
pairs. See Appendix A for more details. Fbir a real Hilbert space and € N, we
denote by O(Gr, «(H)) — Gr, ~(H) the orientation bundle of the Grassmannian
of n-dimensional subspaces &f: the fiber of X € Gr, ~(H) consists of the two
orientations ofX. Similarly, OnFp(H)) — Fp(H) denotes the orientation bundle of the
space of Fredholm pairs: the fiber 6f, W) € Fp(H) consists of the two orientations
of the finite dimensional vector spac¢€ " W) x (H/(V + W))*. This bundle is actually
a double covering of F@). If H — B is a Hilbert bundle, we obtain the bundles
Or(Gr,.00(H)) — B, Or(Fp(H)) — B, where

Or(Gry 0o (H) = () Or(GHy 00 (Hp)),  Or(Fp(H) = | Or(Fp(Hs))
beB beB

and the maps
Or(Gryp,o0(H)) = Gly0o(H), Or(Fp(H)) — Fp(H)

are double coverings.

Let » € N. If S(n,Fp) denotes the open set consisting of &, (V, W)) in
Gry.0o(H)xFp(H) such thatXNV = (0), the mapS(n, Fp) — Fp(H), (X, (V, W))
(Xe®V, W), is continuous, and it lifts to a continuous map—the product of orientations;

(ox, ov,w)) = ox N\ow,wy,

from the corresponding open subset of(Gr, o (H)) x Or(Fp(H)) to Or(Fp(H)). If
o:B — Gy (M), f,y: B — Fp(H) are continuous sections such that

a(b) N py(b) = (0) and (u(b) ® 1(b), (b)) =7(b) Vb€ B

for any choice of liftings of two ofx, f, y to the orientation bundles, there is a unique
lifting of the third one such thak(b) \S(b) = 7(b) for everyb € B.

5.2. Orientation ofW*(x) N W*(y)

Let V be aC?! subbundle ofTM, and let us assume that the Morse vector figld
satisfies (C1-2) with respect 8. By (C1) for every rest poink the pair (H;, V(x))
is a Fredholm pair. Let us fix arbitrarily an orientation of (H;, V(x)). Let x,y €
rest(F) be such that¥“(x) and W¥(y) have a non-empty and transverse intersection.
By Theorem3.3 W¥(x) N W*(y) is an immersed submanifold of dimension =
m(x,V)—m(y, V). In this section, we will prove tha*(x) "W (y) is orientable, and



354 A. Abbondandolo, P. Majer/Advances in Mathematics 197 (2005) 321-410

we will show how an orientation of such a manifold is determined by the orientations
oy andoy.

Let h':HY — M andh}:Hj — M be injective C1 immersions ontow*(x) and
W*(y) such thatz%(0) = x and hfv(O) =y. Then W*(x) N W¥(y) is the image of the
injective immersionk = hy o p* = hy o p*: W — M coming from the fiber product
square of the transverse map$ and /:

s

p
W H W= {Em e Y x HY 1 HO = ).

h
pu \L h;
h¥

HY ——= M,

X

Giving an orientation toW"(x) N W*(y) is equivalent to lifting the section

T:W = Gl oW (TM)), w > Thu (W x) N W (y)),

to a sectiont : W — Or(Gr, oo (h*(T M))).
Since H; is contractible, the section

Hy — Fp(hy* (TM)), > (T p W* (), VU, (),
has a unique IiftingH; — Or(Fp(h},*(T M))) whose value at 0 is,. By composition
with the projectionp®: W — H?$, we obtain the section

w: W — Fp(h*(TM)), wi=> (Thaw W (), V(h(w)))
and a lifting of w, &: W — Or(Fp(h*(T M))).

LetY: W — Gr(h*(T M)) be a continuous section of linear supplementg o (x)
N WE(y)) in TW*(y), that is

ThayW* () = Thay (W) N W () @ Y (w) Yw e W.
By the transversality of the intersection &“(x) and W*(y), Y(w) is a linear sup-
plement of 7,y W (x) in Tj,)M, so by Theorem B.2(jii),
lim D¢, (h(w))Y (w) = H:
[——00
and the limit is locally uniform inW. Therefore the mapl : [—o0, 0] x W — Fp(T M)
defined by

(D, (h(w))Y (w), V(¢ (h(w)))) for 1 > —oo,

Al w) = { (H:,V(x)) for t = —o0,
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is coptinuous. LetA:[—o0,0] x W — Or(Fp(T M)) be the unique lifting ofA such
that A(—oo, w) = o, for any w € W. By restriction to{0} x W, we obtain the section

o: W — Fp(h"(TM)), w+ (Y(w),Vhw)))

and a lifting of o, &: W — Or(Fp(h*(T M))).
By construction,

T(w) Nog(w) = (0) and (t(w) @ a1 (w), a2(w)) = w(w) Yw e W,
so 7 has a unique liftingt: W — Or(Gr, o (h*(T M))) such that
T(w) Aa(w) = d(w) Yw e W,

which provides us with an orientation a¥“(x) N W5 (y).

Since the set of linear supplementsTof(W* (x) N W*(y)) in T,W“(x) is connected,
the orientation we have defined does not depend on the choi¥eTdie construction
shows that it does not depend on the choice of the immerdi¢rand /.

6. Compactness ofW*(x) N W5(y)
6.1. The Palais—Smale condition

Let F be a gradient-like Morse vector field od. Then the stable and unstable
manifolds are (embedded) submanifolds, and so are their transverse intersections. We
would like to state a set of assumptions which imply thét (x) N W¥(y) is pre-
compact, i.e. it has compact closureNh The first assumption is a version of the well
known Palais—Smale condition:

Definition 6.1. Let F be a C*! vector field onM, and f € CY(M) be a Lyapunov
function for F. A (PS sequence for(F, f) is a sequencdp,) C M with f(py,)

bounded andDf (p,)[F(p,)] — 0. The pair (F, f) satisfies the FS condition if
every P9 sequence is compact. We shall say tRasatisfies P if (F, f) satisfies
(PS for some Lyapunov functioff.

When F is the negative gradient of a functidnwith respect to some Riemannian
metric onM, one finds the usual notion of a Palais—Smale sequefi¢e;) bounded
and | Df (p,)l|l infinitesimal.

Since Df (p)[F(p)] < 0 for p ¢ rest(F), the limit points of the (PS) sequences are
rest points ofF. If (F, f) satisfies (PS), then the set réB) N {a < f <b} is compact
for everya,b € R. If moreoverF is a Morse vector field, this set is also discrete,
hence finite.
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Remark 6.2 (Genesis of (PS) sequengetet (1, pn) € Q(F) be such that, — 400,
and f(pn), f($(t,, pp)) are bounded. Then by the mean value theorem there exists
sn € [0, t,] such that(¢(s,, pn)) is a (PS) sequence fdiF, f).

The second assumption is the completenesB,dhat is the fact that the local flow
¢(t,-) of F is defined for everyt, i.e. Q(F) =R x M.

Remark 6.3. Notice that multiplyingF by a positive function does not changé (x)N
W*(y), whereas it may have an effect on the validity of the (PS) and the completeness
assumption. For instance, multiplication by a suitably small function makes the vec-
tor field complete, while multiplication by a suitable large function makes (PS) true,
when restF) N f~1([a, b]) is compact for everyr, b € R. The two assumptions are
meaningful here only when considered together.

6.2. Essentially vertical families

As we shall see, (PS) condition and the completeness imply What) N WS (y)
has compact closure, when either all the rest pointddfiave finite Morse index,
or they have finite Morse co-index. However, they are not sufficient in the general
case.

The first assumption we need in the general case is that the essential subBundle
of TM should have a strong integrable structutemodeled on(H, V) (see Definition
1.1). In this case, denoting b@ a linear projector with kerne¥, we can introduce the
following:

Definition 6.4. A family F of subsets oM is called an essentially vertical family for
the strong integrable structuré of £ if it satisfies:

(i) it is an ideal of P(M), meaning that it is closed for finite unions andAfe F
then any subset oA is also inF;

(ii) every pointp has a neighborhootd which is the domain of a chaw € A such
that every setd ¢ U with ¢(A) bounded belongs toF if and only if Q¢(A) is
pre-compact.

Once an essentially vertical familf has been fixed, its elements will be called
essentially vertical sets. Clearly, there can be many different essentially vertical fami-
lies associated to the same strong integrable structu, decause only the “small”
essentially vertical subsets are determined.

The family F will be called positively invariantif it is closed under the positive
action of the flow¢: for every A € F and everyr >0, the setp([0, ] x A) is in F.

The main result of this section is the following compactness theorem.

Theorem 6.5. Assume that the Morse gradient-like vector field F is compkésfies
(C1) with respect to an essential subbundleof TM, and satisfieqPS. Assume also
that £ has a strong integrable structurel modeled on(H, V) and an essentially
vertical family F, which is positively invariant for the flow of.F
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Let (py) C M, (s,) C (=00, 0], (t,) C [0, +00), be such that(¢(s,, p,)) converges
to a rest point xwhile (¢(,, p,)) converges to a rest point y. Then the sequefigg
is compact

An immediate consequence is the following corollary.

Corollary 6.6. Under the assumptions of Theoretb, for every x, y € rest(F) the
intersectionW*(x) N W*(y) is pre-compact

In order to prove the above theorem, we need to establish the following lemma.

Lemma 6.7. Let x be a rest point of F. Then x has a fundamental system of neighbor-
hoods U such that

() the setW"(x) N U is essentially vertical
(ii) if A C U is essentially verticalthen A N W*(x) is pre-compact

Furthermore if f is a non-degenerate Lyapunov function forfér any sequencép,) C
U converging to x there holds

(i) if 1, >0 is such that¢(t,, p,) € oU then the se{¢(t,, pn) | n € N} is essentially
vertical, and

lim sup f(d)(tnv Pn)) < f(x).

n— oo

(iv) if 7, <0 is such that¢(t,, p,) € 0U then the sef{¢(t,, p,) | n € N} has a pre-
compact intersection with any essentially vertical subset paal

liminf f (¢, pn)) > f(x).

Proof. By choosing a chartp € A satisfying property (ii) in Definition6.4, we can
identify a neighborhoodJ of x in M with a bounded neighborhood—still denoted by
U—of 0 in H, in such a way thak corresponds to O, the essential subbungilés
represented by the constant subbundl¢he kernel of a projecto®, and the essentially
vertical subsetsA C U are those for whichQA is pre-compact.

Let H = H" ® H*, with projectionsP*, P*, be the splitting into the linear unstable
and the stable spaces of the hyperbolic rest point 0. Endowith an adapted norm
I - | (see Appendix C), and denote ky“(r), H(r) the closedr-balls of H* and
H?, respectively. Up to reducing the neighborhobdd we may assume thal/ =
H"(r) x H*(r), wherer > 0 is so small that all the results of Appendix C hold.

By (C1), H" is a compact perturbation &f. Therefore, we may assume th@tis
a compact perturbation aP®. By Remarkl1.2 and by the boundedness bf a subset
A C U is essentially vertical if and only ifP*A is pre-compact. In particular, the
graph of a maps: H*(r) — H*(r) is essentially vertical if and only if the map is
compact.
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Let og: H"(r) x H%(r) be a 1-Lipschitz map. By the graph transform method (Propo-
sition C.5), for every: >0 the set

{¢(t. &) | ¢ € graphag and ([0, 1] x {&}) C H(r) x H*(r)}

is the graph of a 1-Lipschitz ma@ : H“(r) — H*(r), and g, converges uniformly to
a mapg” for t — +oo, with graphs” = W¢. (0), the local unstable manifold of 0.
If oo is a compact map—for exampte) = O—the fact that the familyF is positively
invariant implies that, is a compact map for evemn> 0. By the uniform convergence,
c" is also compact, so the local unstable manifélg. .(0) is an essentially vertical
set. By TheorenC.7, Wi, .(0) = W"(x) N U, proving (i).

The local stable manifoldVig, . (0) is the graph of a 1-Lipschitz mag’ : H*(r) —
H"(r). Let A C U be an essentially vertical subset, thatA$A is pre-compact. Then

AN Wige,(0) = grapha® | ps 4

is also pre-compact. By Theore@.7, Wi .(0) = W¥(x) N U, proving (ii).
Let (p,) C U be a sequence converging to 0, apd>0 such thato(z,, p,) € oU.
By LemmaC.4,

lim sup f(¢tn, pn)) < f(0),

n—oo

lim dist(¢(tn, pu), Wi, (0) N U) = 0.
n—00 4

The first limit proves part of assertion (iii). By the second limit, we can find a sequence
(gn) C Wf(‘,C’r(O) such that|¢(t,,, p,)—qn|l is infinitesimal. In particulat| P* ¢ (t,,, p,) —
P3qy,| is infinitesimal. By (i), the sequencg’’q,) is compact. So also the sequence
(P*¢(t,, pn)) is compact. This proves that the sgb(z,, pn) | n € N} is essentially
vertical, concluding the proof of (iii).

The fact thate® is 1-Lipschitz implies that

| P & — 6 (PE)| <V/2dist(E, graphe®) VE e U. (6.1)

Indeed, if¢ € U andc > 1 we can findy € graphs® such that
€ — nll <cdist(&, grapha®).
Since Py = ¢*(P*n) and sinceg® is 1-Lipschitz,
[P“E—a* (PTOI < [IP“C— Pyl + llo* (P — a* (PO
< IPYE = Pyl + 1Py — P EI<V2IIE =l
< cv/2dist(¢, graphs®)

and sincec > 1 is arbitrary, 6.1) follows.
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Now assume that, <0 are such thatp(z,, p,) € 0U. By Lemma C.4 applied
to —F,

Iigigf (@@, pn)) > f(0),

Ii_)mOo dist(¢(tn, pn), Wige,,(0) N OU) = 0.

The first limit proves part of assertion (iv). Let ¢ U be an essentially vertical set,
that is P*A is pre-compact. If the sef N {¢(z,, pn) | n € N} is infinite (otherwise
there is nothing to prove), its elements form a subseque&is,,, p,,)) such that
the sequencé€P*¢(1,,, pn,)) is compact. By the continuity oé*, also the sequence
(o*(P*P(tn,, pny))) is compact. By §.1),

1P P(tng> Pry) — ° (P* Pltng, pu)) |l < V2 dist(p(tn,, puy)), grapho®)
< «/EdiSt(Qb(tnk» Pri))s Wﬁoc’r(O) nav)

is infinitesimal, so also(P*¢(t,,, pn,)) is compact. We deduce thaw(t,, ., p,,)) is
compact, concluding the proof of (iv).OJ

Proof of Theorem 6.5.Let f be a non-degenerate Lyapunov function forsuch that
(F, f) satisfies (PS). Up to taking a subsequencémf) and changings,) andx, we
may assume that for no choice of a seque@ge C]— oo, 0], the sequencép(r,,, p,))
has a subsequence which converges to a rest gawith f(z) < f(x). Indeed, since
there are finitely many rest pointssuch thatf (y) < f(z) < f(x), the set

Z = {z € rest(F) ‘ f(@)< f(x) and there existgny) C N increasing and; <0
such that lim ¢(s;, pn,) = z}
k— 00

is finite, and non-empty because it contaid et x’ = lim;_ o ¢(s;, p,,) be a point
of Z wheref attains its minimum. Then the latter requirement is verified with, ),
(s;), and x’.

Similarly, by taking a further subsequence (gf,), and by changingz,) andy, we
may assume that for no choice of a sequetgg C R, the sequencéd(r,, p,)) has
a subsequence which converges to a rest minith f(y) < f(z) < f(x). If either x
ory is a cluster point for(p,) there is nothing to prove, so we may assume thab
is bounded away fronx andy.

By Lemma®.7(iii), there exists a closed neighborhobdc M of x such thatp, ¢ U,
and choosings;, €ls,, O[ such thaté(s;, p,) € oU (for n large), we have

{¢(s;, pn) | n € N} is essentially vertical, (6.2)
lim sup (¢ (s, pn)) < f(x). (6.3)

n—o0
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By Lemma®.7(iv), there exists a closed neighborho¥dc M of y such thatp, ¢ V,
and choosing;, €10, t,[ such that¢(t;,, p,) € 0V (for n large), we have

{¢@. pa) | n € N}
An{,, pn) | n € N}is pre-compactvyA C M, A ess vert (6.4)

iminf £ (g(e;. pu)) > £ ). (6.5)

(PS) condition implies thats, — s;,) is bounded: otherwise by Remaé2, (6.3 and
(6.5, we would obtain a sequende,) Cc R such that(¢(r,, p,)) has a subsequence
converging to a rest point, with f(y) < f(z) < f(x), contradicting our previous
assumption. Therefore, — s, <T for everyn € N.

Since the essentially vertical famil§ is positively invariant, §.2) implies that the
set

{0, o) I n e N} C o0, T x {¢(s,,, pa) | n € N})

is essentially vertical. But then we can choao%e= {c/)(t,’,, pn) | ne N} in (6.4), and
we obtain that the sequence(s,, p,)) is compact. By the boundedness rhfand by
the fact that the vector fiel&f is complete, we conclude that also the sequefgg
is compact.

Remark 6.8. An argument similar to the one used above shows thédt, shtisfies the
assumptions of Theore®.5, x € rest(F) anda € R, then the seW“(x) N {f >a} is
essentially vertical.

6.3. Examples
Let us see what Theoref5 says in the cases of finite Morse indices or co-indices.

Example 6.9 (Vector fields whose rest points have finite Morse index or co-jndex
Notice that the trivial subbundl€ = (0) (relevant in the case of rest points with
finite Morse index, see Exampl2.3) has a strong integrable structure (choose any
atlas of M). The family consisting of all pre-compact subsets Mfis a family of
essentially vertical subsets f& = (0), and it is obviously closed under the action
of the flow.

Similarly, the trivial subbundle€ = TM (relevant in the case of rest points with
finite Morse co-index) has a strong integrable structure (again, consider an arbitrary
atlas ofM). The family consisting of all subsets df is a family of essentially vertical
subsets for€ = T M, clearly closed under the action of the flow.

We have already seen that in the case- (0) (resp.£ = TM) (C1) is equivalent
to the fact that all the rest points &f have finite Morse index (resp. co-index).

Therefore the conclusion of Theore5 holds when (i) theC! vector field F
is Morse and gradient-like, (ii) either all the rest points Bf have finite Morse
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index, or they have finite Morse co-index, (il satisfies (PS), and (ivF is
complete.

Now let us look back at Exampl2.3

Example 6.10(Perturbations of a non-degenerate quadratic formAssume thatM =
H is a Hilbert space, and consider a function of the form

(&) = 3(LE & +b(0),

whereL € £(H) is self-adjoint invertible, and the gradient of the functib C2(H)
is a compact map. Leff be the (negative) gradient vector field ©f

F(&) = —gradf (&) = —L< — gradb(O).

If gradb has linear growth, i.e|lgradb(&)||<c(1+ ||&]) for every ¢ € H, thenF is
complete, its flowp maps bounded subsets Bfx H into bounded subsets &f, and
it satisfies

t
b1, &) =e e — /O e“ D gradb(d(s, &)) ds. (6.6)

Consider the constant subbundie= V~—(L), and the orthogonal projectio® with
kernel V. This bundle has the trivial strong integrable structure modeled nV)
consisting of the identity mapA = {I}. The family F consisting of all bounded
subsetsA of H such thatQA is pre-compact is an essentially vertical family fdr
Moreover identity 6.6) together with the fact that gradis a compact map implies
that F is invariant for ¢.

The assumption that graédhas linear growth can be easily dropped. Indeed, the
vector field

1

F(&) = —h(&gradf(¢), whereh(é) = 1+ jgradf (O)|2

is bounded, hence complete, and its fldwvmaps bounded subsets & x H into
bounded subsets ¢1. Notice thatf is a non-degenerate Lyapunov function 6y and
since Df[F] = —|/gradf||12/(1 + |gradf||?), the Palais—Smale sequences {®t, )
(in the sense of Definitior6.1) are exactly the Palais—-Smale sequencesff@n the
usual sense). The flow satisfies

B, = e 0O E f t h((t, £)e ™D gradb(¢(s, &) ds,
0
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wheret: R x H — R is the function

t ~
o, &) = /0 hGs. &) ds.

Then |z(z, £)|<[z], and the fact that grafl is a compact map again implies that the
family F is invariant for ¢.
We conclude that the thesis of the compactness Theddirholds, whenL is

invertible and self-adjointh € C?(H) has compact gradient, aricsatisfies the Palais—
Smale condition.

In the case of a non-trivial subbunde the question is how to find an essentially
vertical family which is closed under the action of the flow Fef This question will
be addressed in the next section.

7. Flow-invariant essentially vertical families

7.1. Hausdorff measure of non-compactness

We recall that the Hausdorff distance of two subsétsB of a metric space is the
number

disty (A, B) = max{sup inf dist(a, b), sup inf dist(a, b)} € [0, +o0].

acA beB beB 4€

We denote byH (X) the family of all closed subsets &f, and by, (X) the subfamily
consisting of bounded subsets, which is a metric space with the Hausdorff distance.
A related concept is the notion of measure of non-compactnegs.idfa subset of a
metric spaceX, its Hausdorff measure of non-compactnéss

px(A):=inf {r>0| A can be covered by finitely many balls of radiuse [0, +o0].
Equivalently, iy (A) is the distance from the set of compact subsetX:of
Px(A) =inf {disty (A, K) | K C X compac}. (7.2)

It has the following properties (sg®ei85, Section 2.7.3]
(8) px(A) < 4oo if and only if A is bounded:;

(b) fx(A) =0 if and only if A is totally bounded;

(c) if A1 C Az then By (A1) <Py (A2);

(d) Bx(A)<PA(A)<2Bx(A);
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(€) Bx(A1U A2) = maxX{fix (A1), Bx(A2)};
(f) Bx(A) = Bx(A);
(9) Py is continuous with respect to the Hausdorff distance.

If X is a normed vector space, denoting byActhe convex hull ofA c X, we also
have:

(h) Bx(ZA) = [Afx(A), and Bx (A1 + A2) < Bx (A1) + Bx(A2);

(i) Bx(coA) = fx(A).

7.2. Admissible presentations

We shall require that the essential subbundllef TM has a strong presentation (see
Definition 1.5) which satisfies the following finiteness and a uniformity conditions.

Definition 7.1. A strong presentatiofiM;, N;, Q;}ic; is called an admissible presenta-
tion if the Hilbert manifoldsN; are endowed with complete Riemannian metrics, and

(i) the covering{M;};c; is star-finite (i.e. everyM; has non-empty intersection with
finitely many M;’s);
(ii) there isr > 0 such that for everyp € M there exists € I such that

O 1B, (Qi(p)) C M;.

An admissible presentation faf determines a strong integrable structude (see
Propositionl.4). Moreover, it determines a useful family of essentially vertical subsets
of M. Indeed, letF be the family of subsetd ¢ M such that:

A can be covered by finitely many/;’s; (7.2)
for everyi € I, Q;(A N M;) is pre-compact. (7.3)

Proposition1.4 implies that this is a family of essentially vertical sets for the strong

integrable structured.
Given an admissible presentation 6f as above, we shall assume the following

condition on the vector fieldF:

(C3) (i) there isb > 0 such that|DQ; o F|ls <b for everyi € I;
(i) for every i € I andg € N;, there exists) = d(¢g) > 0 andc = ¢(g) >0 such

that
Bry,(DQ;i(F(A))<c By, (Qi(A)) VAC Qi_l(Bé(Q))- (7.4)

Here the tangent bundlEN; is given the standard metric induced by the Riemannian
structure ofN;. Notice that no Riemannian metric ¥ is involved in this condition.
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Remark 7.2. If (C3)-(ii) holds, we can replace the poigt € N; by a compact set
K C N; in (7.4): for everyi € I and every compact seK C N;, there exists
0=0(K) >0 andc = ¢(K) >0 such that

Bry, (DQ;(F(A))<c By, (Qi(A) VA C QO H(Ns(K)),
where Ns(K) denotes the)-neighborhood oK.
Remark 7.3. If E is a Hilbert space an@: M — E is a C! map, one often makes
no distinction between the tangential ma&pQ : TM — TE = E x E, (p,{) —
(Q(p), DQA(p)[<]), and its second componeQ:TM — E, (p,&) — DQ(p)[L].
WhenN; = E is a Hilbert space, we are allowed to replace the tangential map ofy
its second component irY @), writing (D Q;(F(A))) instead offf, z(DQ;(F(A)))

on the left-hand side of the inequality. IndeedSifc TE = E x E, and Py, P2: E x
E — E are the projections onto the first and the second factor, we have

maxXfr(P1S), fr(P2S)} < Ppyp(S) <Pp(P1S) + fp(P2S).

The main result of this section is the following proposition.
Proposition 7.4. Let {M;, N;, Q;}ie; be an admissible presentation for the essential
subbundleg of TM. Assume that the vector field F is complete and satisfies condition
(C3). Then the essentially vertical familf defined by(7.2) and (7.3 is positively
invariant for the flow of F

We start with the following local result.
Lemma 7.5. Let Q: M — E be aC! map into a Hilbert space. Let ¢ M be such

that Q(A) is pre-compagctand letz* >0 be such tha{0, t*] x A ¢ Q(F). Assume that
there existsc >0 such that

Be(DQ(F(AN)<c fp(Q(AN) VA" C ¢([0,1*] x A).

Then Q(¢([0, t*] x A)) is pre-compact

Proof. Let n = |[ct*| + 1, and sett = t*/n, so thattc < 1. Fork € N, 0<k<n,
set Ay = ¢([0, k1] x A). Since

1 t
Q(¢(t, p) = Q(p)+t-;/o DO(¢(s, p)[F (¢p(s, p)lds,
we have

Q(Ar+1) = Q(P(10, 7] x A) C Q(Ay) + [0, 7ICO (D Q(F (Ak+1)))-
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So, by properties (c), (h), and (j) of the Hausdorff measure of non-compactness, for
0<k<n —1 we have,

Br(Q(Aky1) < Pr(Q(Ar) + 15 (CO(DA(F (Akt1))))
= Br(Q(AW) + 1B (DOA(F (Ar+1))) < Pr(Q(AK)) + tcfp(Q(Ak11)).
Sincetc < 1,

1

PE(Q(Ar+1) < 1—

Br(Q(AY), k=0,1....n—1
TC

and the fact thafi;(Q(Ao)) = 0 implies thatf; (¢ ([0, t*] x A)) = fg(Q(A,)) =0,
as claimed. O

Example 7.6. The conclusion of the above lemma is not implied by the weaker as-
sumption thatQ(F(S)) should be compact for every s8tsuch thatQ(S) is compact,
as the following example shows.

Let H = (2(Z), let {ex | k € Z} be its standard orthonormal basis, &t~ =
Span{e; | k<0}, H* =span{e; | k > 0}, and letQ be the orthogonal projector onto
H~. Then there exists a smooth bounded vector fieldd — H whose restriction to
any set of the form

{CeH|IE-Cbl<ry+H™, &eH', r<l, (7.5)

has finite rank, and whose flog has the property that

0¢1({& e HT | 1¢1<1))

is not compact. In particularF(A) is compact and finite dimensional wheneyg-

(QA) < 1.
To construct such a vector field, fare N* choose two functionsf, gr € C°(R)

such that fi(s) = /s +1/k for s € [0,2], || fillo <2, gx(1) = 1, gi(s) = 0O for
s<1—1/k, 0< g <1. Lety € C®(R) be a function with compact support such that
x(s) =1 for |s]<2, and set

F(&) =1(D)_ (& e ) fié-e)er, &€ H.
k=1

The restriction of the vector fiel& to a set of the kind 1.5 has image contained in
the finite dimensional subspace spEm lkeN, E-ex+1/k>1— r}. On the other
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hand, an easy computation shows that

2

d)(l? €_k) =e_,+ <_

t
= ) k>17 0<t<11
" ﬁ) “

so the sef{Q¢(t, e_y) | k>1} does not have compact closure, for ang [0, 1].

Lemma 7.7. Let {M;, N;, Q;};e; be an admissible presentation of the essential sub-
bundle£ of TM. Let F be aC' complete vector field satisfying

IDQio Fllea<b Vi€l

for someb > 0.

() If Q7 (B (Qi(p))) C M;, then ¢(s, p) € M; for every|s|<r/b, and

dist(Qi (¢ (s, p)), Qi(p)) <bls|. (7.6)
(i) If a setA C M can be covered by finitely manys, then A = ;. Ai, where
Ai={peanm| Q7 B(Qi(p) c M (7.7)

and Ip C I is finite
(iii) If a setA ¢ M can be covered by finitely many;’s, then ¢ ([0, ¢] x A) can be
covered by finitely manys;’s, for everyt>0.

Proof. (i) Let J be the maximal interval of numbessfor which ¢(s, p) € M;. Then

dist(Q; (¢ (s, p)), Qi(p)) <

Q, (¢(a, p))' do

= V IDQ; o F(¢(a, p))|da| <bls| Vs e J.
0

Together with the fact that the closure glfl(B,(Q,-(p))) is contained inj;, this
implies that] — r/b, r/blC J and (7.6).

(i) Since A is covered by finitely manys;’s and the coverindM;};c; is star-finite,
the indicesi € I for which A; # @ form a finite subsefo. By the uniformity property
of the presentation (Definitiod.1(iv)), A = |

lelo
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(iii) If A; are the sets defined i7.(7), statement (i) implies thab([0, r/b[x A;) C M;
for everyi € Iy. Therefore¢ ([0, r/b[x A) is covered by the finite covering¥;};c,,
and the conclusion follows by inductiond

Proof of Proposition 7.4. By Lemma7.7(iii), ¢(0,7] x A is covered by finitely many
M's, so it is enough to show that the interval

T(A) ={t>0] Q;(¢([0, r] x A)) is pre-compact inV;, Vi € I}

coincides with[0, +o0o[. Since Oe T (A), we can argue by connectedness proving that
T (A) is both open and closed if®, +oc[.

We claim that7 (A) is open in[0, +oo[. Let ¢ € T(A). By Lemma7.7(ii), ¢([O, t]x
A) = Ujep, Aiy Where

A ={p € p10.11 x A) N M; | Q7N B(Qi(p) © Mi (7.8)

and Ip C I is finite. Clearly, 7(A) = [0, 7] + ﬂie,o T(A;), so it is enough to prove
that sup7 (A;) > 0, for everyi € Ip.

Leti € Ip. SinceQ,(A;) is pre-compact, (C3)-(ii), together with Remark2, implies
that there exist >0 and¢ > 0 such that

By, (DQi o F($)<cBy, (Qi($) VS C QL N5(Qi(A)). (7.9)

Moreover, Q,(A;) is covered by finitely many coordinate neighborhoods: there exist
qis ..., gn € Qi(A)), 0 < p< min{s, r}, Qi(A;) C U'}:l B,2(q;), and local charts

with B,(g;) C dom(y;), ¥;(B,(g) C dom(y;h), and y; %, Dy; Lipschitz. Then
A = U;?:lA[, with A{ = A; N Q7Y (B,/2(q;)). Again, it suffices to show that
sup7(A)) > 0.

Let 1<;j<n, and setU = Q' (B,(q;)). Since p<r and ¢; € Q;(A;), by the
definition of A; we have

U c Q7Y (B,(g))) C M;. (7.10)

Let p € A{ C M;. Let [0, t(p)[, 0 < 7(p) < + oo, be the maximal interval of positive
numberss for which ¢(s, p) € U. By Lemma7.7(i),

dist(Q; (¢ (s, p)). q;) <dist(Q; (¢ (s, p)), Qi(p)) + dist(Q;(p), q;) <bs + p/2
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for everys € [0, t(p)[. Together with 7.10 this implies thatt(p) > p/(2b). Therefore,

#([0, p/(2b)[x A]) C U. (7.11)

Let Q :=y;00Q; : U — E. Since p<d and g; € Q;(A;), U is contained in
Q; H(N5(Qi(4))). By (7.9), for any S C U,
Be((DQ; o F)(S)) < Bpyxp((DQo F)(S)) = Bpyp(DY; o DQ;(F(S)))
< ip(DY ) Bry, (DQi o F(S))<clip(Dy;)By, (Qi(S))
C“p(Dlpj)ﬁNl(lp;l(Q(S)))<C“p(Dlpj)Iip(w;l)ﬁE(Q(S))-

By (7.11), we can takeS = ¢([O0, p/(2b)[xAl.j) in the above inequality, and Lemma
7.5 implies thatQ(¢([0, p/2b[x A])) is pre-compact irE.
Since B,(g;) € dom(yr;) andy;(B,(q;)) C dom(tplfl), the set

Qi($(10, p/(2D)[x A])) = Y H(Q(P(I0, p/(2b)[x A))))

is a compact subset @¥;. Therefore, supT(A{)>p/(2b) > 0, as we wished to prove.
There remains to show that the interval(A) is closed. Letr = sup7 (A). By
Lemma7.7(ii), ¢([0,¢t] x A) = Uie[o A;, where A; is defined in {.8) andIlp C I is
finite. It is enough to prove tha®;(A;) has compact closure iW;, for anyi € Io.
Fix i € Iy, and letgy = Q;(¢(t, pr)), where p, € A and ¢(¢, pr) € A;, be a
sequence inQ;(A4;). By Lemma7.7(i), ¢(t — t, px) € M; for any 0<t < r/b, and

dist(Qi (¢(r — 7, px)), qx) <br. (7.12)

Sincer = sup 7 (A), the sequenceQ; (¢(t — 1, pr)))ren IS compact for any 6< 7 <
r/b. Then {.12 and the completeness a@¥; imply that also the sequencgy) is
compact, proving thab;(A;) is pre-compact. [

7.3. Properties of condition (C3)

Condition (C3) is stronger than (C2), and like (C2) it is a convex condition. Indeed,
the following result holds.

Proposition 7.8. Let {M;, N;, Q;}ie; be an admissible presentation of the essential
subbundle€. The following facts hold

(i) condition (C3) implies condition(C2);
(i) the vector fields F satisfyin¢C3) form a module over the ring1(M) N C}?(M)
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Proof. (i) Let i € I, p € M;, and setg := Q;(p). Up to the composition withC*
local charts

¢ :dom(p) C M; — H, p € dom(g), :dom@y) C N; — E, g € dom(y),

such thaty, and Dy are bi-Lipschitz, we may assume th@t is a C! semi-Fredholm
map with indQ; >0 from an open set of the Hilbert spakkinto the Hilbert spacé.
By (C3)-(ii) and Remark7.3, there existd > 0 andc¢>0 such that

Br(DQ;i(F(A)))<cPp(Qi(A) VA C Q7 (Bs(q)). (7.13)

Let T € L(H, E) be a linear map with finite rank such th&Q;(p) + T is surjective.
SinceT has finite rank,

BE(Qi(A) = fp((Qi + T)(A)), Pp(DQi(F(A)) = fp(D(Qi + T)(F(A)). (7.14)

The mapQ; + T is a local submersion g, so up to considering a change of variable
at p, we may assume that the restriction @f to a neighborhoodJ of p coincides
with a linear surjective ma® from H to E, which by (7.13 and (7.14 verifies

Br(QF(A)<cPp(QA) VYA C Q0 XBs(q)NU. (7.15)

By composing with a linear right inverse @), we may also assume th#& is a
closed subspace dfl and thatQ is a linear projector ontd. In these coordinates,
the essential subbundt is locally represented by the constant subbundle(kewith
projectorP = I — Q. By (7.19, the map(I — P) F(p+ P) is compact in a neighborhood
of 0, so its differential at O,

D((I = P)F(p+ P))(0) = — P)DF(p)P = (LFP)(p)P,

is a compact operator, proving (C2).

(ii) Let F1 and F» be C* tangent vector fields oM, and lethy, h, € CHM)NCYA(M).
Leti € 1. Clearly, if F1 and F» satisfy (C3)-(i) with constantg; and by, h1F1+haF>
satisfy (C3)-(i) with constanfizi1|leob1 + |142]lccb2-

Let p € M;, and setg := Q;(p). Lety : U — E, g € U C N;, be a local chart
such that

DYy :TU - Yy(U)x ECEXE
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is bi-Lipschitz of constant 2. By property (h) of the Hausdorff measure of non-
compactness, ifA ¢ Q7 X(U),

Brw;(DQi o (h1F1+ h2F2)(A)) <2Ppp(DY o DQj o (h1F1+ h2F2)(A))
L2||h1llocBex (DY 0 DQ; o F1(A)) + 2||hzllcc Bpx g (DY 0 DQ; o F2(A))
<Aooy, (DQ; © Fy(A)) + 4l h2llocfirn, (DQi 0 Fa(A)).

Therefore, if i1 and F» satisfy (7.4) with constantsi1, ¢c; anddz, ¢, thenhiFy+hoFo
satisfies [.4) with constantsé = min{d1, d2} and ¢ = 4||h1]coc1 + 4llh2]lccc2. This
proves thathy F1 + ho F> satisfies (C2)-(ii). O

It seems useful to find sufficient conditions implying (C3)-(ii), which do not make
use of the measures of nhon-compactness but are stated only in terms of Lipschitzianity
and compactness of some maps. To this purpose, assumdltimtendowed with a
Riemannian metric.

The following proposition says that under mild Lipschitz assumptionngTﬁ and
F, condition (C3)-(ii) holds if and only if the mapBQ; o F : Qi_l({q}) — T,N; have
pre-compact image. Example6 suggests that without Lipschitz assumptionsFothe
last condition is not sufficient for the conclusion of PropositibA to hold.

Proposition 7.9. Assume that every may; — H(M;), ¢ +— Qlfl({q}), is locally

Lipschitz and that for everyg € N; there existso > O such that the mapQ; o F

is Lipschitz onQi_l(B5(q)). Then (C3)-(ii) holds if and only ifDQ; o F maps every
fiber Qi_l({q}) into a pre-compact set

Remark 7.10. The assumption on the local Lipschitzianity g;l, required in the
above proposition involves a uniform lower bound on the non-zero singular values of
DQ;. More precisely, leQ : M — N be aC! submersion between Riemannian Hilbert
manifolds, withM complete and\N connected. If there is > 0 such that

inf (a(DQ(p)*DA(p)) \ {0}) 2 Vpe M, (7.16)

then the mapV — H(M), g — Q 1({q})), is 1//a-Lipschitz.

In order to prove this statement, lgh, g1 € N andk > 1//x. Let pg € Q 1({¢go0})
and letv : [0,1] — N be acC?t curve such thav(0) = go, v(1) = ¢1. SinceQ is a
submersion, for anyg € [0, 1] and everyp € Q 1({v(10)}), there exists aC! local
lifting u of v verifying u(f0) = p and (1) € (kerT,,Q)i. Assumption 7.16) easily
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implies that|u’(10)| < (1//@) |V (t0)], SO
|u' (1) | <k[v'(1)] (7.17)

for any t in a neighborhood ofy. By a standard maximality argument, it follows that
there exists a Lipschitz lifting : [0, 1] — M of v with u(0) = pg and verifying 7.17)
a.e. in[0, 1]. Therefore,

1 1
dist(po, O (g1 < /O WOl di <k /0 W (1)) d.

Hence taking the infimum ovérandv we obtain distpo, @ 1({g1})) <1/v/2d(q0. q1),
and by symmetry dist(Q 1({g0}), @ 1({q1})) <1//2d(qo, q1), as claimed.

Proof of Proposition 7.9. Let i € 1. Since fy.({g}) = 0, condition (C3)-(ii) trivially

implies that DQ; o F maps every fiberQl.‘l({q}) into a pre-compact set, for every
q € N;.

Let us prove the converse statement. ket N; and leté > O be so small that the
maps

Bs(q) — H(Q7 Y (Bs(@), ¢ '+ Q7 (g'D,

O7Y(Bs(q)) — TN;, p+> DQ;ioF(p)

are Lipschitz. Then also the maps

H(Bs (@) — H(Q; X(Bs(q)), T QD)
H(Q; X (Bs(q))) — H(TN;), Ar> DQ;o F(A)

are Lipschitz. Letc be the Lipschitz constant of their composition

ot B o
H(Bs(q) —> MO (Bs(q)) "2 H(TNy).

Let A C Qi_l(B(;(q)) be the set for which we wish to prov&.4). We may assume
that A = Qi_l(Z) for some closed subs& C Bjs(q). If X9 C Bs(g) is a finite set, our
assumption implies thaD Q; o F(Qi‘l(zo)) is pre-compact. So by7(1),

Bry,(DQi(F(A))) = ﬁTNi(DQi(F(Qi_l(Z))))
< disty(DQ; 0 FoQ; X (), DQ; 0 FoQ; *(Zg)) <cdisty (T, o).
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By the density of the space of finite sets in the space of compact set§,. Dy dnd
by property (d) off3, we obtain

Pra. (DQi(F(A)))<c inf  disty (X, Xg) =c¢ inf  disty (Z, Zo)
' ZoCBs(q) Z0CBs(q)
X finite X compact

= ¢ Ppyiq) BV <2 B, (X) = 2¢ f, (Qi(A)),

which proves (C3)-(ii). O

Example 7.11(Product manifolds Let us consider again the situation of Examplé
M = M~ x M7 is given a product complete Riemannian structure, ¥drd 7 M~ x (0).
Consider the projection onto the second fac®r ¥ — M™*, (p—, p*) — pT, and
the admissible presentation of the subbundle

{Q|B*><B+ |B- xBTc M xM"is bounded}.

Writing the tangent vector field as F(p~, p™) = (F (p~,phH), FT(p~,ph)) €
T,-M~ x T,+M*, there holdsDQ o F(p~—, p*) = F*(p~, p™). Assume that (i)
F7 is bounded, and (ii) for everp™ € M™ and for every bounded se#~ ¢ M~
there existsé > 0 such thatF™ is Lipschitz on B~ x Bs(p™), and that the map
M~ — T,eM™*, p~ = F*(p~, pT) is compact. Then PropositioR.9 implies thatF
satisfies (C3).

8. Broken flow lines

Let x andy be rest points of the gradient-like Morse vector fi€ldLet us assume
that W*(x) N W*(y) has compact closure. Consider a sequence of flow lines from the
rest pointx to the rest pointy, and the sequence of their closures:

Sn =R x {pp}) = R x {psH U{x,y}, pn€ W'x)NW ().

Since W¥(x) N W*8(y) is compact, up to a subsequence we may assumepthat p,
and the continuity ofp would give us the convergence

d)('s Pn) - (l’)(v P)

uniformly on compact subsets d&. However, it may happen that ¢ W*(x), or

p ¢ W5(y), so ¢(-, p) could be a flow line connecting two other rest points, and
the convergence would not be uniform & We will show that in this case a sub-
sequence ofS,) converges to a broken flow line in the Hausdorff distance. The dis-
cussion is independent on conditions (C1-3), and involves only the compactness of
We(x) N WS (y).
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Definition 8.1. Let x, y € rest(F). A broken flow linefrom x to ay is a set
S=81U---US8,

wherek>1, S; is the closure of a flow line from;_1 to z;, wherex = zo # z1 #
-o- # 7x—1 # zx = y are rest points.

When k = 1, a broken flow line is just the closure of a genuine flow line. Let us
fix a Lyapunov functionf for F. If Sis a broken flow line as in the above definition,
the following inequalities must hold:

f&x) > fz) > - > flz-1) > fO). (8.1)

It is easy to check that a compact st M is a broken flow line fromx to y if and
only if (i) x,y € S, (i) Sis ¢-invariant, (iii) the intersection

SN{peM| f(p)=c}

consists of a single point i € [f(y), f(x)], and it is empty otherwise. Now we can
state the compactness result for the gradient flow lines.

Proposition 8.2. Assume that the Morse vector field F has a Lyapunov functiand
that x, y are rest points such thaW#(x) N W$(y) is compact. Let(p,) C W*(x) N
Wi (y), and setS, := ¢(R x {p,}) U {x, y}. Then (S,) has a subsequence which
converges to a broken flow line from x tpig the Hausdorff distance

Proof. The space of compact subsets of a compact metric space is compact with respect
to the Hausdorff distance, 8,,) has a subsequencs),) which converges to a compact
setS C Wu(x)NWs(y). Thenx,y € S, and sinceS,, is ¢-invariant, so isS. Since

S c X f (), f(x)]), we obtain that the set

SN{peM| f(p) =c} (8.2)

is empty for everyc ¢ [ f(y), f(x)].
Let c € [f(y), f(x)]. Then(S)) has a subsequend8) such that

Sin{peM] f(p)=-c}

converges to some point i18.@), which is then non-empty. If the se8.@) contains two
points p, ¢, the fact that(S,) is a sequence of flow lines allows us to find a sequence
(pn) converging top, and numbers, € R such that¢(t,, p,) — g. By reversing if
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necessary the role gf and g, we may assume that >0 for everyn, and we deduce
the convergence:

h
[O Df (¢, p)F (P, pa))]dt = f($(tn, pn)) — f(pn) = f(@) — f(p) =0.

Then the fact that the rest points bfare isolated easily implies that eithgr — 0,

or the sequence of set&([0, #,] x {p,}) converges to a rest point. In both cases, we
obtain thatp = ¢g. This shows that set8(2) consists of a single point. Henc®is a
broken flow line fromx toy. O

9. Intersections of dimension 1 and 2

Assume that the gradient-like Morse vector fididsatisfies (C1-2) with respect to
a (0)-essential subbundi of TM, so that the relative indewx(x, £) is a well-defined
integer, for anyx € rest(F).

We say thatF satisfies theMorse—Smale property up to order, K W%(x) and
W9 (y) have transverse intersection for every pair of rest points such thatn(x, £)—
m(y, £)<k. The Morse—Smale condition up to order O implies that, for a broken flow
line as in Definition8.1,

mx,&) >m(z1,&) > -+ > m(zg-1, &) > m(y, E). (9.2)

In this section, we shall assume thathas the Morse—Smale property up to order
2, and we shall describe the intersectidiig (x) N W*(y) whenm(x, ) —m(y, €) is
either 1 or 2. As in the last section, we shall assume that such an intersection has
compact closure. By Theore®.3, W*(x) N WS(y) is a submanifold of dimension 1,
respectively 2. The flowp defines a free action of the group onto W (x) N W*(y),
so the quotient, that is the set of the flow lines frarto y, is a manifold of dimension
0, respectively 1.
Assume thatx, y are rest points with

mx,&) —m(y, &) =1 (9.2)

We claim thatW*(x) N W*(y) consists offinitely manyconnected components. Indeed
each connected component is a flow line fraro y, and the seC of their closures is
discrete in the Hausdorff distance. On the other ha@d) @nd ©.2) imply that these
are the only broken flow lines from to y. So by Propositior8.2, C is also compact,
hence finite.

Note that the restriction of the flog to the closure of a component 8f* (x)NW* (y)
is conjugated to the shift flow ot = [—oo, +o0]:

RxR>(ur>utrteR.
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Now assume that, z are rest points with
m(x,&) —m(z, &) = 2. (9.3)

The quotient of each connected compon@hby this action,W/R, being a connected
one-dimensional manifold, is either the circle or the open interval. In other words a
connected componeilV of W*(x) N W¥(z) is described by a one-parameter family of
flow lines u;, where /. ranges inst or in 10, 1.

In the first case one can easily verify tha&t = W U {x, z} is homeomorphic to a
2-sphere, and that the restriction ¢fto W is conjugated to the exponential flow on
the Riemann spher§? = C U {oo}:

RxS%> (0 e eS?

In the second case, by Propositi8r2, W \ W contains broken flow lines, which have
just one intermediate rest point, b9.{) and ©.3). Then the flow¢ restricted toW is
semi-conjugated to the product of two shift-flows & More precisely, the situation
is described by the following theorem.

Theorem 9.1. Assume that the gradient-like Morse vector field F satigfies-2) with
respect to a(0)-essential subbundl€ of TM. Assume that F has the Morse—Smale
property up to order2. Let x, z be rest points such that(x, £) —m(z, £) = 2, and let

W be a connected component &t (x) N W9 (z) such thatW is compactand W/R is

an open interval. Then there exists a continuous surjective map

h:RxR— W

with the following properties

() ¢, (h(u,v)) =h(u+t,v+1), for every(u,v) e Rx R, t € R;

(i) h(R? = W, and there exist rest points, y’ with m(y, &)=m(y’, E)=m(x, E) — 1,
and W1, W2, Wi, W, connected components 8f*(x) N W*(y), W"(y) N W*(z),
WH(x) N W*(y"), W(y") N W¥(z), respectively such thatWy U Wa # W; U W,
and

h(R x {—o00}) = W1, h({+00} x R) = W2,
h({—o00} x R) = W], h(R x {+00}) = W

(iii) the restrictions of h tdR?, to {+oo} x R, and to R x {+oc}, are diffeomorphisms
of classC?;
(iv) if moreover the(0)-essential subbundI€ can be lifted to a subbundl¥, then

degh = - degh|{—oo}><R ' degh|R><{+oo} = degh|R><{—oo} ) degh|{+oo}><[R§s
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wheredegdenotes theZ-topological degregreferred to the orientations defined in
Section5.

Concerning (ii), note that it may happen that= y’, and in this case even that
W1 = W] or W = W,, but the last two identities cannot hold simultaneously. When
y # ¥/, his injective, so it is a conjugacy. Statement (iv) expresses the coherence we
need between the orientations of the one- and two-dimensional intersections of unstable
and stable manifolds. The picture is completed by the following proposition.

Proposition 9.2. Assume that the gradient-like Morse vector field F satisfies-2)
with respect to g0)-essential subbundl€ of TM. Assume that F has the Morse—Smale
property up to order2. Let x, y, z be rest points such that(x,&) = m(y, &) + 1=
m(z, £)+2,and letWy, W, be connected componentsigf (x)NW* (y), W (y)NW*(z),
respectively. Then there exists a unique connected component W' @f) N W*(z)
such thatWi U W> belongs to the closure ofgb(lR x{phlpe W} with respect to

the Hausdorff distance

Both Theorem9.1 and PropositiorD.2 will be proved in Section 11. The main tool
in the proof is the graph transform method, which allows us to study suitable portions
of W*(x) and W¥(z) in a neighborhood of another rest pointe W (x) N W3 (z).

10. The boundary homomorphism

Let (M, &) be a pair consisting of a complete Riemannian Hilbert manifdicbf
classC?, and of ac! (0)-essential subbundle @M having an admissible presentation.
Let F be aC® Morse vector field orM, admitting a non-degenerate Lyapunov function
f. We shall assume (PS), (C1-3), the Morse—Smale property up to order 2, and

(C4) for everyg € Z, f is bounded below on regtF) = {x e rest(F) | m(x, ) = q}.

10.1. Morse complex with coefficients 4h

We first consider the situation in which is the (0)-essential class of a subbuntile
of TM. In this case we can fix arbitrary orientations of the Fredholm p@is V(x)),
for every x e rest(F).

Let x andy be rest points withn(x, ) — m(y, ) = 1, and letW be a connected
component of W*(x) N W¥(y). ThenW is a flow line, and it is endowed with the
orientation described in Sectidh We can define the number

a(W):=ded¢(, p) : R— W]

for p € W. In other wordss(W) equals+1 or —1 depending on whether(p) € T,W
is positively or negatively oriented. We define also

a(x,y) =) a(W),

w

where the sum ranges over all the connected componenii&“at) N W4 (y).
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Now let x andz be rest points withn(x, £) —m(z, £) = 2, and letS(x, z) be the set
of broken flow lines fromx to z with one intermediate rest point (necessarily unique
and of indexm(z, &) + 1). By (PS) and by the Morse assumption there are finitely
many rest pointsy with f(y) €1f(z), f(x)[. By Theorem6.5 and Proposition8.2,
the setS(x, z) is finite. By Theorem9.1 and Propositior9.2, there is an involution
W1 U W2 — Wi U W, without fixed points on the sef(x, z), and

a(Wpa(Wy) = —a(W1)a(Wa). (10.2)

Let ¢ € Z and letC,(F) be the free Abelian group generated by the rest points of
index q:

C,(F) = spanyrest, (F).

Note thatC,(F) may have infinite rank.
Assumption (C4) allows us to define the homomorphism

3y : C4(F) — Cy_1(F)

by setting for everyr e rest, (F)

Ogx = Z a(x,y)y. (10.2)

yerest,_1(F)

The Abelian groupsC,(F) together with the homomorphismg, are the data of a
chain complex. Indeed we have:

Theorem 10.1. For everyq € Z, 0,104 = 0.

Proof. Let x € rest;(F) andz € rest;_»(F). The coefficient ofz in 6,10, is

Yo otyea= Y, a(Wna(Wa),

yerest_1(F) W1UW2eS8(x,z2)

which is zero by 10.). O

We will call {C,(F),d,4},cz the Morse complex ofF. Clearly, the construction
depends on the choice of the subbunileand on the orientation of each Fredholm
pair (H;,V(x)). Changing the subbundl¥ by a compact perturbation changes the
Morse complex by a shift of the indices (whévi is connected). A change of the
orientation of (H;, V(x)) produces an isomorphic Morse complex.
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10.2. Morse complex with coefficients 4

In the general case of a (0)-essential subbuidlstatement (iv) of Theorer.1 is
not available, but we can still define a Morse complex with coefficients. Indeed,
defining o(x, y) € Z2 to be the number of connected componentsidf(x) N W*(y)
counted modulo 2, and, (F) to be theZ,-vector space generated by the rest points
of index g, (10.2 defines a complex o¥»-vector spaces.

11. Proof of the conjugacy theorem
11.1. Construction of h near a broken flow line

The main point in the proof of Theore®.1 and Propositior9.2 is to constructh
near a broken flow line.

Proposition 11.1. Assume that the Morse vector field F has a non-degenerate Lyapunov
function f satisfies(C1-2) with respect to a(0)-essential subbundl¢€ of TM, and
satisfies the Morse—Smale condition up to or@el et x, y, z be rest points such that
mx,&) = m(y,) +1 =m(z, &) + 2. Let W1 and W> be connected components

of W'(x) N W¥(y) and W“(y) N W¥(z), respectively. Then there exists a continuous
injective map

h:A:={uv)eRxRv<u} > Wix)NWi(2)

with the following properties

(i) ¢,(h(u,v)) =h@+1t,v+1), for every(u,v) € A, t € R;

(i) (AN R2) ¢ W (x) N W5(2), h(R x {—o0}) = W1, h({+00} x R) = W», and the
restrictions of h toA NR?, to R x {—oo}, and to {+oo} x R, are diffefomorphisms
of classC?l;

(i) there existso > 0 such that for anyp € W*(x) N Wi(2), if S = ¢(R x {p}) has
Hausdorff distance less thah from W1 U W, then S C h(A);

(iv) if moreover the(0)-essential subbundl€ can be lifted to a subbundl¥, then

degh = — degh|rx(—oc} - d€QN (100} x ks

wheredeg denotes theZ-topological degregreferred to the orientations defined in
Sectionb.

Let us identify a neighborhood of in M with a neighborhood of 0 in the Hilbert
spaceH, identifying y with 0. We endowH with an equivalent Hilbert product, -)
which is adapted toVF(y) = DF(0) (see Appendix C), and we setf" := Hy,

H® := Hj, so thatH" & H* is the splitting ofH given by the decomposition of the
spectrum of VF(y) into the subset with positive real part and the one with negative
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real part. LetP* and P* denote the corresponding projectors. We shall often identify
H = H"® H*® with H* x HS. By H"(r), resp.H*(r), we shall denote the closeaeball
centered in O of the linear subspat¥, resp.HS. We setQ(r) := H"(r) x H*(r). If
X andY are metric spaces antl> 0, Lip,(X, Y) will denote the space df-Lipschitz
maps fromX into Y, endowed with theC® topology.

Let p1 € W1 and p2 € W,. Choosepp > 0 so small that the sets

X =W N (p) N Bp,(p1), Z:=W'()N 20 By, (p2),
do not contain rest points, and
XNOW' ) NWi(y) = {p1}, ZNW"(y) N W (z) = {p2}.

Then X and Z are submanifolds of clas€®, and the Morse-Smale condition implies
that X is transverse tdV*(y), andZ is transverse tav*(y).

Lemma 11.2. For any 6 > O there existrg > 0, p > 0, (>0, and two continuous
families

{1}re0,4001 € Lipg(H"(ro), H*(r0)),  {Ti}re[—o0,01 C LiPo(H’ (r0), H" (r0)),

such that eachs; and eachr; is C1, and

() ¢4+ (X N By(p1)) N Q(ro) = graphoe;, for everys € [0, +ool;
(i) W"(y) N Q(ro) = grapho ;o
(ii)) ¢_yp4¢(Z N By(p2)) N Q(ro) = graphe,, for everyr €] — oo, 0];
(V) W¥(y) N Q(ro) = grapht_;

(v) for any 0; > O there existr; €]0, rg] and 1 >0 such that

OtlHuy) € Lipg, (H"(r1), H'(r1)), Tty € Lipg,(H* (1), H u(r1))

for any t >1.

Proof. Let r be as small as required by Propositio@is5 and C.6. Since 7,, X &
T,,W*(y) = Tp, M, the path of subspaceB¢,(p1)T,, X converges tol, W*(y) for

t — 400, by Theorem B.2(iii). Therefore, we can find >0 such thatp(s1, p1) is in
the interior of Q(r), and D¢, (p1)T, X C H" x H* is the graph of a linear operator
from H" to H* of norm strictly less than 1. By the implicit function theorem, there
exists p > 0 such that¢,, (X N By(p1)) is the graph of a 1-Lipschitz map: U —
H*(r), whereU C H"(r) is open. Moreover, graphnN W*(y) = {¢(s1, p1)}, SO by
PropositionC.5v), there exists; >0 and¢’ € Lip,(H"(r), H*(r)) such that

graphe’ = ¢, (X N Bp(p1) N Q(r),
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where we have also used Propositiorb. Let
I': [0, +00] x Lipy(H"(r), H*(r)) — Lipy(H"(r), H*(r))

be the graph transform map provided by PropositihB. By PropositionC.Xiv), there
exist rg €]0,r] and s3>0 such thatI'(¢, ") € Lipy(H"(ro), H* (r0)) for any r>s3.
Setting g := 51+ s2 +s3 and o, = I'(t — 53, 6") for ¢ € [0, +o0], statements (i), (ii),
and the first part of (v) follow immediately from Propositio@s5 and C.6.

Changing the sign of and considering the evolution &f, we obtain a family of
maps{z;} satisfying (iii), (iv), and the second part of (v)[J

Proof of Proposition 11.1 Let 0 be a positive number strictly less than 1, and let
ro, P, to, 07, T; be as in the lemma above. Singe< 1, the contracting mapping principle
implies the existence of a Lipschitz continuous map

Az Lipg(H"(ro), H' (r0)) x Lipg(H*(ro), H"(r0)) — Q(ro),

which associates t@o, t) the unique intersection of the graphs efand z, i.e. the
unique fixed point of the contraction

H"(ro) x H*(ro) > (&, ) = (z(n), 6(&)) € H"(ro) x H*(ro).
For (u, v) € [0, 400] x [—00, O], set

X, — { Purio(X N Bp(p1) N Qro)  if u € [0, +o0l,

W (y) 0 Q(ro) if u=+o00,
7 _ 1 Po—(Z N Bp(p2)) N Q(ro)  if v €] = 00,0
T W) N Qo) if v=—o0.

Then we definei(u, v) to be the unique point of the intersectidf), N Z,. The map
h is well defined and continuous d©, +oc] x [—oo, 0] because it can be written as
the composition

[0, +00] X [=00, 01 3 (it, v) > (0w, Ty) —> Q(ro) = M.

SinceX andZ are contained in level sets ffand they contain no rest points,NX,, =
@ifutu,andz,NZy, =0 if v #v'. Soh is injective. By definition, for every
(u, v) € [0, +00] x [—00, 0], and —u <t < — v,

¢ (h(u,v)) =hu+t,v+1) (11.1)
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and we can use formuldl{.] to extendh to a continuous injective map on
A:{(u,v)e@x@h)gu},

still verifying (11.1), proving (i). SinceX C W*(x) andZ C W*(z), for every (u, v) €
AN R? the pointi(u, v) belongs toW"(x) N W¥(z). Since

h(u, —00) = p(u, p1) and h(+00,v) = (v, p2).
hlRx{—co} aNd h|(1o0yxr are diffeomorphisms of clas§® onto Wy and W-. Since X

and Z are of classC! and so is¢, the implicit function theorem implies thatt| \ 2
is a diffeomorphism of clas€, proving (ii). Notice that, differentiating the identities

¢i(h(u,v)) =h(u+t,v+1), ¢,(h(u,—00)) =h(u +1t, —00),
¢t(h(+oo’ U)) = h(+OO, v + t)v

with respect tot in + = 0, we obtain
Oh Oh Oh
F(h(uvv)) = —(M,U)+—(M,U), F(M,-OO): —(M,—OO),
ou v Ou

oh
F(+o0,v) = %(4—00, v) (11.2)

for everyu e R, v € R.
Sincey is a rest point, angh1 € W*(y), p2 € W*(y), we can findo €]0, p] so small
that, if ¢(t1, p) € Bs(p1) and ¢(r2, p) € Bs(p2), we have

tp —t1 22, ¢(t1+10,p) € Q(ro), ¢t2 —to, p) € Q(ro). (11.3)

If pe W4x)NW9(z) and S := ¢(R x {p}) has Hausdorff distance less tharfrom
W1 U Wa, we can findr, t2 € R such that¢p(r1, p) € Bs(p1) and ¢(r2, p) € Bs(p2).
By PropositionC.6, the set ofr € R such that¢(z, p) € Q(rg) is connected, so by

113,

1+t 1 +10) + (12 — ¢
¢ (%p) = ¢ (( 1110 5 2 0),p) € Qo). (11.4)
Then, settingu := (t2 — 11)/2 — 1o >0 andv := —u <0, we obtain

¢ (tl ; 2 ”) € Putig(X N Bp(p1) N dy_y(Z N Bp(p2))- (11.5)
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So, by (1.4 and (1.9, ¢((t1+12)/2, p) € X, NZy, that iS¢ ((t1+12)/2, p) = h(u, v).
By (i) the whole flow line througlp is in 2(A) which, being closed, must contain also
S proving conclusion (jii).

In order to prove (iv), we shall need the following.

Lemma 11.3. There existug>0, v9<0, and a continuous map
W : [ug, +00] x [—00, vo] — Gr(H),

such that W(u, v), V(h(u, v))) is a Fredholm pair for every(u, v) € [ug, +00] X

[—o0, vo], and

() Tho,v) W*(2) = RF (h(u, vo)) @ W(u, vo), for everyu € [ug, +o0l;

(i) W, —00) = Thu,—00) W* (y), for everyu € [ug, +o0];

(iii) D,y (h(400, v))W(+00, vo) = W(+00, v), for everyv €] — oo, vol;

(iv) W(uo, v) + ThugvyW*(x) = H for everyv € [—o0, vo], and there exists a non-
vanishing continuous vector fiel@d : [—oco, vo] — H along v — h(ug, v) such
that

Oh
W(uo, v) N Thuo,y W (x) = RG(v), G(—o0) = 5(140, —00),

oh
G(vo) = E(MO’ Vo),

for everyv € [—o0, vg].

Proof. Recalling that by (C1XH*, V(y)) is a Fredholm pair, we can finéy €]0, 0]
so small that

VS € L(H®, H") such that||S|| <201, (graphS,V(y)) is a Fredholm pair.  (11.6)

Moreover, we may assume that settihg= VF(y) = DF(0),

402 1
+201 < —5——. 11.7
1-62 ILIZIL =12 (L)
Let r1 and#; be the positive numbers given by Lemrh&.2Av): there holds
Do (O <01, 1Dt ()] <01 (11.8)

foranyt>m, &£ € H"(r1), n € H*(r1). Since

F() =L{+o() for {— 0, (11.9)
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the quadratic form

g(&) = —3(LE O

is a Lyapunov function for in a neighborhood of 0. Therefore there exists>0
such that the functiom — g(h(u, —00)) is strictly decreasing ifu1, +oo[. So when
v — —oo the functions

[u1, +oo[> u > g(h(u,v)) € R

converge uniformly to a strictly decreasing function. Therefore, using dl&®)( the
fact that W*(y) is tangent toH* at y = 0, (11.7), (11.8, and (1.9, it is easy to
check that there areg>0 andvg<0 such that:

(8) Dg(h(ho, vo)) [ (o, v0) | = L g, v0))lu=uo < O;

(b) g is a Lyapunov function folF on i ([ug, +00] x [—00, vol);

(c) if S € L(H®, H"*) has norm|S||<01, and (u, v) € [ug, +o0] x [—0o0, vo], then
(graphS, V(h(u, v))) is a Fredholm pair;

(d) for anyv € [—o0, vg] there holds|| P*h(ug, v)|| <&l P*h(uo, v)|, and

I F (R (uo, v 2ILI I P* h(uo, V),
I F (h(uo, v)) — Lh(uo, v) || <ell P*h(uo, V)|,

wheree > 0 is so small that

40,
1-62

(01+e)+201+¢< (11.10)

ILI2IL~2)2
(e) for any (u, v) € [ug, +00] x [—0o0, vg] We have

Do, (P h(u, v))|<01, [[Dty(P°h(u, v))| <01

We will defineW(u, v) to be the graph of suitable linear mapé:, v) € L(H®, H").
We start by definingS on three edges of the squal®y, +o00] x [—o0, vo]. For u €
[ug, +00] we set

S(u, vo) = Dty (P h(u, vo)), S(u, —00) = D1_oo(P*h(u, —00))
and forv €] — oo, vg] we set

S(400, v) = D1y (P h(400, v)).
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By (e), || S| <01. The mapSis clearly continuous ofug, +oco]x {ve} and onfug, +00]x
{—o0}. If v e]— o0, vl

graphS(+o00, v) = D¢, _,, (h(+00, vo))[graphS(+oc, vo)l,

S0 S is continuous or{+oo}x] — 0o, vg]. By Theorem B.2(iii), S(4+-o0, v) converges
to S(+o00, —o0) for v - —o0, SO

S : ([ug, +00] x {—00, vo}) U ({+00} x [—00, vol) — L(H*, H")

is a continuous map. We can extend the n&py convexity to a continuous map on
[1o, +00] x [—o0, vo] in such a way that|S(u, v)|| <01 everywhere, and we set

W(u, v) = graphS(u, v).
By (c), W(u, v), V(h(u, v))) is always a Fredholm pair, and by constructidhsatisfies
the requirements (i)—(iii).
There remains to check (iv). Lat € [—o0, vp]. The tangent space to the unstable
manifold of x at & (ug, v) is

Thuo.y W* (x) = RF (h(uo, v)) @ graphD ey, (P*h(uo, v)).

Since S(ug, v) € L(H*, H"*) and Do,,(P"h(ug, v)) € L(H", H*) have norm not ex-
ceedingf1 < 1, we have

W(uo, v) + Thwo.y W*(x) = H.
Moreover, a simple computation shows that the intersection

W(uo, v) N Thug.v) W (x)
= graphS(uo, v) N (RF (h(uo, v)) ® graphDa,,(P"h(ug, v)))

is a one-dimensional space spanned by the vector
G() = (G"(v), G°(v)) € H" x H",
where

G"(v) = S(ug, v)G* (v),
G*(v) = (I — T (v)S(uo, v)) (P F (h(uo, v)) — T (v) P“F (h(uo, v))),
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and T'(v) = Da,,(P"h(uo, v)). Indeed,| TS| <6? <1, sol — TS is invertible, and

2

I —T$)™ 1)<

-7 Y <—, <.
10 -1 5 -

By (d) we have the estimates

s 1 , 2 4
IIGAI|<1—02(I|P‘F(h)II + 01 P F(h)) < 1 ZIIF(h)||< . 2|IL|| IP*Al,
!

~ ~ ~ 401
HLP“h, G) <eLING I I PRI <O LI IG* | [P RII< 1 IILII 2I1P* R,

IGS — PSE()| < |G* — (P*F(h) — TP“F(h))| + |IT P“F(h)|

2
< SIPF(h) —TPYF(h)| + 201 LIl | P*hll
1-03
403
< ( iy +291> LI | P*All,

IG* — LP*h||<|IG* — PSF(h)|| + | P F(h) — P*Lh||

402
< Lo +200) LI +e) PRl
1-07

Thus

Dg(M)[G] = —(Lh G) = —(LP"h,G") — (LP°h, G*)

2||L|| IP*RIIZ = (LP*h, LP*h) + | L| | P*RI|IIG* — LP*h|

N

1—0

40 1
((1 12(01 + &)+ 201 + s) IL|2 - ||L—l||2) 1P

l

N

and by (1.10 we get

Dg(h(ug, v))[G()] <0 Vv € [—o0, vg]. (11.11)
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On the other hand, by (a),

Oh
Dg(h(uo, vo)) [;—u(uo, vo)} <0 (11.12)

and by (1.2 and (b),

Oh
Dg(h(uo, —00)) [a(uo, —OO)] = Dg(h(uo, —00))[F (h(uo, —00))] < 0. (11.13)

By construction,h(u, vo) € graphr,, N W*(x), for everyu >0, so

oh
E(MO’ vo) € graphDt,,(P*h(uo, v0)) N Th(ug,ve) W" (x) = W(uo, v0) N Thug,ve) W" (x).

Moreover,

Oh
5(140, —00) € Th(ug,—o0) W (y) N Th(uo,—oo)WM (x) = W(ug, —00) N Th(uo’_oo)WLt (x).

Then (11.1)-(11.13 imply that a vector fieldG satisfying the requirements of (iv)
can be defined by multiplyings by a suitable positive function.(J

Remark 11.4. In some particular cases, such as whers linear in a neighborhood
of y = 0, a mapWV satisfying the requirements of the above lemma can be defined
simply as

W(u, v) = graphDt,(P*h(u, v)),

providing us with a drastic simplification of the proof. However in general, the above
expression does not define a continuous m&p the reason being that the graph
transformI” of PropositionC.5 needs not be continuous with respect to ¢Hetopology.

We are now ready to prove assertion (iv) of Propositidnl The continuous maps
tw, © [uo, +00[— Cri,eo(TM),  u > Thu,—c0) W1 = RF (h(u, —00)),

Tw, ] — 00, v0]l = Gryeo(TM), v > Thqoo,m)Wo = RF(h(400,v)),

tw : [uo, +oo[x] — 00, vo] = Groeo(TM), (u,v) > ThuunW,
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have continuous liftingstw;, Tw, t0 ON(Gr1 (T M)), and Ty to Or(Grz,.o(T M)),
corresponding to the orientations #f;, W», andW, defined in Sectiorb. Moreover,
the continuous map

(2 [MO, +OO]X] — 00, UO] - Fp(TM)v (l/l, U) = (Th(u,U)WS(Z)v V(h(u7 U))),

has a continuous liftingy to Or(Fp(7T M)), which is determined by the orientatian
of (H,V(2)).
By Lemmall.3ii), W(+o0, —0c0) = Hj, so the continuous map

o : [ug, +00] X [—00, vo] = Fp(TM), (u,v) — W(u,v), Vh(u,v))),

has a unique continuous lifting to Or(Fp(T M)) such thaté(4o0, —00) = o,. By
Lemma 11.3iv), there is a continuous curvg’ : [—oo, vg] — Gr(TM) such that
W(ug, v) = RG(v) & X (v) for everyv € [—o0, vg], and we can define the continuous
map

p:[—o0,v0] > Fp(TM), v+ (X(v), V(h(uog,v))).

Then X (v) is a linear supplement dfy, g ) W*(x) in ThovM, SO Theorem B.2(jii)
implies that

t IirpOO D¢, (h(uog, v)X(v) = Hy,

uniformly in v € [—o0, vo]. Therefore, the orientation, of (H},V(x)) determines a
continuous Iiftingﬁ’ : [—o0, vo] = Or(Fp(T M)) of p.

Denote byh; and by iy the restrictions ofh to R x {—oo} and to{+oo} x R. If
X is an n-dimensional real vector space addis a non-zero element ofl” (X), the
same symbok will also denote the orientation of induced byé. Whenn = 1, we
shall identify A1(X) with X. If o is an orientation ofX, —o will denote the other
orientation.

By Lemmall.3i), (iv), and by (1.2,

Th(uo,v0) W* (2) = RF (h(uo, v0)) ® RG (vo) & X (v0) = Th(ug,up) W & X (v0),

so by the definition of the orientation ¥ c W% (x) N W*(z),

n oh oh ~
(uo, vo) = Tw (1o, vo) \P(vo) = (degh) <£(Mo, vo) A %(uo, v0)> AP(vo). (11.14)
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Moreover, Th(+o0,00) W* (2) = Th(to00.v9) W2 & W(+00, vg), SO by Lemmall.Jiii) and
by the definition of the orientation oV, ¢ W (y) N W*(z),

N . . oh .
(400, vo) = Tw,(vo) /\o(+00, vo) = (deghy) %(4‘00, vo) /\ & (400, vo)

(degh2) SF (h(+4o0, vo)/\&(—l—oo, v0),

where we have takenl{.? into account. By LemmdZl.3i),
o(u, vo) = (RF (h(u, vo)) @ a1(u, vo), x2(u, vo))

for everyu € [ug, +0o0], so by the continuity of the product on the orientation bundle
we obtain

»(uo, vo) = (deghz) F(h(uo, vo)) /\a(uo, vo).

Hence by 11.2),

o, 10) = (degiz) (5 0,10 + 5 (10,10 ) Ao, w0 (11.15)
By Lemma11.3ii), (iv), and by (11.2),
Thug,—o00) W* (y) = W(ug, —00) = RG(—00) & X'(—00) = Th(up,—o00) W1 & X'(—00),
so by the definition of the orientation df'1 ¢ W*(x) N W*(y),
(o, —00) = Tw; (o) \B(—00)) = (degh1) Z—Z(uo, —00) \B(—o0)

— (degh1) G(—00) AB(—00).

Then by the identity

a(uo, v) = (RG(v) @ f1(v), f2(v)) Vv € [—00, vo]

and by the continuity of the product on the orientation bundle we obtain

. oh .
&(uo, vo) = (deghiy) G (vo) /\f(vo) = (deghi) a—u(uo, vo) \B(vo)- (11.16)
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Identities (1.19 and (11.16, together with the associativity of the product of orienta-
tion, imply that

oh oh oh N
®(uo, vo) = (degh)(deghy) (5(140, vo) + %(uo, vo)) A (a(uo, vo)/\ﬁ(vo))

Oh Oh oh A
(deghy)(deghy) <<_6 (1o, vo) + — (uo, vo)) A — (uo, vo)) /\B(vo)
u ov ou

oh oh A
= —(degh2)(degh) (—(uo, vo) A == (uo, vo)) /\B(vo)
Ju v
and comparing the above identity with1(14 we obtain
degh = —(deghi)(deghz),

proving (iv). O
11.2. Conclusion

Proof of Theorem 9.1 Fix a valuec €] (z), f(x)[. By assumptionWN{f = c}=W/R
is an open interval, so it is parameterized byCa diffeomorphismy : R — M.
By Proposition8.2, there exist an increasing, unbounded sequémgeand a broken
gradient flow lineS* from x to z such that

lim BRx (D = S (11.17)

in the Hausdorff distance, and also such th@at,) converges to a poinp € S*. Since

y is @ homeomorphisnp is not inW, and sinceV is closed inW*(x) NW*(z), p is not
in W“(x)NW*(z) either. SoS™ contains a rest point of intermediate level. As already
noticed, the Morse—Smale property and the fact thét, £) = m(z, £) + 2 imply that
m(y,&) = m(z,€) + 1, and that there exist and W2+, connected components of
W (x) N W(y) and of W*(y) N W¥(z), such thatS™ = W;" U W, . Proposition11.1
provides us with a map

AT = {w,v) e Rx R v<u} - Whx) N W (2),

verifying properties (i)—(iv). In particular by (iii) andl@.17, »*(A* N R?) c W, and
by (iv),

degh™) = —degh™|rx(-o0)) - dEGNT (100 xR)- (11.18)
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By Proposition11.1(i), for any >0,

im fhT (s +1,9) = Aim f (oG, h(,00)) = f(x) >,

lim ft(s+1,5) = —Ii>Too flpGs, kT (t,0) = f(z) <c,

s——+00

0 0
S o] = =[G h" @ 0]
= Df (¢ (h™ (1, 0))[F (¢ (h™(1,0)] <O,

so by the implicit function theorem there exists a functipne C1([0, +o00[, R) such
that

FRF () +1, 1 (1) =c V=0,

Thenht(n, () +1t, n, (1)) € WN{f =c}, and

0+(t) := y 2T (o (0) + 1, n(0)

defines aC?® function 0., : [0, +0o[— R. An application 0f</>v,ﬂ+(u,u) to ht(ny(u—
v)+t, ny(w—v))=y04(u—v)) yields to the representation

B, v) = p(v — 4 (u —v), y(OL(w — v))), (u,v) € AT N R (11.19)

Sinceh™ is a diffeomorphism, the vectord:™/ou andoh™ /dv are linearly independent,
so

ath ’Vl+
(7004) = A+ 1) o + 1,
u ov

never vanishes, and from the fact thais a diffeomorphism we deduce théft (r) # 0

for everyr>0. Moreover, from Propositiod1.1(iii), ¢(R x {y(sp)}) C hy(A™) for n
large, which implies thatp(R x {y(sn)}) = ¢(R x {h*(tn, 0)}) = ¢(R x {p(0+(tx))})

for somer,>0. Sincey is injective and meets any flow line at most once, the last
equality implies that), (¢,) = s, — +o00. Therefore,

0, >0, [_IiTOO 04 (t) = +oo. (11.20)

The same construction, starting with a sequesjce> —oo, yields to a rest poiny’
with m(y’, £) = m(z, £) + 1 such thatp(R x {y(s,)} converges toS~ = W; U W, ,
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for some connected componerit§ and W, of W*(x)NW*(y") and W"(y") N W*(2),
respectively. As before we obtain a map

W A" ={u,v) eRxR : vu}l—> W,

where we also used the orientation reversing change of variables (u,v) —
(v, u) € A*. Hence

degh™) = degh™ |{—oo}xR) - d€GA |Rx (+00)) (11.21)
and we have the representation
h(u,v) = ¢(v —n_(u —v), y(0_(u — v))), (u,v) € A~ NR (11.22)
for suitableC?! functionsy_ and 0_ on ] — oo, 0], with

0 >0 Im 0_(t)=—occ. (11.23)
——00

Proposition11.iii) together with (1.19 and (1.29, implies thatS~ # ST, as
claimed in (ii). Now we can choose tw6?! functions#, 0: R — R, with 0 > 0,
coinciding withy_, 0_ in a neighborhood of-co and with#,, 0, in a neighborhood
of +00. The map

h(u, v) = ¢p(v — n(u — v), Y0 —v))), (u,v) € R,

has a continuous extension Box R and clearly satisfies all requirements (i)—(iv).
([l

Proof of Proposition 9.2 The conclusion follows immediately from Proposition
11.%Gi). O
Appendix A. Infinite dimensional Grassmannians

The aim of this appendix is to gather the definitions and the relevant properties of
some infinite dimensional Grassmannians. Unless otherwise stated, detailed proofs can
be found in[AMO03a] (but see alsdPal65,Luf67,Qui85,SW85,PS86,CJS95,Shi)96]

A.1l. The Hilbert Grassmannian and the space of Fredholm pairs

By L(E, F), respectivelyL.(E, F), we will denote the space of continuous linear,
respectively compact linear, maps from the Banach sjia¢e the Banach spack.
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If F = E we will use the abbreviation&£(E) and L.(E). The norm of the operator
T € L(E, F) will be denoted by||T|. By a(L) and by gesdL) we will denote the
spectrum and the essential spectrum of the operaterL(E), that is the spectrum of
[L] in the Calkin algebral(E)/L.(E).

Let H be a real infinite dimensional separable Hilbert space. The orthogonal projec-
tion onto a closed subspade c H will be denoted byPy, while V- will denote the
orthogonal complement of in H.

Let Gr(H) be theGrassmannian of Hi.e. the set of closed linear subspacesHof
The assignmenV +— Py is an inclusion of G¢H) into L(H), onto the closed subset
of the orthogonal projectors di. We can therefore define, for arly, W € Gr(H) the
distance

dist(Wy, W2) := || Pw, — Pw,ll,

which makes GtH) a complete metric space. It can be proved thatH3ris an analytic

Banach submanifold of the Banach spa€éH): indeed, the subspace of symmetric

idempotent elements of @*-algebra is always an analytic Banach submanifold.
The connected components of (@r) are the subsets

Gryx(H) :={V € Gr(H) |dimV =n, codimV =k}, n,ke NU{oo}, n+k = 0.

The orthogonal group @) is contractible, by a well known result by Kuipffui65],
and it acts transitively on each of these components. These facts imply thai, G¥)
is contractible, while Gy (H) and Gk ,(H) have the homotopy type of B@), the
classifying space of the orthogonal group [&f.

A pair (V, W) of closed subspaces ¢f is said aFredholm pairif V N W is finite
dimensional, and/ + W is finite codimensional (see al§iat80, Section IV]. In this
situation, theindex of (V, W) is the number

ind(V, W) =dimV N W — codim(V + W).
The set of Fredholm pairs iH will be denoted by FaH): it is open in GKH) x Gr(H),

and the index is a continuous function on(Ff. The connected components of (Ep)
are the subsets

Gry00(H) X Gloom(H),  Groon(H) X Glypoo(H), n,m e N,
FRoc(H) == {(V,W) e Fp(H) | V, W € Gl 0o (H), ind(V, W) =k}, k € Z.

The space of Fredholm pairs consisting of infinite dimensional spaces will be denoted
by

Fp*(H) := ] Fpi(H).
keZ
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It can be proved that EpH) has the homotopy type of B@o), the classifying
space of the infinite real orthogonal group(@@) = lim,_~ O(n). So Fp(H) is
homotopically equivalent t& x BO(c0), and by the Bott periodicity theorem we get
Z for i =0,4 mod 8
i (Fp*(H)) =4 Z» fori=12 mod8 (A1)
0 fori =3,5,6,7 mod8

We conclude this section with a result about the existence of hyperbolic rotations,
which will be useful in Appendix B.

Proposition A.1. Let V, W € Gro oo(H) be such thatdist(V, W) < 1. Then there
exists A € L(H) self-adjoint invertible, with gesdA) N R™ # @, ces{A) N RT # 7,
such thateV = w.

Proof. Since distV, W) < 1, W = graphL, with L = Py, (Py|w)™t € L(V,V71).
Consider the self-adjoint bounded operator

(0 nL*
S_(’?L 1/9), 0<0<1 nekR,

in the splitting H = V @ VL. Then
_ L(L*L 0

We fix af < 1/||L||, so the positive self-adjoint operator on the right-hand side has its
spectrum in[0, 1[, for everyy € [0, 0]. The spectral mapping theorem implies that

{s =0 (s —1/0) | s € a(S)} C [0, 1],
so we have
a(S) C10,0] U [1/6,1/60 4+ 6[ C 10, 1[ U 11, +o0[

for any n € [0, 0]. For n = 0, gesdS) = {0, 1/0}, so by the semi-continuity of the
essential spectrum

oesdS)NJ0, 1[# 0,  gesd S)N]L, +o0[# 0,

for any n € [0, 0]. In particular fory = 0, A = logS is a well-defined operator
satisfying the requirements.[]
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A.2. The determinant and the orientation of Fredholm pairs

Let n € N. The Grassmannian af-dimensional linear subspaces,G¢(H) is the
base space of a non-trivial real line bundle, the determinant bundle

Det(Gry 00 (H)) — GIy.00(H),

whose fiber atX € Gr, o (H) is the line DetX) := A9MX(X), the component of the
exterior algebra ofX consisting of tensors of top degree. Such a line bundle has a
natural analytic structure. I1t€, reduction is the non-trivial double covering

Or(Gry, 00 (H)) — GIy o0 (H),

called the orientation bundle, whose fiberXais the set O¢X) consisting of the two
elements of D&tX) \ {0}/R™. If ox is an element of QuX), the other element will be
denoted by—ox. If n,m € N, the space

S(n,m) = {(X,Y) € Glyoo(H) X Gly,oo(H) | XNY = (0)}
is the base space of the line bundle
Det(S(n, m)) — S(n, m),

whose fiber at( X, Y) is the line DetX) ® Det(Y), and the exterior product of tensors
of top degree defines an analytic morphism

A Det(S(n,m)) — Det(Glyim.c0(H)), wx @ wy > wx A ©y

which lifts the analytic map(X,Y) — X + Y. This operation is associative. The
morphism of line bundles\ induces a morphism of coverings, denoted by the same
symbol, between the orientation bundles:

A Or(Sn, m)) — Or(Grn+m,oo(H))a

where the first space is the total space of the covering é\@rm) whose fiber at
(X,Y) is Or(X) x Or(Y). The product of orientations satisfies the identity

ox Aoy = (—ox) A (—oy) = —(—ox) Aoy = —ox A (—oy)

and it is associative.
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These constructions have a natural extension to the space of Fredholm pairs. The
determinant bundle oveffp(H) is the line bundle

Det(Fp(H)) — Fp(H),

whose fiber at(V, W) is the line

H k
Det(V, W) =Det(VNW)® Det<<v n W)) .

Although the intersectioy "W and the sumV + W do not depend even continuously
on (V, W), it can be shown that the above bundle has an analytic structure. This line
bundle is also non-trivial, and it&, reduction is the non-trivial double covering

Or(Fp(H)) — Fp(H),

called theorientation bundle oveFp(H), whose fiber atV, W) is the set O¢V, W)
consisting of the two elements of D&t W) \ {0}/R™. If ow,w) is an element of
Or(V, W), the other element will be denoted byoy w). Note that the fundamental
group of each component of FH) is Z», so the restriction of the orientation bundle
to Fp*(H) is the universal covering of FpH).

If n e N, the space

S(n,Fp) = {(X. (V. W)) € Gl oo(H) x Fp(H) | XNV = (0)}
is the base space of the line bundle
Det(S(n, Fp) — S(n, Fp),

whose fiber at(X, (V, W)) is the line DetX) ® Det(V, W), and there is an analytic
morphism

/\ : Det(S(n, Fp)) — Det(Fp(H)), owx ® ww,wy = wx/\a)(vgw)

which lifts the analytic map X, (V, W)) — (X + V, W). Also this operation is asso-
ciative, meaning that

wx \(wy Aoy, w)) = (ox A oy) Aoy, w)

for any wx € Det(X), wy € Det(Y), ow.w) € Det(V, W), where X, Y are finite
dimensional subspaces 6f, and (V, W) is a Fredholm pair such that N Y = (0),
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(X +Y)NV =0. The morphism of line bundleg, induces a morphism of coverings,
denoted by the same symbol, between the orientation bundles:

N\ : Or(S(n, Fp)) — Or(Fp(H)),

where the first space is the total space of the covering 6\er Fp) whose fiber at
(X, (V,W)) is Or(X) x Or(V, W). This map satisfies the identity

ox/\ow,wy = (—ox) N(—ow.wy) = —(—ox) Now,w) = —ox /\(—ow.w))

and it is associative, meaning that

ox \loy Nowv.wy) = (ox A oy) Now,w)

for anyox € Or(X), oy € Or(Y), ov,w) € Or(V, W), whereX, Y are finite dimensional
subspaces dfl, and(V, W) is a Fredholm pair such tha&ny = (0), (X+Y)NV = 0.

A.3. The Grassmannian of compact perturbations

We shall say that the closed linear subsp®#¢és a compact perturbatiorof V if its
orthogonal projectoPy is a compact perturbation @fy. The subspac®/ is a compact
perturbation ofW if and only if the operatorsPy, . Py and Py, . Py are compact. The
notion of compact perturbation produces an equivalence relation, ar@réssmannian
of compact perturbations of,V

Gr(V,H) :={W e Gr(H) | W is a compact perturbation df}

is a closed subspace of @f). If V has finite dimension (respectively, finite codimen-
sion), then

Gr(V,H) = U Gy oo(H) (resp.: U Groo,,,(H)).

neN neN

In the more interesting cas¥, has both infinite dimension and infinite codimension.
In such a situation, GV, H) is a closed proper subset of Gk (H). It is an analytic
Banach manifold, although just@ Banach submanifold of GH). This space is also
called restricted Grassmanniaby some authors (sg&W85,PS86,CJS9b]

If W is a compact perturbation oW, then (V, W+) is a Fredholm pair, and the
relative dimension of V with respect to & the integer

dim(V, W) :=ind(V, WH) =dimV n W+ —dimv+nw.
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WhenV andW are finite dimensional (resp. finite codimensional), we have dinW) =
dimV —dimW (resp. dim{(V, W) = codimW — codimV).

Proposition A.2 (JAMO03a, Proposition 5.1). If (V, Z) is a Fredholm pair and W is a
compact perturbation of Mhen (W, Z) is a Fredholm paiy with

ind(W, Z) =ind(V, Z) + dim(W, V).
In particular, if V, W, Y are compact perturbations of the same subspace,
dim(Y, V) = dim(Y, W) +dim(W, V). (A.2)

Nor the notion of compact perturbation, neither the relative dimension depend on the
choice of an equivalent inner product Hh

Proposition A.3 (JAMO1, Proposition 2.3]. Let H1, H> be Hilbert spaces and I€, S €
L(H1, H?) be operators with closed range and compact difference. ThesiT" is a
compact perturbation okerS, ran7 is a compact perturbation afans, and

dim(ranT, ranS) = — dim(ker T, kerS).

Proposition A.4. Let T € GL(H), V € Gr(H), and let P be a projector onto V. Then
TV is a compact perturbation of V if and only if the operatér— P)T P is compact

Proof. By choosing a suitable inner product ¢ty we may assume thaP = Py
is an orthogonal projector. The operatbr:= TP + T* (I — P) is invertible, and
Pry = TPL~L. ThereforeTVis a compact perturbation &f if and only if the operator

(Pry — Py)L=( — P)YTP — PT* Y1 —P)=§

is compact.
Now, if Sis compact, so i/ — P)TP = SP. On the other hand, since the set

(X e GL(H) | (I — P)XP € L.(H)}
is a subgroup of GUH), if (I — P)T P is compact so igI — P)T~1P. Therefore,
S=(-P)TP— ((1 - P)T—lp)*

is compact. [J
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Let V € Gry oo(H). The connected components of (8; H) are the subsets
Gr,(V,H) ={W eGr(V,H) |dm(W,V)=n}, nelZ.
These components are pairwise diffeomorphic. Each of these components has the ho-
motopy type of BQ@co), so the homotopy groups of @f, H) are those listed in

(A.1).
We conclude this section with a result about the kernel of semi-Fredholm operators.

Proposition A.5. Let A, B € L(H1, H2) be continuous linear operators between Hilbert
spaceswith finite-codimensional range. Assume that the restrictiéhg, 5 and B|kera
are compact. Theker A is a compact perturbation déer B, the operatorA B* € L(H>)

is Fredholm and

ind (AB*) = dim cokerB — dim cokerA + dim(ker A, ker B). (A.3)

Proof. SinceA has closed range, there existss £(Hz, H1) such thatSA = Per )L
Then PyerayL Peers = SAPerp is compact, and symmetrically so By p)L Prera-
Therefore, ker is a compact perturbation of k& Moreover,A Pye gy = A—APkerp
is a compact perturbation o% so it has closed range réA Pyerp)L) = ran(AB™).
Since (AB*)* = BA*, the exactness of the sequences

0 — ker B* <> ker(AB*) 2> kerA n (ker B)y: — 0,

0 — kerA* < ker(BA™) A kerB N (kerA)* — 0,

implies thatAB* is Fredholm and thatA(3) holds. [

A.4. Essential Grassmannians

If m € N, we define the(m)-essential GrassmanniaGr,,(H) to be the quotient
space of G¢H) by the equivalence relation

{(V,W)eGr(H) x Gr(H) | V is a compact perturbation d¥
and dim\V, W) e mZ}.

The (1)-essential Grassmannian is simply caksgential Grassmanniaff E € Gr,,
(H) and V € Gr(H) is commensurable to the subspaces belonging to the equivalence
classE,

dim(V, E) :=dim(V, W), W €E,

defines an element of /mZ.
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The essential Grassmannian {¢H) is homeomorphic to the space of symmetric
idempotent elements of the Calkin algeltéH)/L.(H), hence it inherits the structure
of a complete metric space, and of an analytic submanifold of the Calkin algebra.

Every set Gf «(H) or Grs ,(H), n € N, represents an isolated point in G(H),
which has thus countably many isolated pointsmlf 1, the sets

U Grie(H) and | ) Gren(H). k=0.1....m—1,
nemZ+k nemZ+k

represent & isolated points in Gy, (H). The remaining part of Gy, (H) is connected,
being the quotient space of Gr-.(H), and it is denoted by (?,I}>(H)-

The space q%)(H) is simply connected, while the fundamental group o(‘m()S(rH)
for m>1 is infinite cyclic. If m >1 dividesk € N, the natural projection

Grz"k)(H) — Grz"m)(H)

is a covering map. It is the universal covering of’(’}g(H) if k =0, it induces the
homomorphismg — (k/m)q between fundamental groups kf# 0. Form = 1 we
obtain a covering map with a basis having the structure of an analytic Banach manifold
and of a complete metric space, hence the same structures can be lifteghidGr
for any k # 1.

Finally, the natural projection

Groo,00(H) — GIf,, (H) (A.4)
is a C? fiber bundle® Its total space is contractible, and its typical fiber is

|J Gm(v.H). whereV € Gryo(H).
[nleZ/mZ

a disjoint union all of whose components have the homotopy type abBOTherefore,
the exact homotopy sequence of a fibration yields to the isomorphisms

7 fori =15 mod8
n,-(Gr}“m)(H));ni_l(Gr(V, H)) =17, fori=2,3mod§
0 fori =0,4,6,7 mod8

for i >2.

6 Although map A.4) is analytic, it has no differentiable trivializations.
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Appendix B. Linear ordinary differential operators in Hilbert spaces

This appendix summarizes some results about linear ordinary differential operators in
Hilbert spaces. SeAMO03Db] for a detailed exposition (see alfS95,LT03]for related
results in the framework of unbounded operators, and for an extensive bibliography).

Let H be a real Hilbert space. A bounded linear operdtar L(H) is saidhyperbolic
if its spectrum does not meet the imaginary axis. In such a casé{ let V(L) ®
V~(L) be theL-invariant splitting ofL into closed subspaces, corresponding to the
decomposition of the spectrum &finto positive and negative real part.

Proposition B.1 ([AMO1, Proposition 2.2). Let L, L’ € L(H) be hyperbolic opera-
tors. If L’ is a compact perturbation of,Lthen V*(L’) is a compact perturbation of
VT (L), and V™ (L') is a compact perturbation of ~(L).

Let A : [0, +00] — L(H) (resp.A : [—o0,0] — L(H)) be a piecewise continu-
ous path such that(+o0) (resp. A(—o0)) is hyperbolic. We shall denote by ,4 :
[0, +oo[— GL(H) (resp. X4 :] — o0, 0] — GL(H)) the solution of the linear Cauchy
problemX’, (r) = A(t)X (1), X4(0) = I. Thelinear stable spacef A (resp. thelinear
unstable spacef A) is the linear subspace ¢f

Wi = {éeHlt_leOO XA<r>é=0}

(resp Wi = {aj € H | t_lirpoo Xa(H)E = O}) .

The main properties of the linear stable space are listed in the following:

Theorem B.2 ([AMO3b, Proposition 1.2 and Theorems 2.1, 3.1Bt A : [0, +00] —
L(H) be a piecewise continuous path such tigt-oo) is hyperbolic. ThenWy is a
closed subspace of ,Hvhich depends continuously on A in th&° ([0, +oo[, L(H))
topology. The following convergence results for> +oco hold:

(i) wy is the only closed subspace W such tia{(r)W converges toV ~ (A(+00));
(i) [ Xa(®)lws |l converges td exponentially fast

The above limits are locally uniform in,Avith respect to the.*° topology. Moreover
if V. e Gr(H) is a linear supplement oW?,
(i) Xa(r)V converges toV T (A(+00));
(iv) inf [X4(r)¢| diverges exponentially fast

cev

I<=1
The above limits are locally uniform i € Gr(H), and in A with respect to theL.*>
topology. Finally

V) WS, =Wt



A. Abbondandolo, P. Majer/Advances in Mathematics 197 (2005) 321-410 401

The analogous statements for the linear unstable space can be deduced from the
above theorem, taking into account the identify (1) = Xg(—1) for B(r) = —A(—1).
The following proposition characterizes those path$or which the evolution of the
linear stable space remains in a fixed essential class:

Proposition B.3 (JAMO3b, Proposition 3.8]. Let A : [0, +00] — L(H) be a piece-
wise continuous path such that(+o00) is hyperbolic. Let V be a closed subspace of
H, and let P be a projector onto V. Then the following statements are equivalent

(i) Xa(r)Wy is a compact perturbation of V for amy>0;
(i) V7 (A(400)) is a compact perturbation of V an(z), P]P is compact for any
t>0.

The proof of the above proposition is based on the following facV i§ a closed
linear subspace dfl, then the orthogonal projectdt(r) onto X 4(t)V solves the Riccati
equation

P'(t)=( — P()A@)P(t) + P()A®)* (I — P()), (B.1)

as shown ifAMO03b, formula (35)]

Now let A : [—o0, +o0] — L(H) be a continuous path such thdt(—oco) and
A(+00) are hyperbolic. IfCY(R, H) (resp. C3(R, H)) denotes the Banach space of
continuous curves : R — H such thatu(r) is infinitesimal (respu(t) and u’(¢) are
infinitesimal) for+ — +oo, we can consider the bounded linear operator

Fa:C3R, H) = CAR, H), (Fau)(t) =u'(r) — A()u(r).

Its main properties are listed in the following:

Theorem B.4 ([AM03b, Theorem 5.1 and Remark 5.1].et A : [—o0, +00] — L(H)
be a continuous path such that(—oo) and A(+o00) are hyperbolic. Then

(i) Fa has closed range if and only if the linear subspagg + W) is closed
(i) F4 is surjective if and only ifWj + W) = H;
(iii) F, is injective if and only ifWj N W) = (0);
(iv) Fa is a Fredholm operator if and only itw;, W}) is a Fredholm pair and in
this caseind Fy = ind (W}, W}).

It is easy to build examples of patAshaving two arbitrary closed linear subspaces as
linear stable space and linear unstable space, so the above theorem shows that in general
F4 may not have closed range, and its kernel and cokernel may be infinite dimensional.
Even F4 is Fredholm, A(¢) is self-adjoint and invertible for any, and A(—oco0) =
A(+00), the operatorF4, may still have any index. In the following proposition we
exhibit such an example with positive index. By Theorem B.2(v), we obtain an example
with negative index by considering the paBtir) = —A(1).
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Proposition B.5. Let H be a separable infinite dimensional real Hilbert space. Let
H = H™ & H" be an orthogonal splitingwith H~, Ht € Gr (H). For any

k € N there existsA € C*°(R, GL(H) N Sym(H)) such thatA(t) = Py+ — Py- for

t ¢(0,1), and Wi + W4 = H, dimW; N Wj = k. In particular, Fa is a surjective
Fredholm operator of index.k

Proof. Let W c H* be a linear subspace of dimensidn Since Gk oo(H) is
connected, there exist closed subspabgs= H~ @ W, V1,..., V-1, V,y = H™ In
Groo,00(H) with dist(V;_1,V;) < 1 for any j e {1,...,m} (in fact it is possible to
takem = 4). Denote byS the open subset of SyH) consisting of the invertible op-
eratorsA with cesd A)NRT # (4. By PropositionA.1 we can find operatordy, ..., A,
in S such thate?//™V;_; = V;. Define the piecewise constant paih: R — S as

Py+ — Py- fort <0 ore<l,
1 i
Aj for L=<t <L jefl....m}

B(t) = {

Since X (1) = e 4i/meAi-u/m MM for (j —1)/m<t<j/m, there holds
Xp(W)(H™ @ W) =etn/m  eMimyg =V, = H".

SinceS is connected, there is a sequen@®) Cc C*(R, S) with B,(r) = Py+ — Py-
for ¢ ¢ (0,1), (B,) bounded inL®(R, £L(H)), and B, — B in LY(R, L(H)). By the
identity

t

Xat) = Xp(1) +/o Xp()Xp(D) A — B)(®)X (D) dr,

the sequencéXp, (1)) converges taXz (1), hence
-1 -1
W;?,, = XBn (1) Wé,,(w&-l) = XBII (1) W;JHJF_PH,
=Xg (V) 'H™ > Xg() 'H =H @ W.

u u — + — icfi u
Moreover, Wy = Wp _p = HT, so forn large enoughA = B, satisfiesW) +

Wi = H and dmwj N W} =k. O

Appendix C. Hyperbolic rest points

This appendix summarizes some well known results about hyperbolic dynamics. See
[Shu87]
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C.1. Local statements

Let F be a vector field of clas€! defined on a neighborhood of 0 in the real
Hilbert spaceH. We denote byQ(F) the maximal subset oR x U where the local
flow of F, i.e. the solution of

O¢(t, p) = F(ot,p), ¢O,p)=p

is defined. We assume that O is a hyperbolic rest pointFfomeaning thatF(0) = 0
and L := DF(0) is a hyperbolic operator, that is(L) NiR = (. Let H* & H* be the
splitting of H corresponding to the partition of the spectrumLahto the closed subsets
o(L)yN{z € C|Rez >0} andao(L)N{z € C | Rez <0}. By P* and P* =1 — P" we
shall denote the projections ont®" and H*, and we shall often identifff = H*@® H*
with H" x H*.

There exists an equivalent inner prodyct) on H with associated nornjj - || which
is adaptedto L, meaning thatd4* and H* are orthogonal, and

(LEEZAEN? VEe HY, (L& &< — ¢ Yée H? (C.1)

for some /. > 0. Indeed, we may choose any positixewhich is strictly less than
min|Recs(L)|, as shown by the following lemma, applied fdys and to—L|g«.

Lemma C.1. Let L be a bounded linear operator on H and letbe a real number
such thatl > max Res(L). Then there exists an equivalent inner prodyct) on H
such that

(LS, <AL Q) VEeH.

Proof. Up to replacingL by L — Al, we may assume that = 0. Let (-, -), be any
Hilbert product onH, and denote by - ||, both the associated norm d# and the
induced norm onl(H). By the spectral radius formula and by the spectral mapping
theorem,

lim " 1Y = max|o(e)| = max|e”®)| < 1.
n—>oo

Let k € N be so large thaflefX ||, <1, and set

k
(&)= / (e'te e'ly),dt VE e H.
0
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Then (-, -) is an equivalent inner product dd, and for any¢ € H

k 1 k d
(LE &) =/ <efLLé,e’Lé>*dz=—/ Lt e2di
0 o dt

2

1 kL 22 2 1 kL) 2 2
== - <= — <
> (netaiz —nenz) <5 (et 12 - 1) ne <.

concluding the proof. O

If Vis a closed linear subspace ldfandr > 0, V (r) will denote the closed ball of
V centered in 0 with radius. Moreover, we set

O(r):={¢e H|IPl<r, |PEI<r}.

If AC X C H, the setA is saidpositively(negatively invariant with respect to Xf for
every ¢ € A and for everyr > 0, ¢([0, 1] x {&}) C X implies ¢([0, ¢t] x {&}) C A (resp.
for every ¢ € A and for everyr < 0, ¢([z, 0] x {&}) C X implies ¢([z, 0] x {&}) C A).

Lemma C.2. For any r > 0 small enoughthe set
{Ee Q) [ IIPEI<SIP e} (resp. {E€ Q) | IPYEISIPEN})

is positively (resp. negativelyinvariant with respect toQ(r). Moreover if ¢ belongs
to the set

{eom [Pl =r} (resp. {¢e Q)| IIPE=r)),
then ¢, &) ¢ Q@r) (resp ¢(—t, &) ¢ Q(r)) for everyr > 0 small enough

Proof. By a first-order expansion df at O and by C.1),

> 21| P +o(| PEl®) i [ PSEI<IIPE,

d 2
ol

< = 2 PSEIP +o(IPEEN?) i IIP“EN <P

d 2
— | PPo(t, )
F1rscol]

All the statements follow from the above inequalitie$.
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Given r > 0, thelocal unstable manifoldand thelocal stable manifoldof O are the
sets
W{éc,r(o) ={e Q@) |]1—00,0] x {&} C QF) and ¢(] — 00, 0] x {&}) C Q(r)},
Wﬁ)c,r(o) ={& € 0(r) | [0, +oo[x{&} C Q(F) and ¢([0, +-00[x{&}) C Q(r)}.

Then the local stable manifold theorem (§&hu87, Chapter ]states that:

Theorem C.3. For any r > 0 small enough Wg. .(0) (respectively Wi .(0)) is the
graph of ac! map¢* : H*(r) — H*(r) such thate“(0) = 0 and D¢"(0) = O (resp.
of a Ct map¢* : H'(r) - H"“(r) such thate*(0) = 0 and Da*(0) = 0). Moreover
for any ¢ € Wise. (0) (resp. for any¢é e ngc,r(O)), there holds

Iim ¢@#, &) =0 (resp. lim ¢, &) =0).
t—>—00 t——+00

We recall that a non-degenerate local Lyapunov function for the vector Fiedd
the rest point 0 is aC! real function defined on a neighborhood of 0 k) such
that Df(O[F ()] < 0 for ¢ £ 0, and which is twice differentiable at 0, with the
quadratic formD?2f(0) coercive onH", and the quadratic form-D2f(0) coercive
on H*® (necessarily,Df(0) = 0). A first order expansion oF at 0 shows that the
restriction of the function

& =—3(LE &),

to a suitably small neighborhood of 0 is a non-degenerate local Lyapunov function for
F at O.

Lemma C.4. For any r > 0 small enoughfor every sequencé’,) c H converging

to 0 and for every sequenc@,) C [0, +oo[ such that¢([0, 7,] x {£,}) C Q(r) and
¢(tn, &,) € 0Q(r), there holds

dist (¢ (tn, ). Wike,,(0) N 2Q(r)) — 0.

Furthermoreg if f is a non-degenerate local Lyapunov function for FGatthere holds

lim sup f(¢(tn, u)) < f(0).

n—o0

Finally, there exists”’ < r such that

sup{f(&) | £ € d0(r) and 3t <O such that
d(—1,8) € Q(r)p([—1,0] x {&H C @} <inf {f (&) | e QN
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Proof. If the vector field is linear,FF(¢!) = L&, the first conclusion is immediate:
actually for any(¢,) ¢ H converging to 0 and anyr,) C [0, +oco[, there holds

lim dist (e’"Lén,H“> -0 (€.2)
n—od

By the Grobman—Hartman theoremif > 0 is small enough the local floy restricted
to Q(r1) is conjugated to its linearizatiofr, &) — ¢'L¢, by a bi-uniformly continuous
homeomorphisn?. By TheoremC.3 we may also assume that is so small that
Wl'gwl(O) is the graph of a uniformly continuous mapj : H*(r1) — H*(r1).

Let r < r1 and sety, := ¢(t,, &,) € dQ(r), with &, — 0 andz, >0. By the linear
case C.2) and by the uniform continuity of the conjugacy, there ex{gfs C Wioe.r, (0
such thatin, —n, |l is infinitesimal. Setting;, = (P"#,,, a*(P"y,)) € Wie.-(0NIQ (),
by the uniform continuity ofe* we have

dist (17,. Wigc,-(0) N 0Q(r))
<l — <l — w4 1P u, — PUyy |l + 1P, — Popy |l
= [0, — 1, + I1P“n, — Pn, Il + lla” (P"n,) — o (P“n,)Il — O,

proving the first claim. Since the local unstable manifold is tangenftoat O, since
Df(0) =0 and—D?f(0) is coercive onH", by o(r) considerations we have

sup{ f(&) | & € Wige (00N 30N} < f(0),

if r > 0 is small enough. Sinckis uniformly continuous orQ(r) for r small enough,
the second claim follows from the first one. The last claim is an immediate consequence
of the second one, arguing by contradictiori.]

Given two metric spaceX andY and a positive numbef, Lip,(X, Y) will denote
the space off-Lipschitz maps fromX to Y, endowed with theC® topology. The
following version of the graph transform theorem is provedAMO1, Proposition A.3
and Addendum A.5]see alsdShu87, Chapter %]

Proposition C.5. For any r > 0 small enough there is a continuo@sonlinea)) semi-
group
I': [0, +o0] x Lipy(H"(r), H*(r)) — Lipy(H" (r), H*(r))

such that for every € Lipy(H“(r), H*(r)) there holds
(i) T'O,0) =0, and I'(t +s,0) =1'(¢, (s, 0)), for everyz,s € [0, +o0];

7We recall that this conjugacy is found as a fixed point of a contractioon a suitable space of
continuous maps (segShu87, Chapter J] Since for « €]0,1[ small enough, the space of-Holder
continuous maps isl-invariant, such a conjugacy turns out to be Hélder continuous together with its
inverse. In general, it needs not be even Lipschitz continuous.
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(i) for everyr € [0, +o0l, the restriction of¢, to Q(r) maps the graph o& onto the
graph of I'(¢, 6), that is

graphl’(z, o) = {¢(t, &) | £ € graphe and $([0, 1] x {&}) C Q(n)};

(i) graphI'(4o00, ) = W, . (0);

(iv) for any 0 > O there existsrg €]0,r] and 7p>0 such that the restriction of
I'(t, o) to H"(ro) is in Lipy(H"(ro), H'(ro)), for any ¢ € [tg, +0o0] and any
o € Lipy(H"(r), H(r)).

Furthermore
(v) it V.C H"(r) is open ands € Lip1(V, H*(r)) is such thatgraphoN Wy, . (0) # ¢,

then there exists >0 and ¢’ € Lip;(H"(r), H*(r)) such that the restriction of,
to Q(r) maps the graph of onto the graph ofo’, that is

graphe’ = {¢(1, &) | ¢ € grapho and $([0, 1] x {&}) C Q(r)}.

C.2. Global statements

Now let F be aC? vector field on the real Hilbert manifoltf, and let¢ : Q(F) —
M, Q(F) c R x M, denote its local flow. Lek be a hyperbolic rest point df. We
can identify a neighborhood of in M with a neighborhood of 0 in the Hilbert space
H, identifying x with 0. We denote byH = H" & H*® the splitting of H associated to
the hyperbolic operatoV F(x) = DF(0), and we endowH with an equivalent inner
product adapted t& F(x), as in the previous section. Fer> 0 small enough, we set

Q(r)=H"(r) x H(r), Q%Y(r)=0H"(r) x H*(r), Q (r) = H"(r) x 0H*(r).

LemmaC.2 and the last statement of Lemnt4 have the following consequence.

Proposition C.6. For any r > 0 small enough there holds

@) if p e Q@) and ¢(z, p) ¢ Q(r) for somer > 0, then there exists € [0, ¢[ such
that ¢(s, p) € Q*(r);

(i) if p e Q(r) and ¢(z, p) ¢ Q(r) for somer < 0O, then there exists €]¢, 0] such
that ¢ (s, p) € O~ (r).

Moreovet if F admits a globalC! Lyapunov function which is twice differentiable and

non-degenerate at:x

(i) if p e QT (r), theno(t, p) ¢ Q(r) for anyt > O;
(iv) if p e Q7 (r), theno(t, p) ¢ Q0 for anyr < 0.
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The unstable and stable manifoldsofire theg-invariant subsets oM

W' (x) = {p €M |]—o00,0lx{p} CQ(F) and |im ¢, p) =x},

Wo(x) = {p € M | [0, +oo[x{p} C Q(F) and z—!@oo o, p) = x} .

The local stable manifold theorem (Theoré®3) and PropositiorC.6 imply:

Theorem C.7. The setsW¥(x) and W*(x) are images ofC? injective immersions

e . H* - M, ¢ :H' — M,

such thate”(0) = ¢*(0) = x, and De"(0) and De*(0) are the identity mappings. If
moreover F admits a globa’! Lyapunov function which is twice differentiable and
non-degenerate at,xhen for anyr > 0 small enough

WH(x) N Q) = Wige . (0),  W(x) N Q(r) = Wy, (0)

and the maps*, ¢* are embeddingsso that W*(x) and W*(x) are C1 submanifolds

of M.
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